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Abstract: In this study, the y»-Haar wavelets operational matrix of integration is derived and used to
solve linear y-fractional partial differential equations (-FPDEs) with the fractional derivative defined
in terms of the y-Caputo operator. We approximate the highest order fractional partial derivative of
the solution of linear -FPDE using Haar wavelets. By combining the operational matrix and -
fractional integration, we approximate the solution and its other /-fractional partial derivatives. Then
substituting these approximations in the given ¥-FPDEs, we obtained a system of linear algebraic
equations. Finally, the approximate solution is obtained by solving this system. The simplicity and
effectiveness of the proposed method as a mathematical tool for solving y-Fractional partial differential
equations is one of its main advantages. The sparse nature of the operational matrices improves the
ability of the proposed method to execute with less computation complexity. Numerical examples are
provided to show the efficiency and effectiveness of the method.
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1. Introduction

Fractional calculus is considered the generalization of classical calculus. Fractional differential
equations have been widely employed in various science and engineering fields [1-3]. Many
researchers have defined fractional order derivatives and integrals in various forms. New definitions
of fractional differential operators and y-fractional derivatives and integrals have been considered by
several researchers, such as the Riemann-Liouville, Caputo, Hilfer, Erdelyi-Kober, Hadamard [4-7].
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Additionally, studies by Sousa et al. contain fascinating details concerning the ¥-Riemann-Liouville
fractional partial integral, and the -Caputo fractional partial derivative [8]. Furthermore, many
interesting results from the qualitative analysis of fractional ordinary and partial differential equations
involving different fractional derivatives have been recorded [9-16]. However, numerical solutions for
fractional partial differential equations (FPDEs) involving the y-Caputo fractional partial derivatives
have not been performed using the -Haar wavelet operational matrix method. Thus, this study
establishes a numerical technique for solving y-Caputo FPDEs.

The rest of the paper is organized as follows: Section 2 presents some fundamental definitions and
results from y-Fractional calculus. Section 3 reviews Haar wavelets and their applications in function
approximation. Furthermore, we derive the operational matrix of y-fractional integration of Haar
wavelets. Section 4 presents a detailed numerical procedure for solving -FPDEs using constant and
variable coefficients. Finally, Section 5 presents the conclusion.

2. Basics of y-fractional calculus

This section highlights concepts, definitions, and basic conclusions from the y-fractional calculus
that are important in later sections.

Let the function f : [a,b] — R be integrable, « a positive real number, n a natural number and
¥ € C'([a, b)) be an increasing function such that y’(x) # 0 for all x € [a, b].

Definition 1. [4, 5, 17] The ¢-Riemann-Liouvile (¢-RL) fractional integral operator of order « is
defined by

1 * -
T2 f00) = s | WO -u(@) fas. @
The y-RL fractional differential operator is given by
1 d 1
Do £y = = L) g e = f 3 3~ £(3)d3,
f) = (z//()d)j f(x) = o a)(w(%)d) W ()W) = w(8)"™ F(3)

where n = [a] + 1.

Definition 2. [6] Let a be a positive real number, n a natural number and f, ¢ € C"([a, b]) such that
is increasing and ¢’ (x) # O for all x € [a, b]. The y-Caputo differential operator of fractional order a
is defined by

ARIORST = y(@®) NS,

where f["](%) (llfi )j ) f(¢), heren = |a] + 1 for @ ¢ N, or

DIV fe) = Tu " [ o0).

Also, the ¥-Caputo derivative can be defined as
(k] a

SR
D3 () = DI [f(x)—z W) — p@) |
k=0 ’

where n = [a], whenever a ¢ N and for @ € N, n = a.
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Definition 3. The two-parameter Mittag—Leffler function E, 5(J) is defined as
k

- 3
Eaﬁ(g) = ; m, Je R, a, ,8 > 0. (22)

The Mittag-Leffler function can also be given for these exceptional cases:

(i) Eo1(3) = o3
(i) E11(9) = €7,
(iii) E, (-3%) = cos(J);
(iv) Eyp(-3%) = %(3)

Properties of the y-fractional operators include:

Property 2.1. The following property holds:
VANASQIEN RS ()
Property 2.2. If f(J) = (W (J) — ¥(a)\’, where B> n and @ > 0, then

I+ 1) o
TG-a+D () - @y

Property 2.3. The following property holds:

‘DI f(3) =

DM T [(T) = f(I).

Proof. By definition, we have

) o [707 7], @
D454 £(5) = DI | T f(3) - ;—Mm—wa»" . (2.3)
Note that
LT FI(S) = ﬁ% T F(9)
. ; -
_ ﬁ% ﬁ% a (‘/’(S)r‘(f)(”) V() f(s)ds
_ ﬁ % lw(lm f‘ <a_1)(w<r?;)— V' S (5)f(s)ds
_ ﬁ % f (w<8>—w<ls)>)"‘2 () f(5)d
- ﬁ% )
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Then, we have
(e r], ) = 1T ).

Repeating the process k-times, we have

(e r]) () = Tt p®). (2.4)

Now, substituting (2.4) into (2.3), we have

‘DI f(3) = DY

a—ky
Tef(3) - Zj“ D y5) - pta ))} (2.5)
k=0

Next, we show that J, B f(a) = 0. That is, we prove that limg_,, I, R f(3) = 0. Now, we have

N
HF( )f WD) —y(s)™ W (5)f(s)ds

*ra f ) = w()™ W ()£ )| s

I/l a1,
< @fa (W (B) =Y (9))" Y (s)ds
W (3) - y(a)”
Ta+1)
since ¢’ (J) > 0 and T'(e + 1) = (@)[(@). Hence, T £(J) tends to 0 as J tends to a. Thus, from (2.5),
we have

< Il

DT f(9) = DT (D)
VAN (G

d\
_ n—a+a,
- ’ S j{l f(s)

== oe | T2V D).

Consequently, we have CDZ"”J o 4 f(8) = f(I). This complete the proof. O
By Leibnitz rule, we have

1

- T qly
t//(i‘)dﬂj f) = w(ﬁ)dﬁ

= ——y (9)f(J
w(s)lﬁ( )f(3)

= f(9).
Repeating the above process n-times we have

(Li) THS) = £().

f (D) - y(5)) W (s) f(s)ds

¥'(3)d3
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Lemma 1. The following property holds:

n-1 ¢lnl
o i @)
T 1@ = f@) = )

k=0

(D) - w(a)".

Proof. Forn =1, we have

N 1-1
W) - u(s)) 1
25
. ORRAKOL s

5d
:f d—f(s)ds:f(ﬁ)—f(a).
o as

T 1NO) =

For n = 2, we have
TS = T g ), @ = T - 1
=753 -T2 1, @)
:ﬂm—fwrﬁﬁm{fiwm—wmw*mes
;ﬂ®—fm»4$wmﬁm—wm»

Repeating the above process n-times, we have

-1 f[k] ( a)
m%Wmfw>Z T W) — @)
=0
This completes the proof.
Lemma 2. The following property holds:
-1 [k]
Lﬁ”%Wﬂ®=ﬂ®AZ H(Mw—wmk
=0

Proof. Since
DIV f(T) = Ju fN(D),
thus
NVASPAS ORIV N RS G
=T D)
= . 1,"(9).

Therefore, we have

-1 [k]
£
TevDf(9) = (&AZ o W) — @)

k=0

The proof is completed.
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3. Haar wavelets and function approximation

The Haar wavelet, invented by Hungarian mathematician Alfred Haar in 1909, is the most basic
example of an orthogonal wavelet. The Haar mother wavelet is defined by a two-scale relation for the
scaling function ¢(J) = x[o.1) as:

h(3) = ¢(28) - 928 = 1) = x[o 1y(D) — x[1.1)(D)- (3.1)
Define _
hix(3) = 22hQ2N(B)—k), 0<k<?2/, j=0,1,2,.... (3.2)

Then, the Haar system ¢, i, : j > 0,0 < k < 2/ forms an orthonormal basis for the Hilbert space
L>(0, 1). Thus, for some fixed j, the inner product expansion of f € L,[0, 1] is given as

i1

o

j—1

FO) = (£:000(3) ) > (fhidhin(B) = CTH(), (3.3)

Jj=0 k=0

where C, determined by the inner product ¢; = (f(9).h;x(3)), () is a 1 X 2/ coefficient matrix and
H(D) = [go, hyhig,hii,hoo, ... hos, .o by, ..., ]’lj_l,zj_l] represents the vector of the Haar functions.
For simplicity, consider ¢ = hg,hop = h = hy and h; = hj;, where i = 0,1,2,...,m—1,m : 2/ then,

equation (3.3) becomes
m—1

F) = Y kh(3) = C"H(). (3.4)
i=0

Also, a function of two variables, y(x, J) € L*([0, 1] x [0, 1]) can be approximated using Haar
wavelets as:

—

m—1
Y06, 9) % 30 e hiohy(3) = HY )CH(D), (3.5)

=0 j

3

Il
[«

where C, a 2/ x 2/ coefficient matrix, is computed using the inner product

cij = Chi0), (y (e, DHhj(I))).

Y-Haar wavelets operational matrix:
The operational matrix of y-fractional integration of Haar wavelet is defined as

1

@, -
P v

f W (D)We) - p(3)" h(3)d3. (3.6)

Furthermore, the y/-fractional integral can be generalized and approximated analytically as:

=

, if %« < 0);

e W00 — (L], if % € [413), L0);

P ) = § ks (W) — (G (0))" = 200 — ()], if % € (L@, 501 (37
e W00 = (i) = 2 W00 — (i)

+ (Y (0) = Y(G(D))°], if % > &)
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Equation (3.7) is true for i > 1 and for i = 1, we have

P™(x) = [¥Co) — ()] (3.8)

I'a+1)

Below is the operational matrix P of y-Haar wavelets computed for y/(x) = sin(x) and & = 0.8.

[ 0.5606 -0.2219 -0.1403 -0.0847 -0.08164 -0.0611 -0.0484 -0.0362 |
0.2769 0.0617 -0.1403 0.1369 -0.08164 -0.0611 0.0896  0.0521
0.0656 0.0826  0.05017 -0.0093 -0.08164 0.0935 -0.0092 -0.0020
P _ 0.0689 -0.0689 0 0.03492 0 0 —-0.0690 0.0696
0.0150 0.0188 0.04881 -0.0011 0.03404 -0.0054 -0.0008 -0.0003
0.0175 0.0231 —0.04066 -0.0044 0 0.0318 -0.0048 -0.0007
0.0178 -0.0178 0 0.0401 0 0 0.0279 —0.0041

| 0.0166 -0.0166 0 —-0.0332 0 0 0 0.0224 |

(3.9)

4. Numerical solution to -FPDEs

This section discusses numerical solutions for linear -FPDEs using a technique based on two-
dimensional -Haar wavelets.
4.1. y-FPDEs with constant coefficients

This section considers linear FPDEs with constant coefficients involving y-Caputo fractional
derivative

ay6e, 3) Py, I) Vy(x, J)

FRT A 355 T + f(x, 9), 4.1)

forO <@ <2,0<B<1,1 <y <2 and have non-homogeneous boundary and initial conditions given
by

+uy(x,3)=n

Ay(x, J) — o), y0,9) =), y(1,9) =) (4.2)
23 =0

For 1 < a <2and 4,u,n > 0, then (4.1) reduces to the fractional telegraph equation. For special
cases, it includes the heat, wave, and Poisson equations. The y-Haar wavelets technique provides

y(%,0) = p(x),

numerical solutions. By approximating 6“6”%_%5) using two-dimensional Haar wavelets, we have
8‘1:'70);(%, S) T
—gas = H,,(3)C s H 1 (3). 4.3)

Operating both sides of (4.3) by 7. Y we get

W(3) - y(s)*!
I'(@)

3
¥, 3) = Hy ()C i (f ¥'(3) Hm(S)dS) +p(0) 3 + q(x). (4.4)
0

ay(»,3)

Applying the initial conditions y(x,0) = p(x) and =

p(») and p(x) = o(x). Therefore, (4.4) becomes

l5—0 = 0(x), from (4.2), we have g(x) =

Y0, B) = Hy,08)Coxn Py Hin(3) + 0603 + p(i0). (4.5)
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PY
Applying 355 to (4.5), we obtain

aﬁ,wy(%, J) T B gi-h
g0 = HnCman P Hu(3) + o) .

By substituting (4.3), (4.5) and (4.6) in (4.1), we have

y(x, J)

= H! () CprsmHin(I) + AHL (30)C o P Hy(3)
onvv

mxXm

+ (H? 0O C e Pt H(3) + (¢, I)

mxXm

= Hy(0) (Cosen (I + AP0 + Pyt + Goen)) Hu(D),

where
1-B

A7
g(2.9) = (’(")(r(z >

Applying J on both sides of (4.7), we have

+ uﬁ) +pp(x) = f(, 3) = H},(0)G s Hn( D).

Ny, 3) = TLVHNL ) (Covan(T + AP + 1Py, + Goen)) Hi(3) + x1(3) + 6.
Implementing the conditiony(0, J) = &(J), we get ¢»(J) = &) and y(1, J) = £(J) gives
$1(3) = T2 Hyp (1) (ConanT + AP0 + 1P, + Goen)) Hu(3) + {(T) = (D).
Substituting (4.9) in (4.8), we have
Ny, 3) = Hy06) (Prtn)” = (Q)”)
X (Coan(I + AP+ uPe, + o)) Hi(3) + X(L(3) — £(D)) + £(D),

where
TV H, (%) = PhY H, () = Ho(0)(Phl,)T

and
XTIV Hu(1) = QL Hon(30).

From (4.5) and (4.10), we get the Sylvester equation

(P = (@) ) (Comem(T + AP + P, ) = NC P
= S n = (Pren)” = (D" G

where

5, B) = 0(L(T) = ED) + ED) = ()T +0(I)) = Hy, (S mxmHu(T).

(4.6)

4.7)

(4.8)

4.9)

(4.10)

(4.11)

Solving (4.11) for C,,x,, and using (4.5) or (4.6), we can get the solution of the problem (4.1).

AIMS Mathematics Volume 8, Issue 1, 2137-2153.
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4.2. y-FPDEs with variable coefficients

This section discusses the procedure for numerical solutions of the following class of ¥-FPDEs.

W . v
mag(ff) N a;y{(ff) + b(%)% L doyn ) = fouT), 1<a<2, 1<B<2, 0<y<2, (412)
with the initial conditions
_ yx, 3)| B B
y(%’ O) - ¢1(%)a W 20 - wl(%), or y(%’ O) - ¢1(%)7 y(%’ 1) - wZ(%)a (413)
and boundary conditions:
¥(0,3) = u(@), y(1,3)=w3). (4.14)

Here, we present a numerical technique based on y-Haar wavelets operational matrices for -

0y, J) .
fractional integration. We approximate % with Haar wavelets as
n®
O"y(x, 3
Pyee3) H},0)CrsimHn(T). (4.15)
OneV
Operating J2 on (4.15), we get
Y, 3) = T3 Hy () ConxnHin(3) + p(B) + (). (4.16)

Applying boundary conditions in (4.14) to (4.16), we have
q(3) = w(3), p¥) = -T"Hy()CosenHun(3) + v(I) — (). (4.17)
Therefore, (4.16) can be written as

¥0t, 3) = TV HE 00 Conmn Hin(3) = T3 HE (06)Copseon Hyn(3)
+oe(nu(T) — w(I)) + w(J). (4.18)

Since IV Hu(x) = P2 H,,(%) and ¢' ) TV H,(x) = Q% where ¢'(x) = ». Therefore, (4.18)
takes the form

Y0, 3) = Hi () (Pren)” ComenHn(3) = HL (k) Con Hin(3)

mxXm

+2#((3) = u(3)) + u(J). (4.19)

Pv
Applying the y-Caputo operator g on (4.18), we have

85"” 5 J « l_ﬁ @
g—,(; ) = I B GOC i (3) - ré 5 Y H,, () ConHn(3)
%P
+ T 5 (nu(3) — u(J)) + u(I). (4.20)
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For simplicity, we introduced some convenient notations.

_ b B
¢y = 1“(2—,8)’ ¢3 = nd(x),

l
T2 =5 ") ~ KO +dC)g(T) + () = u( D)),
5(t, B) = x((J) = (D)) + p(I) + 16T + ¢ (),
g(¢, 3) = x(W(3) = w(I)) — p(T) + W2(0) — h1 ()T + 1 (0)
d(0) T3 Hy(x) = Pt Hu(0),
bCOT 5" Hu() = Pt Hyn(30).

r(x,9) =

Substituting (4.15), (4.18) and (4.20) in (4.12), we have

"y(x, J)

Sy = (ACOH o) — HLGOP )" + HIL 6@, = HLGO(Py)” + Hy G052, )

X CorxmHn(3) + Hy, ()R s Hun( ).
Applying J" on previous equation, we get

Y, 3) = (aG)Hy,0e) = Hy (o) (Pt )" + Hiy (o) ( Qi) = Hiy (o) (P, )" + Hip(0)(Qi,)")
X CopenT" Hu(3) + Hpy(00) RT3 Hi(3) + w() T + w ().

Using the initial conditions, we get w(x) = ¢;(x) and w(x) = (). Therefore,
Y0, 3) = (G H () = HiyG)(Pri)| + HyGe( Q)" = Hiy06)(P,) + Hi(0)(Q5, )" )
X Conen T L Hu(3) + HECOR i T2 Hon(F) + 10T + 1 (). (4.21)
Now, we employ the boundary conditions to get w(x) = ¢, (x) and
V() = |(aG) Hyp = Hy(Pri )" + Hy( Qo) = Hie(Prt,)'
+HI( Qi) ) Coen + HytR | T Hi(1) + Y22t — b1 20). (4.22)
Therefore, (4.21) becomes
Y, ) = |(aCWh00) = HyGo (P + HyGe)( Qi) = Hi, ) (Prit)”
+H () ( Qo)) Coem + HpGORan | (P = Q) Win(F)
+ (Wa(%) = PONT + 1 (0). (4.23)

Combining (4.19) and (4.21) gives the Sylvester equation
(Pt = (Qiian)”) o
(A nin s = (Bl = (P )" + QST + QD ) Coen P

- Rmemem + Sm><ma (4'24)
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where A, = diag[(a(e)], x; = 2=L,i=1,2,3,.

following matrix form:

,m. Also, using (4.19) and (4.23), we obtain the

(o™ = (D)) Consen
~ (2P

me)

(4.25)

mxXm

= (P! = (i) + (@) + ( Q)" ) Coven (Pl =

- Rme (P me) + Gmxm~

mxm ~
By solving (4.25) for G,,x,, and substituting it into (4.19), we get the approximate solution of problem
(4.12).

To solve various ¥-FPDEs, we use the y-Haar wavelets technique. Additionally, we compared
the graphical results obtained using the proposed method with the exact solutions. For the first two
examples, we use the technique discussed in subsection 4.1 and for the other two examples, we follow
the procedure discussed in subsection 4.2.

Example 1. Consider the time-fractional telegraph equation with -Caputo fractional derivative

"y, ) 9 y(x,T)
o av 5a—1u +y(%, J)
0y, 3) TQRa+1) W(9) o .
I Ta+ 1) (1 o )(lﬁ(ﬁ)) cos(7x) + 50y ()™ cos(7x) (4.26)

satisfying the initial and boundary conditions

oy(x, J)
NS

y(%,0) =0 = W(9)*, y(1,9) = 0.7539022(y(J))*.

=0, y0,9)

=0
The exact solution for the problem (4.26) is given by
¥, 8) = (W(8))** cos(Tx).

Exact and approximate solutions of the problem (4.26) and their absolute error are plotted in Figure 1.

Also absolute error for problem (4.26) is given in Table 1 for various choices of the parameters
a,J,J and x.

Table 1. Absolute error for /() = sin(x).

I x o J=3 J=4 J=5 J=6 J=1
0.25 0.20 1.5 3.3780x 107 7.4702x 10™* 2.4498 x 107 8.0425x 107° 2.6428 x 107°
0.50 1.6 2.1513x 107 6.5313x10™* 1.9862x 107 6.0507 x 107%  1.8462 x 1076
0.80 1.7 2.0818x 107> 5.8754x 10™* 1.6603 x 107 4.6985x107% 1.3317x 1076
0.50 0.20 1.8 2.0718x 107 5.4730x10™* 1.4458x 107 3.8213x107° 1.0106 x 107°
0.50 1.9 2.0363x 107 5.3432x10™* 1.3359x 107 3.3400 x 1075 8.3502 x 107’
0.80 2.0 2.0363x 10™* 5.3432x 10™* 1.3359x 107> 3.3400 x 107® 8.3502 x 1077

AIMS Mathematics
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I / | / | / | / | / |

Figure 1. Approximate and exact solutions of (4.26) and their absolute error.

Example 2. Consider the y-FPDE given by

0y, 3) 0%y, J)
PRI %

(@) T@a+1)

“\re-a) TQa+1)

(1//(5))2") + 14420(T) [1 - @(I)* ' |sin(12¢), 0<a <1  (427)

with the initial and boundary conditions
(%, 0) = 3(0,9) =0, y(1,3) = -0.536573y(3) [1 — (w(F)y*|.
The exact solution of problem (4.27) is given by
¥, 3) = sin(12290(3) |1 = @(3)*].

Approximate and exact solution of the problem (4.27) and their absolute error are plotted in Figure 2.

Also the maximum absolute error is presented in the Table 2.

AIMS Mathematics Volume 8, Issue 1, 2137-2153.
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Table 2. Maximum absolute error for (%) = »? and different values of J and a.

J % a J=3 J=4 J=5 J=6 J=17
0.25 0.20 0.5 4.3007x 1072 4.1167 x 10™* 4.5672x 107 3.2361 x 10 3.4349 x 107°
0.50 0.6 6.3553x 107 6.2332x10™* 5.4130%x 107 4.2321 x 1075 2.6340 x 107’
0.80 0.7 4.6571x1073 2.7212x 1075 4.2014x 1075 3.1478 x 10% 4.3216 x 107’
0.50 020 0.8 6.5786x 10 6.7634 x 107 6.3132x 10° 4.7324 x 1077 3.6210 x 1077
0.50 0.9 2.1714x10™* 5.3452x107% 3.0884 x 10°° 4.2703 x 1077 5.7381 x 1078
0.80 1.0 3.2738x 107 1.2753x 1075 2.8801 x 1077 4.6721 x 108 8.5382 x 10~

Ay
Y /[Il[ll I el >
// ""5&( "'0‘\\ N ]

Figure 2. Approximate and exact solutions of (4.27) and their absolute error.

Example 3. Consider the linear fractional diffusion equation with y-Caputo derivative

0" y(x, J)
On1 8y

ay(x,3)
R

with initial and boundary conditions

a(x) + f(x,3) (4.28)
¥(¢,0) = @(0))*(1 = ¥()) and y(0,3) =0, y(1,9)=0.

For a(x) = T(1.2)(y(%)"® and f(x¢, I) = (6y(x) — 3)W(%))>e~", the problem (4.28) has the exact
solution as

Y06, 3) = (W) = W) e

AIMS Mathematics Volume 8, Issue 1, 2137-2153.
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Numerical and exact solutions using -Haar wavelets technique and their absolute error for o =
1.8 and J = 5 are shown in Figure 3. Also absolute error for problem (4.28) is given in Table 3 for
various choices of the parameters «, J, J and x.

Table 3. Absolute error for » = 0.25,% = 0.5, different values of J, @ and y(x) = »°.

3 % a J=3 J=4 J=5 J=6 J =1
0.25 0.20 1.5 1.2733x107 6.2471 x10™* 3.0934 x 10 1.5391 x 10™* 7.6766 x 107>
0.50 1.6 1.2910x 107 6.3216 x 107* 3.1273 x 10™* 1.5552x 10™* 7.7551 x 107
0.80 1.7 1.1161x 1073 5.4369x10™* 2.6824x 10™* 1.3321 x 10™* 6.6382x 107
0.50 0.20 1.8 7.1349x107* 3.4173x10™* 1.6710x 10 8.2612x 10> 4.1071 x 107>
0.50 2.0 6.1030x 107 1.5258 x 107> 3.8146x 107® 9.5367 x 1077 2.3841 x 107’
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Figure 3. Approximate and exact solutions of (4.28) and their absolute error.

Example 4. Consider the convection-diffusion equation with -Caputo fractional derivative:

Py, ) _ 0y Y) 8y T)
PRI O 0PV

with initial and boundary conditions

y(,0) = y(x,1) =0, y(0,3) =0, y(1,3) = 0.

+f0,9), 1<a<2,0<B<1,0<y<2 (429

We solve this problem with
a(x) = T(B+2)T(5 — {a + B (), b(x) =T +2—a)[(5 - 2a)(x)",

AIMS Mathematics Volume 8, Issue 1, 2137-2153.



2151

fGe, 3) = Q)P - w(%)4_a)l//(3)l_yEz,z—y(—(znw(S)V)
+(TQ2B + 2)L(5 = {a + ) = T(5 - 2a)(x)**!
+0(5 = 20)(T(2B + 2 — @) = T(B + 2))y(x)*™) sin2my(3)).

The exact solution of the problem (4.29) is
Y0, B) = WP = g0 ) sin Ry ().

Exact and approximate solutions of problem 4.29 and their absolute error is plotted in Figure 4.
Also absolute error is given in Table 4 for various values of @, » and J at 3 = 0.25 and J = 0.50.

Table 4. Absolute error for y(x) = x>.

J % a J=3 J=4 J=5 J=6 J=1

0.25 0.20 1.5 4.3854x10™* 1.4252x10™* 4.6203x 107 1.4996 x 10 4.8789 x 107°
0.50 1.6 3.3031x10™* 1.0001 x 10™* 3.0183 x 107 9.1122x 1078 2.7562 x 1076
0.80 1.7 2.4252x10™* 6.8593x 107 1.9314x 107 5.4339x10°% 1.5301 x 1076
0.50 0.20 1.8 1.7673x10™* 4.6930 x 10 1.2396 x 10 3.2674 x 107° 8.6081 x 107’
0.50 2.0 1.3575x10™* 3.4133x 107 8.5580x 107% 2.1426 x 107% 5.3605 x 10’
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Figure 4. Approximate and exact solutions of (4.29) and their absolute error.
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5. Conclusions

We developed and used the -Haar wavelets operational matrix of integration of fractional order
for the first time for the numerical solution of ¥-FPDEs. The numerical results of the proposed
method are compared to the exact solutions and illustrated along with their absolute error in the figures.
Furthermore, the absolute errors are presented in tables, indicating that our method agrees well with
the exact solutions. The proposed method can also be applied to other wavelet bases, such as Legendre,
Chebyshev, and Gegenbauer wavelets, and can also be applied to nonlinear -FPDEs.
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