Research article Special Issues

Analysis of horizontally polarized shear waves on a highly inhomogeneous loaded bi-material plate

  • Received: 07 September 2022 Revised: 15 October 2022 Accepted: 23 October 2022 Published: 28 October 2022
  • MSC : 26A33, 73D05

  • The current manuscript critically examines the propagation of horizontally polarized shear waves on the dispersion of a highly inhomogeneous thin bonded bi-material plate when a load due to the Winkler's elastic foundation is prescribed. An analytical procedure of solution is deployed for the study; in addition to the exploitation of effective boundary conditions approach for the asymptotic examination. The overall inference of the current study is the realization of the fact that the vibrational displacements in both layers are enhanced by an increase in the inhomogeneity parameter; at the same time lessened with an increment in the foundation parameter. Moreover, a perfect approximation of the dispersion relation has been realized, with its validity extending to almost the entire low-frequency range. Lastly, the influence of the material inhomogeneity has been noted to affect fundamental mode, as against the presence of the foundation parameter which affects the first harmonic curve. More so, an increase in the two parameters narrows the chances of low-frequency propagation.

    Citation: Maha M. Helmi, Ali M. Mubaraki, Rahmatullah Ibrahim Nuruddeen. Analysis of horizontally polarized shear waves on a highly inhomogeneous loaded bi-material plate[J]. AIMS Mathematics, 2023, 8(1): 2117-2136. doi: 10.3934/math.2023109

    Related Papers:

  • The current manuscript critically examines the propagation of horizontally polarized shear waves on the dispersion of a highly inhomogeneous thin bonded bi-material plate when a load due to the Winkler's elastic foundation is prescribed. An analytical procedure of solution is deployed for the study; in addition to the exploitation of effective boundary conditions approach for the asymptotic examination. The overall inference of the current study is the realization of the fact that the vibrational displacements in both layers are enhanced by an increase in the inhomogeneity parameter; at the same time lessened with an increment in the foundation parameter. Moreover, a perfect approximation of the dispersion relation has been realized, with its validity extending to almost the entire low-frequency range. Lastly, the influence of the material inhomogeneity has been noted to affect fundamental mode, as against the presence of the foundation parameter which affects the first harmonic curve. More so, an increase in the two parameters narrows the chances of low-frequency propagation.



    加载中


    [1] J. D. Kaplunov, L. Y. Kossovich, E. V. Nolde, Dynamics of thin walled elastic bodies, San Diego, CA: Academic Press, 1998. https://doi.org/10.1016/C2009-0-20923-8
    [2] I. V. Andrianov, J. Awrejcewicz, V. V. Danishevs'kyy, O. A. Ivankov, Asymptotic methods in the theory of plates with mixed boundary conditions, Hoboken, NJ: John Wiley & Sons, Ltd., 2014. https://doi.org/10.1002/9781118725184
    [3] W. M. Ewing, W. S. Jardetzky, F. Press, Elastic waves in layered media, Phys. Today, 10 (1957), 27. https://doi.org/10.1063/1.3060203 doi: 10.1063/1.3060203
    [4] I. M. Daniel, O. Ishai, Engineering mechanics of composite materials, New York: Oxford University Press, 2006.
    [5] N. P. Padture, M. Gell, E. H. Jordan, Thermal barrier coatings for gas-turbine engine application, Science, 296 (2002), 280–284. https://doi.org/10.1126/science.1068609 doi: 10.1126/science.1068609
    [6] A. Palermo, S. Krodel, A. Marzani, C. Daraio, Engineered metabarrier as shield from seismic surface waves, Sci. Rep., 6 (2016), 39356. https://doi.org/10.1038/srep39356 doi: 10.1038/srep39356
    [7] Y. S. Cho, Non-destructive testing of high strength concrete using spectral analysis of surface waves, NDT & E Int., 36 (2003), 229–235. https://doi.org/10.1016/S0963-8695(02)00067-1 doi: 10.1016/S0963-8695(02)00067-1
    [8] V. V. Krylov, Noise and vibration from high-speed trains, London: Thomas Telford, 2001.
    [9] G. Yigit, A. Sahin, M. Bayram, Modelling of vibration for functionally graded beams, Open Math., 14 (2016), 661–671. https://doi.org/10.1515/math-2016-0057 doi: 10.1515/math-2016-0057
    [10] S. Althobaiti, M. A. Hawwa, Flexural edge waves in a thick piezoelectric film resting on a Winkler foundation, Crystals, 12 (2022), 640. https://doi.org/10.3390/cryst12050640 doi: 10.3390/cryst12050640
    [11] B. Erbas, J. Kaplunov, A. Nobili, G. Kilic, Dispersion of elastic waves in a layer interacting with a Winkler foundation, J. Acoust Soc. Am., 144 (2018), 2918–2925. https://doi.org/10.1121/1.5079640 doi: 10.1121/1.5079640
    [12] A. Mandi, S. Kundu, P. Chandra Pal, P. Pati, An analytic study on the dispersion of Love wave propagation in double layers lying over inhomogeneous half-space, Journal of Solid Mechanics, 11 (2019), 570–580.
    [13] A. M. Abd-Alla, S. M. Abo-Dahab, A. Khan, Rotational effects on magneto-thermoelastic Stoneley, Love, and Rayleigh waves in fibre-reinforced anisotropic general viscoelastic media of higher order, CMC-Comput. Mater. Con., 53 (2017), 49–72. https://doi.org/10.3970/cmc.2017.053.052 doi: 10.3970/cmc.2017.053.052
    [14] P. Alam, S. Kundu, Influences of heterogeneities and initial stresses on the propagation of love-type waves in a transversely isotropic layer over an inhomogeneous half-space, Journal of Solid Mechanics, 9 (2017), 783–793.
    [15] S. Althobaiti, A. Mubaraki, R. I. Nuruddeen, J. F. Gomez-Aguilar, Wave propagation in an elastic coaxial hollow cylinder when exposed to thermal heating and external load, Results Phys., 38 (2022), 105582. https://doi.org/10.1016/j.rinp.2022.105582 doi: 10.1016/j.rinp.2022.105582
    [16] R. I. Nuruddeen, R. Nawaz, Q. M. Zaigham Zia, Effects of thermal stress, magnetic field and rotation on the dispersion of elastic waves in an inhomogeneous five-layered plate with alternating components, Sci. Progress, 103 (2020), 1–22. https://doi.org/10.1177/0036850420940469 doi: 10.1177/0036850420940469
    [17] J. Kaplunov, D. A. Prikazchikov, L. A. Prikazchikov, O. Sergushova, The lowest vibration spectra of multi-component structures with contrast material properties, J. Sound Vib., 445 (2019), 132–147. https://doi.org/10.1016/j.jsv.2019.01.013 doi: 10.1016/j.jsv.2019.01.013
    [18] Y. Z. Wang, M. F. Li, K. Kishimoto, Thermal effects on vibration properties of double-layered nanoplates at small scales, Compos. Part B: Eng., 42 (2011), 1311–1317. https://doi.org/10.1016/j.compositesb.2011.01.001 doi: 10.1016/j.compositesb.2011.01.001
    [19] S. Kundu, A. Kumari, Torsional wave propagation in an initially stressed anisotropic heterogeneous crustal layer lying over a viscoelastic half-space, Procedia Engineering, 173 (2017), 980–987. https://doi.org/10.1016/j.proeng.2016.12.166 doi: 10.1016/j.proeng.2016.12.166
    [20] J. Kaplunov, L. Prikazchikova, M. Alkinidri, Antiplane shear of an asymmetric sandwich plate, Continuum Mech. Thermodyn., 33 (2021), 1247–1262. https://doi.org/10.1007/s00161-021-00969-6 doi: 10.1007/s00161-021-00969-6
    [21] J. Vinson, The behavior of sandwich structures of isotropic and composite materials, London: Routledge, 2018.
    [22] M. Asif, R. Nawaz, R. I. Nuruddeen, Dispersion of elastic waves in an inhomogenous multilayered plate over a Winkler elastic foundation with imperfect interfacial conditions, Phys. Scr., 96 (2021), 125026. https://doi.org/10.1088/1402-4896/ac36a1 doi: 10.1088/1402-4896/ac36a1
    [23] J. D. Achenbach, Wave propagation in elastic solids, eight impression, Amsterdam: Elsevier, 1999.
    [24] A. N. Dutta, Longitudinal propagation of elastic disturbance for linear vibrations of elastic parameters, Indian Journal of Theoretical Physics, 4 (1956), 43–50.
    [25] R. K. Bhattacharyya, R. K. Bera, Application of Adomian method on the solution of the elastic wave propagation in elastic bars of finite length with randomly and linearly varying Young's modulus, Appl. Math. Lett., 17 (2004), 703–709. https://doi.org/10.1016/S0893-9659(04)90108-5 doi: 10.1016/S0893-9659(04)90108-5
    [26] F. Ahmad, F. D. Zaman, Exact and asymptotic solutions of the elastic wave propagation problem in a rod, International Journal of Pure and Applied Mathematics, 27 (2006), 123–127.
    [27] A. S. M. Alzaidi, A. M. Mubaraki, R. I. Nuruddeen, Effect of fractional temporal variation on the vibration of waves on elastic substrates with spatial non-homogeneity, AIMS Mathematics, 7 (2022), 13746–13762. https://doi.org/10.3934/math.2022757 doi: 10.3934/math.2022757
    [28] J. Kaplunov, D. Prikazchikov, L. Prikazchikova, Dispersion of elastic waves in a strongly inhomogeneous three-layered plate, Int. J. Solids Struct., 113–114 (2017), 169–179. https://doi.org/10.1016/j.ijsolstr.2017.01.042 doi: 10.1016/j.ijsolstr.2017.01.042
    [29] H.-H. Dai, J. Kaplunov, D. A. Prikachikov, long-wave model for the surface wave in a coated half-space, Proc. R. Soc. A, 466 (2010), 3097–3116. https://doi.org/10.1098/rspa.2010.0125 doi: 10.1098/rspa.2010.0125
    [30] A. M. Mubaraki, Asymptotic models for surface waves in coated elastic solids, Ph.D. Thesis of Keel University, Keele, 2021.
    [31] R. I. Nuruddeen, R. Nawaz, Q. M. Zaigham Zia, Asymptotic approach to anti-plane dynamic problem of asymmetric three-layered composite plate, Math. Method. Appl. Sci., 44 (2021), 10933–10947. https://doi.org/10.1002/mma.7456 doi: 10.1002/mma.7456
    [32] A. Mubaraki, D. Prikazchikov, A. Kudaibergenov, Explicit model for surface waves on an elastic half-space coated by a thin vertically inhomogeneous layer, In: DSTA 2019: Perspectives in dynamical systems I: mechatronics and life sciences, Cham: Springer, 2019,267–275. https://doi.org/10.1007/978-3-030-77306-9_23
    [33] A. Mubariki, D. Prikazchikov, On Rayleigh wave field induced by surface stresses under the effect of gravity, Math. Mech. Solids, 27 (2022), 1771–1782. https://doi.org/10.1177/10812865221080550 doi: 10.1177/10812865221080550
    [34] A. M. Mubaraki, M. M. Helmi, R. I. Nuruddeen, Surface wave propagation in a rotating doubly coated nonhomogeneous half space with application, Symmetry, 14 (2022), 1000. https://doi.org/10.3390/sym14051000 doi: 10.3390/sym14051000
    [35] P. C. Vinh, N. T. K. Linh, An approximate secular equation of Rayleigh waves propagating in an orthotropic elastic half-space coated by a thin orthotropic elastic layer, Wave Motion, 49 (2012) 681–689. https://doi.org/10.1016/j.wavemoti.2012.04.005 doi: 10.1016/j.wavemoti.2012.04.005
    [36] P. C. Vinh, V. T. N. Anh, V. P. Thanh, Rayleigh waves in an isotropic elastic half-space coated by a thin isotropic elastic layer with smooth contact, Wave Motion, 51 (2014), 496–504. https://doi.org/10.1016/j.wavemoti.2013.11.008 doi: 10.1016/j.wavemoti.2013.11.008
    [37] V. M. Tiainen, Amorphous carbon as a bio-mechanical coating-mechanical properties and biological applications, Diam. Relat. Mater., 10 (2001), 153–160. https://doi.org/10.1016/S0925-9635(00)00462-3 doi: 10.1016/S0925-9635(00)00462-3
    [38] M. Li, Q. Liu, Z. Jia, X. Xu, Y. Cheng, Y. Zheng, et al., Graphene oxide/hydroxyapatite composite coatings fabricated by electrophoretic nanotechnology for biological applications, Carbon, 67 (2014), 185–197. https://doi.org/10.1016/j.carbon.2013.09.080 doi: 10.1016/j.carbon.2013.09.080
    [39] S. Manna, T. Halder, S. N. Althobait, Dispersion of Love-type wave and its limitation in a nonlocal elastic model of nonhomogeneous layer upon an orthotropic extended medium, Soil Dyn. Earthq. Eng., 153 (2022), 107117. https://doi.org/10.1016/j.soildyn.2021.107117 doi: 10.1016/j.soildyn.2021.107117
    [40] S. Manna, D. Pramanik, S. N. Althobaiti, Love-type surface wave propagation due to interior impulsive point source in a homogenous-coated anisotropic poroelastic layer over a non-homogenous extended substance, Wave. Random Complex Media, in press. https://doi.org/10.1080/17455030.2022.2081737
    [41] M. M. Selim, S. Althobaiti, Wave-based method for longitudinal vibration analysis for irregular single-walled carbon nanotube with elastic-support boundary conditions, Alex. Eng. J., 61 (2022), 12129–12138. https://doi.org/10.1016/j.aej.2022.06.001 doi: 10.1016/j.aej.2022.06.001
    [42] D. K. Guo, T. Chen, Seismic metamaterials for energy attenuation of shear horizontal waves in transversely isotropic media, Mater. Today Commun., 28 (2021), 102526. https://doi.org/10.1016/j.mtcomm.2021.102526 doi: 10.1016/j.mtcomm.2021.102526
    [43] A. M. Mubaraki, S. Althobaiti, R. I. Nuruddeen, Heat and wave interactions in a thermoelastic coaxial solid cylinder driven by laser heating sources, Case Stud. Therm. Eng., 38 (2022), 102338. https://doi.org/10.1016/j.csite.2022.102338 doi: 10.1016/j.csite.2022.102338
    [44] C. O. Horgan, K. L. Miller, Antiplane shear deformations for homogeneous and inhomogeneous anisotropic linearly elastic solids, J. Appl. Mech., 61 (1994), 23–29. https://doi.org/10.1115/1.2901416 doi: 10.1115/1.2901416
    [45] C. O. Horgan, Anti-plane shear deformations in linear and nonlinear solid mechanics, SIAM Rev., 37 (1995), 53–81. https://doi.org/10.1137/1037003 doi: 10.1137/1037003
    [46] S. Shekhar, I. A. Parvez, Propagation of torsional surface waves in an inhomogeneous anisotropic fluid saturated porous layered half space under initial stress with varying properties, Appl. Math. Model., 40 (2016), 1300–1314. https://doi.org/10.1016/j.apm.2015.07.015 doi: 10.1016/j.apm.2015.07.015
    [47] Y. Shen, C. E. S. Cesnik, Hybrid local FEM/global LISA modeling of damped guided wave propagation in complex composite structures, Smart Mater. Struct., 25 (2016), 095021. https://doi.org/10.1088/0964-1726/25/9/095021 doi: 10.1088/0964-1726/25/9/095021
    [48] W. Hu, M. Xu, F. Zhang, C. Xiao, Z. Deng, Dynamic analysis on flexible hub-beam with step-variable cross-section, Mech. Syst. Signal Proc., 180 (2022), 109423. https://doi.org/10.1016/j.ymssp.2022.109423 doi: 10.1016/j.ymssp.2022.109423
    [49] W. Hu, C. Zhang, Z. Deng, Vibration and elastic wave propagation in spatial flexible damping panel attached to four special springs, Commun. Nonlinear Sci. Numer. Simul., 84 (2020), 105199. https://doi.org/10.1016/j.cnsns.2020.105199 doi: 10.1016/j.cnsns.2020.105199
    [50] W. Hu, J. Ye, Z. Deng, Internal resonance of a flexible beam in a spatial tethered system, J. Sound Vib., 475 (2020), 115286. https://doi.org/10.1016/j.jsv.2020.115286 doi: 10.1016/j.jsv.2020.115286
    [51] W. Hu, M. Xu, J. Song, Q. Gao, Z. Deng, Coupling dynamic behaviors of flexible stretching hub-beam system, Mech. Syst. Signal Proc., 151 (2021), 107389. https://doi.org/10.1016/j.ymssp.2020.107389 doi: 10.1016/j.ymssp.2020.107389
    [52] W. Hu, Y. Huai, M. Xu, Z. Deng, Coupling dynamic characteristics of simplified model for tethered satellite system, Acta Mech. Sin., 37 (2021), 1245–1254. https://doi.org/10.1007/s10409-021-01108-9 doi: 10.1007/s10409-021-01108-9
    [53] Y. Dong, X. Li, K. Gao, Y. Li, J. Yang, Harmonic resonances of graphene-reinforced nonlinear cylindrical shells: effects of spinning motion and thermal environment, Nonlinear Dyn., 99 (2020), 981–1000. https://doi.org/10.1007/s11071-019-05297-8 doi: 10.1007/s11071-019-05297-8
    [54] Y. Dong, H. Hu, L. Wang, A comprehensive study on the coupled multi-mode vibrations of cylindrical shells, Mech. Syst. Signal Proc., 169 (2022), 108730. https://doi.org/10.1016/j.ymssp.2021.108730 doi: 10.1016/j.ymssp.2021.108730
    [55] M. R. Zarastvand, M. Ghassabi, R. Talebitooti, Acoustic insulation characteristics of shell structures: a review, Arch. Comput. Methods Eng., 28 (2021), 505–523. https://doi.org/10.1007/s11831-019-09387-z doi: 10.1007/s11831-019-09387-z
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1220) PDF downloads(80) Cited by(2)

Article outline

Figures and Tables

Figures(7)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog