Research article

Finite-time and fixed-time stabilization of inertial memristive Cohen-Grossberg neural networks via non-reduced order method

  • Received: 28 January 2021 Accepted: 15 April 2021 Published: 22 April 2021
  • MSC : 00A69

  • In this paper, we focus on the finite-time and fixed-time stabilization of inertial memristive Cohen-Grossberg neural networks. To cope with the effect caused by inertial (second-order) term, most of the previous literature use the variable translation to reduce the order. Different from that, by directly designing a Lyapunov functional and feedback controller, a novel non-reduced order method is proposed in this paper to solve the finite-time (fixed-time) stabilization problem of inertial memristive Cohen-Grossberg neural networks. Two kinds of time delays are considered in our network model, novel criteria are then derived for both cases. Lastly, numerical examples are given to verify the validity of the theoretical results.

    Citation: Ruoyu Wei, Jinde Cao, Wenhua Qian, Changfeng Xue, Xiaoshuai Ding. Finite-time and fixed-time stabilization of inertial memristive Cohen-Grossberg neural networks via non-reduced order method[J]. AIMS Mathematics, 2021, 6(7): 6915-6932. doi: 10.3934/math.2021405

    Related Papers:

  • In this paper, we focus on the finite-time and fixed-time stabilization of inertial memristive Cohen-Grossberg neural networks. To cope with the effect caused by inertial (second-order) term, most of the previous literature use the variable translation to reduce the order. Different from that, by directly designing a Lyapunov functional and feedback controller, a novel non-reduced order method is proposed in this paper to solve the finite-time (fixed-time) stabilization problem of inertial memristive Cohen-Grossberg neural networks. Two kinds of time delays are considered in our network model, novel criteria are then derived for both cases. Lastly, numerical examples are given to verify the validity of the theoretical results.



    加载中


    [1] M. Cohen, S. Grossberg, Absolute stability of global pattern formation and parallel memory storage by competitive neural networks, IEEE T. Syst. Man Cy., 42 (1983), 815–826.
    [2] M. Liu, H. Jiang, C. Hu, Finite-time synchronization of memristor-based Cohen-Grossberg neural networks with time-varying delays, Neurocomputing, 194 (2016), 1–9. doi: 10.1016/j.neucom.2016.02.012
    [3] Q. Huang, J. Cao, Stability analysis of inertial Cohen-Grossberg neural networks with Markovian jumping parameters, Neurocomputing, 282 (2018), 89–97. doi: 10.1016/j.neucom.2017.12.028
    [4] R. Wei, J. Cao, A. Alsaedi, Fixed-time synchronization of memristive Cohen-Grossberg neural networks with impulsive effects, Int. J. Control Autom., 16 (2018), 2214–2224. doi: 10.1007/s12555-017-0788-5
    [5] R. Li, J. Cao, A. Alsaedi, B. Ahmad, F. Alsaadi, T. Hayat, Nonlinear measure approach for the robust exponential stability analysis of interval inertial Cohen-Grossberg neural networks, Complexity, 21 (2016), 459–469. doi: 10.1002/cplx.21826
    [6] K. Babcock, R. Westervelt, Stability and dynamics of simple electronic neural networks with added inertia, Physica D, 23 (1986), 464–469. doi: 10.1016/0167-2789(86)90152-1
    [7] W. Wheeler, W. Schieve, Stability and Chaos in an inertial two-neuron system, Physica D, 105 (1997), 267–284. doi: 10.1016/S0167-2789(97)00008-0
    [8] C. Li, G. Chen, J. Yu, Hopf bifurcation and chaos in a single inertial neuron model with time delay, Eur. Phys. J. B, 41 (2004), 337–343. doi: 10.1140/epjb/e2004-00327-2
    [9] R. Rakkiyappan, S. Premalatha, A. Chandrasekar, J. Cao, Stability and synchronization of inertial memristive neural networks with time delays, Cogn. Neurodynamics, 10 (2016), 437–451. doi: 10.1007/s11571-016-9392-2
    [10] G. Zhang, Z. Zeng, Stabilization of second-order memristive neural networks with mixed time delays via nonreduced order, IEEE T. Neur. Net. Lear., 31 (2020), 700–706. doi: 10.1109/TNNLS.2019.2910125
    [11] J. Yu, C. Hu, H. Jiang, L. Wang, Exponential and adaptive synchronization of inertial complex-valued neural networks: A non-reduced order and non-separation approach, Neural Networks, 124 (2020), 50–59. doi: 10.1016/j.neunet.2020.01.002
    [12] S. Han, C. Hu, J. Yu, H. Jiang, S. Wen, Stabilization of inertial Cohen-Grossberg neural networks with generalized delays: a direct analysis approach, Chaos, Soliton. Fract., 142 (2021), 110432. doi: 10.1016/j.chaos.2020.110432
    [13] G. Zhang, J. Hu, Z. Zeng, New criteria on global stabilization of delayed memristive neural networks with inertial item, IEEE T. Cybernetics, 50 (2020), 2770–2780. doi: 10.1109/TCYB.2018.2889653
    [14] L. Chua, Memristor-the missing circuit element, IEEE Trans. Circuit Theory, 18 (1971), 507–519. doi: 10.1109/TCT.1971.1083337
    [15] D. Strukov, G. Snider, D. Stewart, R. Williams, The missing memristor found, Nature, 453 (2008), 80–83.
    [16] K. Miller, K. Nalwa, A. Bergerud, N. Neihart, S. Chaudhary, Memristive behavior in thin anodic titania, IEEE Electr. Device L., 31 (2010), 737–739. doi: 10.1109/LED.2010.2049092
    [17] J. Sun, Y. Shen, Q. Yin, C. Xu, Compound synchronization of four memristor chaotic oscillator systems and secure communication, Chaos, 23 (2013), 1–10.
    [18] F. Corinto, A. Ascoli, M. Gilli, Nonlinear dynamics of memristor oscillators, IEEE T. Circuits I, 58 (2011), 1323–1336.
    [19] Y. Pershin, M. Di Ventra, Experimental demonstration of associative memory with memristive neural networks, Neural Networks, 23 (2010), 881–886. doi: 10.1016/j.neunet.2010.05.001
    [20] K. Cantley, A. Subramaniam, H. Stiegler, R. Chapman, E. Vogel, Hebbian learning in spiking neural networks with nanocrystalline silicon TFTs and memristive synapses, IEEE T. Nanotechnol., 10 (2011), 1066–1073. doi: 10.1109/TNANO.2011.2105887
    [21] D. Liu, S. Zhu, K. Sun, Global anti-synchronization of complex-valued memristive neural networks with time delays, IEEE T. Cybernetics, 49 (2019), 1735–1747. doi: 10.1109/TCYB.2018.2812708
    [22] H. Bao, J. Cao, Projective synchronization of fractional order memristor-based neural networks, Neural Networks, 63 (2014), 1–9.
    [23] A. Wu, Z. Zeng, Lagrange stability of memristive neural networks with discrete and distributed delays, IEEE T. Neur. Net. Lear., 25 (2014), 690–703. doi: 10.1109/TNNLS.2013.2280458
    [24] L. Wang, Y. Shen, Q. Yin, G. Zhang, Adaptive synchronization of memristor-based neural networks with time-varying delays, IEEE T. Neur. Net. Lear, 26 (2015), 2033–2042. doi: 10.1109/TNNLS.2014.2361776
    [25] C. Chen, L. Li, H. Peng, Y. Yang, Adaptive synchronization of memristor-based BAM neural networks with mixed delays, Appl. Math. Comput., 322 (2018), 100–110.
    [26] X. Yang, J. Cao, W. Yu, Exponential synchronization of memristive Cohen-Grossburg neural networks with mixed delays, Cogn. Neurodynamics, 8 (2014), 239–249. doi: 10.1007/s11571-013-9277-6
    [27] L. Duan, Q. Wang, H. Wei, Z. Wang, Multi-type synchronization dynamics of delayed reaction-diffusion recurrent neural networks with discontinuous activations, Neurocomputing, 401 (2020), 182–192. doi: 10.1016/j.neucom.2020.03.040
    [28] Y. Xu, J. Yu, W. Li, J. Feng, Global asymptotic stability of fractional-order competitive neural networks with multiple time-varying-delay links, Appl. Math. Comput., 389 (2021), 125498.
    [29] S. Bhat, D. Bernstein, Finite-time stability of continuous autonomous systems, SIAM J. Control Optim., 38 (2000), 751–766. doi: 10.1137/S0363012997321358
    [30] X. Yang, J. Lu, Finite-time synchronization of coupled networks with markovian topology and impulsive effects, IEEE T. Automat. Contr., 61 (2016), 2256–2261. doi: 10.1109/TAC.2015.2484328
    [31] C. Zhou, W. Zhang, X. Yang, C. Xu, J. Feng, Finite-time synchronization of complex-valued neural networks with mixed delays and uncertain perturbations, Neural Process Lett., 46 (2017), 271–291. doi: 10.1007/s11063-017-9590-x
    [32] Z. Zhang, J. Cao, Novel finite-time synchronization criteria for inertial neural networks with time delays via integral inequality method, IEEE T. Neur. Net. Lear., 30 (2019), 1476–1485. doi: 10.1109/TNNLS.2018.2868800
    [33] Z. Zhang, M. Chen, A. Li, Further study on finite-time synchronization for delayed inertial neural networks via inequality skills, Neurocomputing, 373 (2020), 15–23. doi: 10.1016/j.neucom.2019.09.034
    [34] Z. Zhang, J. Cao, Finite-time synchronization for fuzzy inertial neural networks by maximum-value approach, IEEE T. Fuzzy Syst., doi: 10.1109/TFUZZ.2021.3059953.
    [35] D. Xu, Y. Liu, M. Liu, Finite-time synchronization of multi-coupling stochastic fuzzy neural networks with mixed delays via feedback control, Fuzzy Set. Syst., 411 (2021), 85–104. doi: 10.1016/j.fss.2020.07.015
    [36] A. Polyakov, Nonlinear feedback design for fixed-time stabilization of linear control systems, IEEE T. Automat. Contr., 57 (2012), 2106–2110. doi: 10.1109/TAC.2011.2179869
    [37] R. Wei, J. Cao, A. Alsaedi, Finite-time and fixed-time synchronization analysis of inertial memristive neural networks with time-varying delays, Cogn. Neurodynamics, 12 (2018), 121–134. doi: 10.1007/s11571-017-9455-z
    [38] C. Chen, L. Li, H. Peng, Y. Yang, Fixed-time synchronization of inertial memristor-based neural networks with discrete delay, Neural Networks, 109 (2019), 81–89. doi: 10.1016/j.neunet.2018.10.011
    [39] R. Wei, J. Cao, Fixed-time synchronization of quaternion-valued memristive neural networks with time delays, Neural Networks, 113 (2019), 1–10. doi: 10.1016/j.neunet.2019.01.014
    [40] X. Ding, J. Cao, A. Alsaedi, T. Hayat, Robust fixed-time synchronization for uncertain complex-valued neural networks with discontinuous activation functions, Neural Networks, 90 (2017), 42–55. doi: 10.1016/j.neunet.2017.03.006
    [41] L. Duan, M. Shi, L. Huang, New results on finite-/fixed-time synchronization of delayed diffusive fuzzy HNNs with discontinuous activations, Fuzzy Set. Syst., doi: 10.1016/j.fss.2020.04.016.
    [42] L. Duan, M. Shi, C. Huang, X. Fang, Synchronization in finite-/fixed-time of delayed diffusive complex-valued neural networks with discontinuous activations, Chaos Soliton. Fract., 142 (2021), 110386. doi: 10.1016/j.chaos.2020.110386
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2761) PDF downloads(235) Cited by(2)

Article outline

Figures and Tables

Figures(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog