Research article

On some ψ Caputo fractional Čebyšev like inequalities for functions of two and three variables

  • Received: 20 December 2019 Accepted: 17 February 2020 Published: 28 February 2020
  • MSC : 26A33, 26D10, 26D15

  • In this paper we obtain some $\psi$ Caputo fractional Čebyšev like inequalities. Some new Čebyšev type inequalities involving functions of two and three variables using $\psi$ Caputo fractional derivatives definition are obtained.

    Citation: Deepak B. Pachpatte. On some ψ Caputo fractional Čebyšev like inequalities for functions of two and three variables[J]. AIMS Mathematics, 2020, 5(3): 2244-2260. doi: 10.3934/math.2020148

    Related Papers:

  • In this paper we obtain some $\psi$ Caputo fractional Čebyšev like inequalities. Some new Čebyšev type inequalities involving functions of two and three variables using $\psi$ Caputo fractional derivatives definition are obtained.


    加载中


    [1] B. G. Pachpatte, New Čebyšev type inequalities via Trapezoidal like Rules, J. Inequal. Pure Appl. Math., 7 (2006).
    [2] B. G. Pachpatte, New Čebyšev type inequalities involving functions of two and three variables, Soochow J. Math., 33 (2007), 569-577.
    [3] P. Cerone, S. S. Dragomir, Mathematical inequalities, Springer, 2011.
    [4] B. G. Pachpatte, Analytic inequalities, Recent Advances, Atlantis press, 2012.
    [5] G. A. Anastassiou, Fractional differentation inequalities, Springer, 2009.
    [6] G. A. Anastassiou, Advances on fractional inequalities, Springer, 2011.
    [7] A. A. Kilbas, H. M. Srivastava, J. J. Trujilio, Theory and applications of fractional differential equations, North-Holland Math. stud., 204 (2006).
    [8] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993.
    [9] D. Baleanu, S. D. Purohit, Chebyshev type integral inequalities involving the fractional hypergeometric operators, Abstr. Appl. Anal., 2014 (2014), 1-10.
    [10] E. Set, I. Mumcu, S. DemirbaÅ, Conformable fractional integral inequalities of Chebyshev type, RACSAM, 113 (2019), 2253-2259. doi: 10.1007/s13398-018-0614-9
    [11] K. Nisar, G. Rahman, K. Mehrez, Chebyshev type inequalities via generalized fractional conformable integrals, J. Inequal. Appl., 2019 (2019), 1-9. doi: 10.1186/s13660-019-1955-4
    [12] S. D. Purohit, R. K. Raina, Chebyshev type inequalities for the Saigo fractional integrals and their q-analogus, J. Math. Inequal., 7 (2013), 239-249.
    [13] F. Qi, G. Rahman, M. Hussain, et al, Some inequalities of Čebyšev type for conformable k-fractional integral operators, Symmetry, 10 (2018), 614.
    [14] E. Set, Z. Dahmani, I. Mumcu, New extensions of Chebyshev type inequalities using generalized Katugampola integrals via PolyaSzeg inequality, Int. J. Optim. Control Theor. Appl., 8 (2018), 137-144. doi: 10.11121/ijocta.01.2018.00541
    [15] E. Set, J. Choi, I. Mumcu, Chebyshev type inequalities involving generalized Katugampola fractional integral operators, Tamkang J. Math., 50 (4), 381-390.
    [16] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simult., 44 (2017), 460-481. doi: 10.1016/j.cnsns.2016.09.006
    [17] J. Vanterler, C. Sousa, E. C. De Oliveira, A gronwall inequality and the Cauchy type problem by means of ψ-Hilfer operator, Differ. Equ. Appl., 11 (2019), 87-106.
    [18] J. Vanterler, C. Sousa, E. C. De Oliveira, On the stability of a hyperbolic fractional partial differential Equation, Differ. Equ. Dyn. Syst., (2019), 1-22.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2806) PDF downloads(328) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog