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Abstract: The current manuscript critically examines the propagation of horizontally polarized shear
waves on the dispersion of a highly inhomogeneous thin bonded bi-material plate when a load due
to the Winkler’s elastic foundation is prescribed. An analytical procedure of solution is deployed for
the study; in addition to the exploitation of effective boundary conditions approach for the asymptotic
examination. The overall inference of the current study is the realization of the fact that the vibrational
displacements in both layers are enhanced by an increase in the inhomogeneity parameter; at the same
time lessened with an increment in the foundation parameter. Moreover, a perfect approximation of
the dispersion relation has been realized, with its validity extending to almost the entire low-frequency
range. Lastly, the influence of the material inhomogeneity has been noted to affect fundamental mode,
as against the presence of the foundation parameter which affects the first harmonic curve. More so,
an increase in the two parameters narrows the chances of low-frequency propagation.
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1. Introduction

Propagation of surface waves has been broadly studied in the past and recent literature sequel
to its enormous significance in diverse technological formations, comprising both the plane and
corrugated media. This significance is notable in a variety of cutting-edge research in the fields
of biomechanics, material science, fluid mechanics, coated and composite media, seismology, and
vibration control, to mention a few, read [1–8]. Moreover, several other areas of modern engineering
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get pleasure from noteworthy consideration by theorists with regards to the vibration and propagation
phenomena in different structural shapes and bodies. We mention here the propagation of waves in
a functionally graded beam via approximation approach [9], and the nature of the flexural waves
in a piezoelectric layer in the presence of an elastic foundation [10]. We also recall the diverse
propagation considerations in composite and multi-layered structures – involving various external
effects, like inhomogeneity, thermal and magnetic effects, rotation, initial stress, and material contrasts
among others, see [11–22] and the references therein. In addition, as the propagation of waves has
been tackled in a variety of media; see the famous book of propagation of waves in solid media by
Achenbach [23], there has been a number of reported scenarios of some motivating consideration in
the classical literature, like the works of Dutta [24] who analyzed the propagation of longitudinal
waves in an elastic medium with material inhomogeneity. We also recall the findings of Bhattacharyya
and Bera [25] with regard to the propagation of waves in elastic structure amidst random and linear
material properties, respectively, via the application of the decomposition approach. More so, a case
of a wave vibrating in an inhomogenous rod was equally examined by Ahmad and Zaman [26] both
analytically and asymptotically; see also the recent examination of the influence of temporal deviation
on a vibrating elastic substrate by Alzaidi et al. [27].

Furthermore, to review some of the important results/literature with regard to the propagation
of waves in elastic multi-layered and coated media, we start off by recalling the work of
Kaplunov et al. [28] on the dispersion of plane elastic waves on an inhomogeneous three layers panel.
There, the propagation of waves was analyzed within the low frequency and long-wave conditions,
for the four different material contrasts of typical sandwich panels. We equally recall the work of
Dai et al. [29] on the propagation of plane surface waves on a coated half-space. Both examinations
given in [28,29] were carried out with the help of the asymptotic analysis method; one would equally
read the recent works reported in [30–34] for more consideration, through the help of an asymptotic
analysis method. Additionally, Vinh and Linh [35] and Vinh et al. [36] studied the propagation of
Rayleigh waves on an orthotropic and isotropic coated media, respectively; for more on the applications
and other deliberations on coated media, interested readers could read [37,38] and the references
therewith. Besides, we equally recall the new study about the propagation of Love-type surface waves
on a coated structure of infinite extents, by Manna et al. [39,40]; cases of coated orthotropic and
coated porous anisotropic extended layers were respectively examined in the references. Lastly, Selim
and Althobaiti [41] examined the longitudinal wave propagation on a nano-tube over elastic support,
using a wave-based approach; see also [42,43] for some relevant studies in the area.

However, as most of the papers so far reviewed in the literature examined the situation of
either a single- or inhomogeneous multi-layered structure with constant material properties as in
[11,15–17,20,22,28,31–33] via the asymptotic approximation approach, with the exception of a few
consideration as in the recent work of Mubaraki et al. [34]; it will be more pertinent to explore
the situation of inhomogeneous multi-layered structures with variable-dependent material properties
- thereby compounding the inhomogeneity property of the composite media. In this regard, the current
manuscript examines the propagation of horizontally polarized shear waves on the dispersion of a
highly inhomogeneous thin bi-material plate with a loaded end surface boundary on one end, due to
the Winkler elastic foundation, while a stress-free condition is assumed on the other end. An analytical
procedure of solution will be used to get hold of exact vibrational displacements and dispersion
relation; in addition to the utilization of the asymptotic approximation approach for the derivation
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of the approximate dispersion relation. Additionally, the influence of the material inhomogeneity and
that of the Winkler elastic foundation will be examined on the propagation of horizontally polarized
shear waves on the governing structure. More so, some inference will be deduced in the end, to pave a
way for future considerations. Lastly, the organization of the current paper takes the following format:
Section 2 presents the formulation of the aiming model. Section 3 derives the exact analytical solution
of the model, while Section 4 derives the consequential exact dispersion relation. Section 5 acquires the
related cut-off frequency and static equations; while the approximate dispersion relation is determined
in Section 6. Moreover, Sections 7 and 8 give the discussion of the obtained results, and the concluding
remarks, respectively.

2. Problem statement

Consider a highly inhomogeneous bi-material plate of constant thicknesses h1 and h2, occupying
the regions −h1 ≤ x2 ≤ 0 and 0 ≤ x2 ≤ h2, respectively. More so, the individual layers of the plate −
and + are perfectly joined down the domain −∞ < x1 < ∞ with each other, see Figure 1.

Figure 1. Highly inhomogeneous bi-material plate.

Additionally, we have considered the equation of horizontally polarized shear waves [20,44,45] to
describe the propagation of waves in the respective layers of the plate. Horizontally polarized shear
motion, or alternatively the anti-plane shear motion has been described by Horgan (1995) [45] as
“an interesting two-dimensional mathematical model arising in solid mechanics involving a single
second-order linear or quasi-linear partial differential equation. This model has the virtue of relative
mathematical simplicity without loss of essential physical relevance. Anti-plane shear deformations
are one of the simplest classes of deformations that solids can undergo”.

Therefore, the equations of horizontally polarized shear motions, modeling the governing bi-
material plate in the displacement w = (0, 0,w3) are given in the respective layers as follows [16,20,34]

∂τ∓23

∂x2
+
∂τ∓13

∂x1
= ρ±∗ (x2)

∂2w∓3
∂t2 , (2.1)

where − denotes the upper layer and + denotes the lower layer, w∓3 = w∓3 (x1, x2, t) are the out-of-
plane displacements, ρ∓∗ (x2) are space-dependent densities; while τ∓j3 = τ∓j3(x1, x2, t) are the respective
stresses for j = 1, 2, and defined by

τ∓j3 = µ∓∗ (x2)
∂w∓3
∂x j

, j = 1, 2, (2.2)

where µ∓∗ (x2) are space-dependent Lame’s elastic parameters. More so, “pure anti-plane shear motions
governed by Eq (2.1) are usually called the horizontally polarized shear motion”, [23]. Thus, as the
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plate is considered to be of a highly inhomogeneous nature, the material constituents comprising the
densities ρ∓∗ (x2) and the Lame’s elastic parameters µ∓∗ (x2) in the respective layers of the bi-material
plate are further presumed to be inhomogeneous, that is, they are x2-dependents. More specifically,
they are represented as follows [27]

ρ∓∗ (x2) = ρ∓ e−αx2 , µ∓∗ (x2) = µ∓ e−αx2 , (2.3)

where ρ∓ and µ∓ are the respective constant densities and Lame’s elastic parameters, respectively, in the
upper and lower plates; while α is the dimensional material inhomogeneity. Moreover, as asserted by
Alzaidi et al. [27], the material parameters involving the Lame’s constants (shear modulus’) µ∓∗ (x2) and
the material densities ρ∓∗ (x2) in both layers are considered to have an exponentially decaying variation
along their respective thicknesses. Such scenario can be seen as the case of the distribution of material
inhomogeneity along the thickness of the structure; take the case of corrosion distribution in an elastic
bar [26], or the rate of penetration of an external agent over/across a sheet of metal. In addition, for
various considerations of inhomogeneous structures where an exponentially growing variation along
the depth of the different elastic media was examined, the recent works by Yigit and Sahin [9] on
elastic beams, Mandi et al. [12] on the double-layered structure beneath an inhomogeneous half-plane,
and Mubarali et al. [34] on the doubly coated elastic half-plane could be an eye-opener in this regard.
More so, some additional material non-homogeneities such as linearly varying material parameters,
quadratically material parameters, and exponentially varying material parameters can equally be seen
in the work of Shekhar and Parvez. [46]; see also [25–27,34] and the references therewith.

Furthermore, in this regard, there are quite a few other computational methods that compute the
wave propagation in highly inhomogeneous materials, such as finite elements, boundary elements,
finite difference, and local interaction simulation approach; for such methods, we suggest the reader(s)
to read the interesting review work by Shen and Cesnik [47]. In the same vein, it is quite significant
to mention the role being played by the concept of dissipation of wave in various media; more on such
studies with regard to structure-preserving circumstances can be found in [48–52] and the references
therein. Indeed, the dissipation of the wave is an important characteristic of the horizontally polarized
shear wave. In the end, however, some work interrelated to the wave vibration of the shells can be
found in the recent examinations [53–55].

Furthermore, we prescribe classical conditions that are associated with a typical multi-structure
comprising interfacial and boundary conditions as follows

(i) τ−23(x1, x2, t) = −Q, at x2 = −h1,

(ii) w−3 (x1, x2, t) = w+
3 (x1, x2, t) , at x2 = 0,

(iii) τ−23(x1, x2, t) = τ+
23(x1, x2, t), at x2 = 0,

(iv) τ+
23(x1, x2, t) = 0, at x2 = h2.

(2.4)

where Q is a tangential load that is considered to be due to an elastic Winkler foundation, which is
expressed as [11,34]

Q = a w−3 . (2.5)

where a is the dimensional stiffness of the Winkler’s foundation, while w− is the vibrational
displacement of the upper layer, where the load is being applied on.
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3. Exact analytical solution

In order to solve the governing model, we start off by substituting the constitutive equation
expressed in Eq (2.2) in to the equation of motion given in Eq (2.1) to thus obtain the following
wave-like equation

∂2w∓3
∂x2

2

− α
∂w∓3
∂x2

+
∂2w∓3
∂x2

1

=
1
c2
∓

∂2w∓3
∂t2 , (3.1)

where α is an inhomogeneity parameter, and c∓ are the transverse speeds in the upper and lower regions,
respectively, and given by

c∓ =

√
µ∓

ρ∓
. (3.2)

More so, with the consideration of the harmonic wave solution, we further assume the model to admit
the travelling wave solution of the following format [20]

w∓3 (x1, x2, t) = u∓(x2) ei(ξx1−θt), i2 = −1, (3.3)

where ξ and θ represent the dimensional wavenumber, and frequency, respectively; with the wave
propagating along x1 direction, and x2 direction represents the thickness direction. Thus, with this
development, Eq (3.1) reduces to the following ordinary differential equation

d2u∓

dx2
2

− α
du∓

dx2
+ β2

∓u
∓ = 0, (3.4)

where

β∓ =

√
θ2

c2
∓

− ξ2. (3.5)

Further, the two equations in Eq (3.4) for the lower and the upper layers pose the following
characteristic equations, respectively,

m2 − αm + β2
− = 0, and n2 − αn + β2

+ = 0. (3.6)

So, from the above equation, the following roots are obtained

m j =
α + (−1) j

√
α2 − 4β2

−

2
, n j =

α + (−1) j
√
α2 − 4β2

+

2
, j = 1, 2. (3.7)

Therefore, the exact analytical solution in the upper and lower layers takes the following expression

w−3 (x1, x2, t) =
(
A−em1 x2 + B−em2 x2

)
ei(ξx1−θt), −h1 ≤ x2 ≤ 0,

w+
3 (x1, x2, t) =

(
A+en1 x2 + B+en2 x2

)
ei(ξx1−θt), 0 ≤ x2 ≤ h2,

(3.8)

where A∓ and B∓ are constants to be found right-away after utilising the outlined perfect interfacial and
surface boundary conditions.
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Therefore, we proceed further by non-dimensionalizing the roots of the characteristic equation
expressed in Eq (3.7) as follows

m j j =
1
2

(
r + (−1) j

√
r2 − 4γ2

)
, n j j =

h
2

(
r + (−1) j

√
r2 − 4λ2

)
, j = 1, 2, (3.9)

with

r = α h1, γ =
√

Θ2 − K2, λ =

√
µ

ρ
Θ2 − K2, (3.10)

where r is the scaled inhomogeneity parameter, and Θ and K are the dimensionless wavenumber and
frequency, respectively, given by

K = ξh1, Θ =
θh1

c−
, (3.11)

together with the dimensionless Lame’s elastic parameter µ, density ρ, and thickness h given
sequentially as

µ =
µ−
µ+

, ρ =
ρ−
ρ+

, h =
h2

h1
. (3.12)

Moreover, a new dimensionless parameter b is equally discovered denoting the stiffness of the Winkler
foundation expressed as

b =
ah1

µ−
. (3.13)

Therefore, the respective dimensionless displacements (solutions) and stresses in the two layers of the
bi-material plate are determined after ignoring the exponential factor ei(ξx1−θt) as follows
displacements w∓3 :

w−3 = h1

(
em11ζ

−
2 −

b + m11

b + m22
e−m11+m22(ζ−2 +1)

)
, −1 ≤ ζ−2 ≤ 0,

w+
3 = h1R

(
en11ζ

+
2 −

n11

n22
en11+n22(ζ+

2 −1)
)
, 0 ≤ ζ+

2 ≤ 1,
(3.14)

shear stresses τ∓13:

τ−13 = iµ−Kerζ−2

(
em11ζ

−
2 −

b + m11

b + m22
e−m11+m22(ζ−2 +1)

)
, −1 ≤ ζ−2 ≤ 0,

τ+
13 = iµ+KRerhζ−2

(
en11ζ

+
2 −

n11

n22
en11+n22(ζ+

2 −1)
)
, 0 ≤ ζ+

2 ≤ 1,
(3.15)

shear stresses τ∓23:

τ−23 = µ−erζ−2

(
m11em11ζ

−
2 −

b + m11

b + m22
m22e−m11+m22(ζ−2 +1)

)
, −1 ≤ ζ−2 ≤ 0,

τ+
23 = µ+Rn11erhζ+

2

(
en11ζ

+
2 − en11+n22(ζ+

2 −1)
)
, 0 ≤ ζ+

2 ≤ 1,
(3.16)

where
R =

n22 [(b + m22)em11 − (b + m11)em22]
(b + m22) (n22en22 − n11en11)

en22−m11 , (3.17)
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while ζ−2 and ζ+
2 are scaled variables valid over −h1 ≤ x2 ≤ 0 and 0 ≤ x2 ≤ h2, respectively.

Additionally, we graphically illustrate in Figure 2 the effects of the (a) inhomogeneity parameter r
(with fixed b = 0.25), and that of the (b) Winkler foundation parameter b (with fixed r = 0.25) on the
propagation of horizontally polarized shear waves on the structure under consideration. From these
sub-figures, the vibrational displacement in the upper layer (′−′ : −1 ≤ ζ2 ≤ 0) is observed to decrease
steadily down to the prescribed perfect interfacial conditions, which are well satisfied on the interface
(at ζ2 = 0 ), then followed by an almost linear behavior in the lower layer (′+′ : 0 ≤ ζ2 ≤ 1) of the
plate. Again, one will note from Figure 2(a) that an increase in the inhomogeneity parameter causes
an increment in the vibrational displacement; while an increase in the Winkler foundation parameter
decreases the vibration, as observed from Figure 2(b).

Figure 2. Vibrational effects of the (a) inhomogeneity parameter r, and that of the (b) Winkler
foundation parameter b on the propagation of horizontally polarized shear waves determined
in Eq (3.14) when h = 0.8, µ = 1.2 and ρ = 1.

4. Exact dispersion relation

The derivation of the exact dispersion relation is very important in such a structural arrangement
comprising of multiply laminated segments. Thus, this section aims to analytically determine the
consequential exact dispersion relation with the help of the outlined interfacial and surface conditions.

Now, we determine the consequential exact dispersion relation in this scenario by considering the
load Q prescribed in Eq (2.5) on one side of the plate, together with perfect interfacial conditions given
in Eq (2.4). Then, the form of interfacial and boundary conditions (including the load condition) yields
the following exact dispersion matrix

A =


0 0 (m11 + b)e−m11 (m22 + b)e−m22

n11 n22 −hm11 −hm22

1 1 −1 −1
n11en11 n22en22 0 0

 . (4.1)

More so, the vanishing point of the determinant of the above dispersion matrix (det(A) = 0) gives the
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following consequential dispersion relation

en22n22 (em11m22(hm11 − n11) + m11em22(n11 − hm22))+
en11n11 (m11em22(hm22 − n22) + em11m22(n22 − hm11))+
b(n22em11+n22(hm11 − n11) + n11em22+n11(hm22 − n22))+
b(n11em11+n11(n22 − hm11) + n22em22+n22(n11 − hm22)) = 0,

(4.2)

or more explicitly after using the expressions for m j j and n j j given in the Eq (3.9) as follows

sinh
(
hs1

2

) (
r
(
γ2 − λ2

)
sinh

( s2

2

)
+ λ2s2 cosh

( s2

2

))
+ γ2s1 sinh

( s2

2

)
cosh

(
hs1

2

)
+

b
2

(
sinh

( s2

2

) (
rs1 cosh

(
hs1

2

)
+ s2

1 sinh
(
hs1

2

))
+ s2 cosh

( s2

2

) (
r sinh

(
hs1

2

)
+ s1 cosh

(
hs1

2

)))
= 0,

(4.3)

where
s1 =

√
r2 − 4λ2, s2 =

√
r2 − 4γ2. (4.4)

Besides, the absence of the material inhomogeneity in the two layers of the plate, that is, when r = 0,
causes the obtained consequential dispersion relation in Eq (4.3) to further reduce to the following

γ(γ sin(γ) cos(hλ) + λ cos(γ) sin(hλ)) + b(γ cos(γ) cos(hλ) − λ sin(γ) sin(hλ)) = 0, (4.5)

where γ and λ are again given in the Eq (3.10).
Obviously, in the case of no load, that is, when b = 0, the dispersion relation expressed in Eq (4.3)

reduces to

sinh
(
hs1

2

) (
r
(
γ2 − λ2

)
sinh

( s2

2

)
+ λ2s2 cosh

( s2

2

))
+ γ2s1 sinh

( s2

2

)
cosh

(
hs1

2

)
= 0. (4.6)

Moreover, in the absence of material inhomogeneity in the two layers of the plate, that is, when r = 0,
the obtained consequential dispersion relation above for the highly inhomogeneous bi-material plate
with stress-free boundaries further reduces to the following

γ sin(γ) cos(hλ) + λ cos(γ) sin(hλ) = 0. (4.7)

Thus, the reduced consequential dispersion relation determined above corresponds to an unloaded
inhomogeneous bi-material plate with stress-free faces; of course, the inhomogeneity here is due to the
lamination of two homogeneous plates to make a solid bi-material structure.

5. Cut-off frequency and static equation

This section specifically refers to the above-obtained consequential exact dispersion relations by
deeply scrutinizing them with regard to their respective cut-off frequencies and static equations. In this
regard, the propagation of horizontally polarized shear waves on a highly inhomogeneous bi-material
plate under the assumption of low-frequency and long-wave is achieved when [28]

Θ � 1, and K � 1. (5.1)
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where Θ and K denote the dimensionless frequency and wave number, respectively; see Eq (3.11) for
their explicit expressions. Additionally, interested readers can equally read [17,28] and the references
therewith for more related studies concerning the significance of material contrasts.

Hence, in what follows, we determine the cut-off frequency and static equation associated with the
governing structure.

5.1. Cut-off frequency

The presence of the scaled inhomogeneity parameter r in the consequential dispersion relation needs
to vanish in order to get to the desired target, that is, r = 0. Thus, in this case, the reduced dispersion
relation given in the Eq (4.5) would be used. Then, the determination of the cut-off frequency requires
the dimensionless wavenumber to vanish, that is, K = 0. With this, the cut-off frequencies are obtained
as follows

Θ

(
Θ sin(Θ) cos

(
hΘ

√
µ

ρ

)
+ Θ cos(Θ)

√
µ

ρ
sin

(
hΘ

√
µ

ρ

))
+

bΘ

(
cos(Θ) cos

(
hΘ

√
µ

ρ

)
− sin(Θ)

√
µ

ρ
sin

(
hΘ

√
µ

ρ

))
= 0,

(5.2)

which visibly reveals cut-off at Θ = 0 and additional (ad) one over the transcendental function as

Θad ≈

√
bρ

bhµ − hµ − ρ
� 1. (5.3)

What’s more, in the case of no load, that is when b = 0, the cut-off frequency determined in Eq (5.2)
reduces to the following

Θ

(
sin(Θ) cos

(
hΘ

√
µ

ρ

)
+ cos(Θ)

√
µ

ρ
sin

(
hΘ

√
µ

ρ

))
= 0, (5.4)

which obviously reveals cut-off frequencies over the low-frequency range of Θ � 1, that is at
Θ = 0; one would equally find additional roots associated with the transcendental function, possibly
numerically!

5.2. Static equation

Again, we determine the static equation for K by setting the dimensionless frequency Θ = 0 in the
reduced dispersion relation to obtain

K(K sinh((h + 1)K) − b cosh((h + 1)K)) = 0, (5.5)

which visibly admits a root at K = 0, and an additional and additional (ad) one over the transcendental
function as

Kad ≈

√
b

h + 1
. (5.6)

Equally, in the case of no load, that is when b = 0, the static equations determined in Eq (5.5) reduces
to the following

K sinh((h + 1)K) = 0, (5.7)
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which gives an apparent root at K = 0, and extra ones at the zeros of the sine hyperbolic function.
Lastly, the analytically obtained cut-off frequency and static equation as rightly determined in

Eqs (5.2) and (5.5) are depicted in Figures 3 and 4, sequentially. More so, one would see the variational
effect of the Winkler foundation parameter b on these equations.

Figure 3. Effect of the Winkler foundation parameter on the analytically obtained cut-off

frequency in Eq (5.2) when h = 0.8, µ = 1.2 and ρ = 1.

Figure 4. Effect of the Winkler foundation parameter on the analytically obtained static
equation in Eq (5.5) when h = 0.8, µ = 1.2 and ρ = 1.

6. Approximate dispersion relation

The present section makes use of the asymptotic approximation approach, through the application
of the effective boundary conditions to derivate the approximate dispersion relation of the earlier
determined consequential exact dispersion relation. In doing so, the governing SH equations of motions
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would be approximated, and subsequently, get hold of the approximate dispersion relation for the
loaded highly inhomogeneous bi-material plate via the stated procedure.

6.1. Treating the upper layer (–)

In this section, the effect of the upper layer − will be analyzed in the long-wave region, that is,

K ∼ ε =
h1

L
� 1,

where h1 is the thickness of the upper layer, and L is the wave length. Thus, we will approximately
solve the equation of motion given in Eq (2.1) subject to the boundary conditions expressed in Eq (2.4).

Now, it is appropriate to set the following boundary conditions at the interface (x2 = 0) as follows

w−3 = v−, (6.1)

where the function v− = v− (x1, t) is assumed to be known.
Below, we adopt the asymptotic methodology similar to that for thin elastic structures that was

equally used by Mubaraki et al. [32] to approximately analyze an elastic half-space coated by an
inhomogeneous layer. With that, let us introduce the following scaling variables

χ =
x1

L
, η =

x2

h1
, τ =

t c−
L
, (6.2)

and

w∗ =
w−3
L
, v∗ =

v−

L
, τ∗13 =

τ−13

µ−
, τ∗23 =

τ−23

ε µ−
, a∗ =

a L
ε µ−

, (6.3)

where µ− and ρ− are constants, c− =

√
µ−

ρ−
and all quantities with the asterisk are assumed to have the

same asymptotic order.
Therefore, with this development, the equation of motion given in Eq (2.1) via the constitutive

relations expressed in Eq (2.2) can then be explicitly re-written as

∂τ∗23

∂η
+
∂τ∗13

∂χ
= ρ̃ (y)

∂2w∗

∂τ2 , τ∗13 = µ̃ (y)
∂w∗

∂χ
, ε2 τ∗23 = µ̃ (y)

∂w∗

∂η
, (6.4)

where
ρ̃ (y) =

ρ−∗ (h1η)
ρ−

, and µ̃ (y) =
µ−∗ (h1η)
µ−

. (6.5)

Next, the governing boundary conditions become

τ∗23 = −a∗ w∗, at η = −1, and w∗ = v∗, at η = 0. (6.6)

More so, we expand the displacements and stresses involved asymptotically as follows
w∗

τ∗j3

 =


w(0)

τ(0)
j3

 + ε


w(1)

τ(1)
j3

 + . . . , j = 1, 2.. (6.7)
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Consequently, Eq (6.4) at leading order yields

∂τ(0)
23

∂η
+
∂τ(0)

13

∂χ
= ρ̃ (y)

∂2w(0)

∂τ2 , τ(0)
13 = µ̃ (y)

∂w(0)

∂χ
,

∂w(0)

∂η
= 0, (6.8)

subject to the following boundary conditions from Eq (6.6) as follows

τ(0)
23 = −a∗ w(0), at η = −1, and w(0) = v∗, at η = 0. (6.9)

Then, the solutions of the above system is found as

w(0) = v∗, τ(0)
13 = µ∗ (y)

∂v∗

∂χ
, τ(0)

23 =

(∫ η

−1
ρ̃ (y) dy

)
∂2v∗

∂τ2 −

(∫ η

−1
µ̃ (y) dy

)
∂2v∗

∂χ2 − a∗ v∗ (6.10)

Finally, in terms of the original dimensional form, the expressions for the stresses at the interface
(x2 = 0) may be obtained as follows

τ+
23 = h1

[(∫ 0

−h1

ρ−∗ (0) dx2

)
∂2w+

3

∂t2 −

(∫ 0

−h1

µ−∗ (0) dx2

)
∂2w+

3

∂x2
1

]
− a w+

3 + O (h1) . (6.11)

More so, as a special case, substituting the exponential inhomogeneity coefficient in Eq (2.3) into
Eq (6.11), we arrive at the boundary condition at the interface (x2 = 0), given as

µ+
∂w+

3

∂x2
− h1 µ

−

(
1
c2
−

∂2w+
3

∂t2 −
∂2w+

3

∂x2
1

)
− a w+

3 = 0. (6.12)

6.2. Asymptotic dispersion relation

Now, having effectively suppressed the effect of the entire upper layer through the boundary
condition determined in Eq (6.12), we further make use of the same procedure to re-represent the
interfacial and boundary (stress-free) conditions associated with the lower layer earlier prescribed in
Eq (2.4) as follows

∂w+
3

∂x2
− h1 µ

(
1
c2
−

∂2w+
3

∂t2 −
∂2w+

3

∂x2
1

)
−
µ b
h1

w+
3 = 0, at x2 = 0,

and
∂w+

3

∂x2
= 0. at x2 = h2,

(6.13)

Thus, without loss of generality, the aiming approximate consequential dispersion relation is
determined as follows

n22

(
γ2µ + n11

)
− n11

(
γ2µ + n22

)
en11−n22 + bµ

(
n11en11−n22 − n22

)
= 0, (6.14)

where n11 and n22 are defined earlier in Eq (3.9) as n11 = h
2

(
r −
√

r2 − 4λ2
)

and n22 = h
2

(
r +
√

r2 − 4λ2
)
.

In addition, we graphically compare the exact and approximate dispersion relation in Figure 5 with
regard to the posed fundamental mode. The exactitude between the two curves is perfectly observed.
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Figure 5. Comparison of the exact dispersion relation Eq (4.3) against the approximate
dispersion relation Eq (6.14) when h = 0.8, µ = 1.2, ρ = 1, r = 0.25, and b = 0.25.

Hence, having perfectly approximated the obtained consequential exact dispersion relation given in
Eq (4.3) by the approximate one as determined in Eq (6.14), we further attempt to graphically show
the effect of the inhomogeneity parameter r in Figure 6; while Figure 7 shows the effect of the Winkler
foundation parameter b on the propagation of horizontally polarized shear waves via the obtained
approximate dispersion relation in Eq (6.14).

Figure 6. Effect of the inhomogeneity parameter on approximate dispersion relation
Eq (6.14) when h = 0.8, µ = 1.2, ρ = 1, and r = 0.25.
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Figure 7. Effect of the Winkler foundation parameter on approximate dispersion relation
Eq (6.14) when h = 0.8, µ = 1.2, ρ = 1, and r = 0.25.

7. Discussion of results

The present section attempts to shed more light on the obtained results thereby discussing the effects
of the involved parameters on the propagation and dispersion of horizontally polarized shear waves on
the bi-material inhomogeneous plate; and on the other hand, discuss the exactitude of the obtained
exact and approximate consequential dispersion relations. Recall that the case of a loaded highly
inhomogeneous multilayered elastic solid structure is considered, where the upper layer is loaded with
a Winkler foundation; moreover, the absence of this foundation (when b = 0) rendered the structure to
have stress-free faces. Besides, an analytical procedure was primarily utilized for the determination of
the analytical solutions, as well as the consequential exact dispersion relations, before the subsequent
deployment of the asymptotic procedure by utilizing the effective boundary conditions to determine
the equivalent approximate dispersion relations. In addition, such a scenario of varying material
properties along the depth of the bi-material plate can be seen as the case of the distribution of material
inhomogeneity; take the case of corrosion distribution/spread in an elastic bar or the rate of penetration
of an external agent over/across a sheet of metal.

Now, let us begin by discussing the effects of the inhomogeneity parameter r and that of the Winkler
foundation parameter b, on the obtained dimensionless vibrational displacements w∓ (see Eq (3.14) )
in the respective regions of the plate. This scenario is thus depicted in Figure 2, with 2(a) illustrating
the effects of r, while 2(b) illustrates the effects of b, on the upper (−1 ≤ ζ2 ≤ 0) and lower (0 ≤
ζ2 ≤ 1) layers of the plate. From this figure, it is noted from Figure 2(a) that an increase in the
inhomogeneity parameter causes an increment in the vibrational displacement; while an increase in the
Winkler foundation parameter decreases the vibration, as observed from Figure 2(b).

In addition, the cut-off frequency and static equation are analytically acquired in Eqs (5.2) and (5.5),
sequentially. More so, as the requirement for the existence of these equations, the inhomogeneity
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parameter is bound to vanish, thereby allowing only the Winkler foundation parameter to remain.
Thus, one would see the variational effects of the Winkler foundation parameter b on these equations
as rightly captured in Figures 3 and 4. In addition, as the cut-off frequencies are the roots of the periodic
transcendental equations (Eq (5.2)), an oscillatory behavior has been observed upon which the effect
of the Winkler foundation parameter continuously sinusoids; while the curves of the static expression
increase with an increase in the Winkler foundation parameter.

Next, we discuss Figure 5, which graphically compares the obtained consequential exact and
approximate dispersion relation as given in Eqs (4.3) and Eq (6.14), respectively. Recall also that the
approximate dispersion relation was determined asymptotically by getting hold of the related effective
boundary conditions, and thereafter, derived the approximate equation of motion, which later revealed
the approximate dispersion relation in Eq (6.14). Thus, Figure 5 compares the two results by comparing
the respective exact and approximate fundamental modes; amazingly, a perfect agreement is realized.
Moreover, the selection of the values of the involving parameters ensures a low-frequency harmonic,
Θ � 1, as the validity for the derived asymptotic equation extends to almost the entire low-frequency
range.

Therefore, with the recorded level of exactness between the exact and approximate dispersion
curves as shown in Figure 5, we further analyze the effects of the inhomogeneity parameter r in
Figure 6, and that of the Winkler elastic foundation parameter b in Figure 7, on the propagation of
horizontally polarized shear waves on the governing structure from the derived approximate relation.
Hence, from Figure 6, the influence of the inhomogeneity parameter is quite obvious on the vibration
– through the fundamental model; take a look at the case when r = 0, where the mode propagates at
zero. Then, the propagation is followed by a deviation away from the low-frequency region, as the
inhomogeneity parameter increases. However, in Figure 7, the effect of the Winkler elastic foundation
on the propagation of waves on the governing highly inhomogeneous structure has been noted to be
insignificant in the fundamental mode (see the first curve, where all the curves matched on it), as for all
the values of b, the propagation remains the same. Nevertheless, the variation is significantly visible
on the first harmonic. More so, an increase in the Winkler elastic foundation parameter pushes away
the first harmonic from the low-frequency interval.

8. Conclusions

In conclusion, the current manuscript examined the propagation of horizontally polarized shear
waves on the dispersion of a highly inhomogeneous thin perfectly bonded bi-material plate with a
load due to the Winkler elastic foundation. An analytical procedure of solution was deployed to
determine the exact expressions of the consequential vibrational displacements in the two regions of
the plate and the respective dispersion relations; in addition to the exploitation of effective boundary
conditions for the asymptotic validation of the obtained exact dispersion relations. The vibrational
displacements in both layers have been observed to be enhanced by an increase in the inhomogeneity
parameter; at the same time lessened with an increment in the foundation parameter. Additionally, a
perfect approximation between the exact and approximate dispersion relation has been realized, with
the validity for the relation extending to almost the entire low-frequency range. The influence of the
material inhomogeneity parameter on the fundamental mode is noted to be obvious, as the more it is
increased, the more the deviation away from the low-frequency region. On the other hand, the presence
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of the Winkler elastic foundation has been observed to affect the first harmonic mode, in comparison
with the inhomogeneity parameter. More so, an increase in the foundation parameter narrowed the
chances of low-frequency propagation.
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