Citation: Deepak B. Pachpatte. On some ψ Caputo fractional Čebyšev like inequalities for functions of two and three variables[J]. AIMS Mathematics, 2020, 5(3): 2244-2260. doi: 10.3934/math.2020148
[1] | B. G. Pachpatte, New Čebyšev type inequalities via Trapezoidal like Rules, J. Inequal. Pure Appl. Math., 7 (2006). |
[2] | B. G. Pachpatte, New Čebyšev type inequalities involving functions of two and three variables, Soochow J. Math., 33 (2007), 569-577. |
[3] | P. Cerone, S. S. Dragomir, Mathematical inequalities, Springer, 2011. |
[4] | B. G. Pachpatte, Analytic inequalities, Recent Advances, Atlantis press, 2012. |
[5] | G. A. Anastassiou, Fractional differentation inequalities, Springer, 2009. |
[6] | G. A. Anastassiou, Advances on fractional inequalities, Springer, 2011. |
[7] | A. A. Kilbas, H. M. Srivastava, J. J. Trujilio, Theory and applications of fractional differential equations, North-Holland Math. stud., 204 (2006). |
[8] | S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993. |
[9] | D. Baleanu, S. D. Purohit, Chebyshev type integral inequalities involving the fractional hypergeometric operators, Abstr. Appl. Anal., 2014 (2014), 1-10. |
[10] | E. Set, I. Mumcu, S. DemirbaÅ, Conformable fractional integral inequalities of Chebyshev type, RACSAM, 113 (2019), 2253-2259. doi: 10.1007/s13398-018-0614-9 |
[11] | K. Nisar, G. Rahman, K. Mehrez, Chebyshev type inequalities via generalized fractional conformable integrals, J. Inequal. Appl., 2019 (2019), 1-9. doi: 10.1186/s13660-019-1955-4 |
[12] | S. D. Purohit, R. K. Raina, Chebyshev type inequalities for the Saigo fractional integrals and their q-analogus, J. Math. Inequal., 7 (2013), 239-249. |
[13] | F. Qi, G. Rahman, M. Hussain, et al, Some inequalities of Čebyšev type for conformable k-fractional integral operators, Symmetry, 10 (2018), 614. |
[14] | E. Set, Z. Dahmani, I. Mumcu, New extensions of Chebyshev type inequalities using generalized Katugampola integrals via PolyaSzeg inequality, Int. J. Optim. Control Theor. Appl., 8 (2018), 137-144. doi: 10.11121/ijocta.01.2018.00541 |
[15] | E. Set, J. Choi, I. Mumcu, Chebyshev type inequalities involving generalized Katugampola fractional integral operators, Tamkang J. Math., 50 (4), 381-390. |
[16] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simult., 44 (2017), 460-481. doi: 10.1016/j.cnsns.2016.09.006 |
[17] | J. Vanterler, C. Sousa, E. C. De Oliveira, A gronwall inequality and the Cauchy type problem by means of ψ-Hilfer operator, Differ. Equ. Appl., 11 (2019), 87-106. |
[18] | J. Vanterler, C. Sousa, E. C. De Oliveira, On the stability of a hyperbolic fractional partial differential Equation, Differ. Equ. Dyn. Syst., (2019), 1-22. |