In this paper, we mainly propose three preconditioners for solving double saddle point problems, which arise from some practical problems. Firstly, the solvability of this kind of problem is investigated under suitable assumption. Next, we prove that all the eigenvalues of the three preconditioned matrices are $ 1 $. Furthermore, we analyze the eigenvector distribution and the upper bound of the minimum polynomial degree of the corresponding preconditioned matrix. Finally, numerical experiments are carried to show the effectiveness of the proposed preconditioners.
Citation: Yuwen He, Jun Li, Lingsheng Meng. Three effective preconditioners for double saddle point problem[J]. AIMS Mathematics, 2021, 6(7): 6933-6947. doi: 10.3934/math.2021406
In this paper, we mainly propose three preconditioners for solving double saddle point problems, which arise from some practical problems. Firstly, the solvability of this kind of problem is investigated under suitable assumption. Next, we prove that all the eigenvalues of the three preconditioned matrices are $ 1 $. Furthermore, we analyze the eigenvector distribution and the upper bound of the minimum polynomial degree of the corresponding preconditioned matrix. Finally, numerical experiments are carried to show the effectiveness of the proposed preconditioners.
[1] | O. Axelsson, Iterative Solution Methods, Cambridge University Press, 1994. |
[2] | Z. Z. Bai, Motivations and realizations of Krylov subspace methods for large sparse linear systems, J. Comput. Appl. Math., 283 (2015), 71–78. doi: 10.1016/j.cam.2015.01.025 |
[3] | F. P. A. Beik, M. Benzi, Block preconditioners for saddle pint systems arising from liquid crystal directors modeling, Calcolo, 55 (2018), 29. doi: 10.1007/s10092-018-0271-6 |
[4] | F. P. A. Beik, M. Benzi, Iterative methods for double saddle point systems, SIAM J. Matrix Anal. Appl., 39 (2018), 602–621. |
[5] | M. Benzi, F. P. A. Beik, Uzawa-type and augmented Lagrangian methods for double saddle point Systems, In: D. Bini, F. Di Benedetto, E. Tyrtyshnikov, M. Van Barel, Structured Matrices in Numerical Linear Algebra, Springer, 2019. |
[6] | M. Benzi, G. H. Golub, J. Liesen, Numercial solution of saddle point problems, Acta Numer., 14 (2005), 1–137. doi: 10.1017/S0962492904000212 |
[7] | D. Boffi, F. Brezzi, M. Fortin, Mixed Finite Element Methods and Applications, Springer Series in Computational Mathematics, New York: Springer, 2013. |
[8] | Z. Z. Liang, G. F. Zhang, Alterating positive semidefinite splitting preconditioners for double saddle point problems, Calcolo, 56 (2019), 26. doi: 10.1007/s10092-019-0322-7 |
[9] | J. Mary$\check{s}$ka, M. Rozlozník, M. Tuma, Schur complement systems in the mixed-hybrid finite element approximation of the potential fluid flow problem, SIAM J. Sci. Comput., 22 (2005), 704–723. |
[10] | B. Morini, V. Simoncini, M. Tani, A comparison of reduced and unreduced KKT systems arising from interior point methods, Comput. Optim. Appl., 68 (2017), 1–27. doi: 10.1007/s10589-017-9907-8 |
[11] | N. Huang, C. F. Ma, Spectral analysis of the preconditioned system for the $3\times3$ block saddle point problem, Numer. Algorithms, 81 (2019), 421–444. doi: 10.1007/s11075-018-0555-6 |
[12] | N. Huang, Variable parameter Uzawa method for solving a class of block three-by-three saddle point problems, Numer. Algorithms, 85 (2020), 1233–1254. doi: 10.1007/s11075-019-00863-y |
[13] | A. Ramage, E. C. Gartland, A preconditioned nullspace method for liquid crystal director modeling, SIAM J. Sci. Comput., 35 (2013), B226–B247. doi: 10.1137/120870219 |
[14] | Y. Saad, Iterative Methods for Sparse Linear Systems, Boston: PS Publishing Company, 2003. |
[15] | S. J. Wright, Primal-Dual Interior-Point Methods, Society for Industrial and Applied Mathematics, Philadelphia, 1997. |