Research article

On some ψ Caputo fractional Čebyšev like inequalities for functions of two and three variables

  • Received: 20 December 2019 Accepted: 17 February 2020 Published: 28 February 2020
  • MSC : 26A33, 26D10, 26D15

  • In this paper we obtain some ψ Caputo fractional Čebyšev like inequalities. Some new Čebyšev type inequalities involving functions of two and three variables using ψ Caputo fractional derivatives definition are obtained.

    Citation: Deepak B. Pachpatte. On some ψ Caputo fractional Čebyšev like inequalities for functions of two and three variables[J]. AIMS Mathematics, 2020, 5(3): 2244-2260. doi: 10.3934/math.2020148

    Related Papers:

    [1] Saad Ihsan Butt, Artion Kashuri, Muhammad Umar, Adnan Aslam, Wei Gao . Hermite-Jensen-Mercer type inequalities via Ψ-Riemann-Liouville k-fractional integrals. AIMS Mathematics, 2020, 5(5): 5193-5220. doi: 10.3934/math.2020334
    [2] Mohammed A. Almalahi, Mohammed S. Abdo, Satish K. Panchal . On the theory of fractional terminal value problem with ψ-Hilfer fractional derivative. AIMS Mathematics, 2020, 5(5): 4889-4908. doi: 10.3934/math.2020312
    [3] Naila Mehreen, Matloob Anwar . Some inequalities via Ψ-Riemann-Liouville fractional integrals. AIMS Mathematics, 2019, 4(5): 1403-1415. doi: 10.3934/math.2019.5.1403
    [4] Yousaf Khurshid, Muhammad Adil Khan, Yu-Ming Chu . Conformable fractional integral inequalities for GG- and GA-convex functions. AIMS Mathematics, 2020, 5(5): 5012-5030. doi: 10.3934/math.2020322
    [5] Mohammad Esmael Samei, Lotfollah Karimi, Mohammed K. A. Kaabar . To investigate a class of multi-singular pointwise defined fractional $ q $–integro-differential equation with applications. AIMS Mathematics, 2022, 7(5): 7781-7816. doi: 10.3934/math.2022437
    [6] Feng Qi, Siddra Habib, Shahid Mubeen, Muhammad Nawaz Naeem . Generalized k-fractional conformable integrals and related inequalities. AIMS Mathematics, 2019, 4(3): 343-358. doi: 10.3934/math.2019.3.343
    [7] Gou Hu, Hui Lei, Tingsong Du . Some parameterized integral inequalities for p-convex mappings via the right Katugampola fractional integrals. AIMS Mathematics, 2020, 5(2): 1425-1445. doi: 10.3934/math.2020098
    [8] Chunhong Li, Dandan Yang, Chuanzhi Bai . Some Opial type inequalities in (p, q)-calculus. AIMS Mathematics, 2020, 5(6): 5893-5902. doi: 10.3934/math.2020377
    [9] Xiuzhi Yang, G. Farid, Waqas Nazeer, Muhammad Yussouf, Yu-Ming Chu, Chunfa Dong . Fractional generalized Hadamard and Fejér-Hadamard inequalities for m-convex functions. AIMS Mathematics, 2020, 5(6): 6325-6340. doi: 10.3934/math.2020407
    [10] M. Emin Özdemir, Saad I. Butt, Bahtiyar Bayraktar, Jamshed Nasir . Several integral inequalities for (α, s,m)-convex functions. AIMS Mathematics, 2020, 5(4): 3906-3921. doi: 10.3934/math.2020253
  • In this paper we obtain some ψ Caputo fractional Čebyšev like inequalities. Some new Čebyšev type inequalities involving functions of two and three variables using ψ Caputo fractional derivatives definition are obtained.


    P.L Čebyšev in the year 1882 has proved the following interesting inequality:

    |1babaf(x)g(x)dx(1babaf(x)dx)(1babag(x)dx)|112(ba)2fg.

    where f,g are absolutely continuous functions defined on [a,b] and f,gL[a,b]. The left hand side of the above equation is denoted by T(f,g) is called Cebysev Functional if the integral exists. The applications of above type of inequalities can be found in the field of coding theory, statistics and other branches of mathematics.

    In last few decades many researchers have obtained various extensions and generalizations of above inequalities using various techniques see [1,2]. Study of inequalities have attracted the attention of researchers from various fields due to its wide applications in various fields [3,4].

    During last few years the subject of Fractional Calculus has been developed rapidly due to the applications in various fields of science and engineering. Various new definitions of fractional derivatives and integrals have been obtained by various researchers depending on the applications such as Riemann liouville, Caputo, Saigo, Hilfer, Hadmard, Katugampola and others See [5,6,7,8]. Many results on study of mathematical inequalities using various new fractional definitions such as Conformable and generalized fractional integral were obtained in [9,10]. Recently in [11,12,13,14,15] the authors have obtained the results on Cebysev inequalities using various fractional integral and derivatives definitions.

    In [7] authors have given definations of fractional derivative and integrals of a functions with respect to another functions. Recently in [16,17] authors have studied the ψ Caputo and ψ Hilfer fractional derivative of a function with respect to another functions and its applications. The ψ fractional and integral definations are more generalized and it reduces to Riemann Liouville, Hadmard and Erdelyi-Kober fractional definitions for different values of ψ.

    Motivated from the above mentioned literature the aim of this paper is to obtain ψ Caputo fractional Čebyšev inequalities involving functions of two and three variables.

    Now in this section we give some basic definitions and properties which are useful in our subsequent discussions. In [7,8] the authors have defined the fractional integrals and fractional derivative of a function with respect to another function as follows.

    Definition 2.1 [7,16]. Let I=[a,b] be an interval, α>0, f is an integrable function defined on I and ψC1(I) an increasing function such that ψ(x)0 for all xI then fractional derivative and integral of f is given by

    Iα,ψa+f(x)=1Γ(α)xaψ(t)(ψ(x)ψ(t))α1f(t)dt

    and

    Dα,ψa+f(x)=(1ψ(x)ddx)nInα,ψa+f(x)=1Γ(nα)(1ψ(x)ddx)nxaψ(t)(ψ(x)ψ(t))nα1f(t)dt,

    respectively. Similarly right fractional integral and right fractional derivative are given by

    Iα,ψbf(x)=1Γ(α)xaψ(t)(ψ(t)ψ(x))α1f(t)dt

    and

    Dα,ψbf(x)=(1ψ(x)ddx)nInα,ψbf(x)=1Γ(nα)(1ψ(x)ddx)nxaψ(t)(ψ(t)ψ(x))nα1f(t)dt.

    In [16] Almedia has considered a Caputo type fractional derivative with respect to another function.

    Definition 2.2 [16] Let α>0, nN, I is the interval a<b, f,ψCn(I) two functions such that ψ is increasing and ψ(x)0 for all xI. The left ψ-Caputo fractional derivative of f of order α is given by

    CDα,ψa+f(x)=Inα,ψa+(1ψ(x)ddx)nf(x),

    and the right ψ-Caputo fractional derivative of f is given by

    CDα,ψbf(x)=Inα,ψb(1ψ(x)ddx)nf(x).

    For given αN

    CDα,ψa+f(x)=1Γ(nα)xaψ(t)(ψ(x)ψ(t))nα1f[n]ψ(t)dt

    and

    CDα,ψbf(x)=1Γ(nα)xaψ(t)(ψ(t)ψ(x))nα1(1)nf[n]ψ(t)dt.

    In particular when α(0,1) then

    CDα,ψa+f(x)=1Γ(1α)xa(ψ(x)ψ(t))αf(t)dt

    and

    CDα,ψbf(x)=1Γ(1α)xa(ψ(t)ψ(x))αf(t)dt.

    In [18] the author has defined the ψ fractional partial integral with respect to another functions as

    Definition 2.3 Let θ=(a,b) and α=(α1,α2) where 0α1,α21. Also put I=[a,k]×[b,m] where a,b and k,m are positive constants. Also let ψ(.) be an increasing positive monotone function on (a,k]×(b,m] having continuous derivative ψ(.) on (a,k]×(b,m]. Then the fractional partial integral is

    Iα;ψθu(x,y)=1Γ(α1)Γ(α2)xaybψ(s)ψ(t)(ψ(x)ψ(s))α11(ψ(y)ψ(t))α21f(s,t)dtds.

    The Caputo fractional partial derivative is defined as follows

    Definition 2.4 Let θ=(a,b) and α=(α1,α2) where 0α1,α21. Also put I=[a,k]×[b,m] where a,b and a,b are positive constants. Also let ψ(.) be an increasing function on (a,k]×(b,m] and ψ(.)0 on (a,k]×(b,m]. The ψ Caputo fractional partial derivative of functions of two variables of order α is given by

    CDα;ψθu(x,y)=I2α;ψθ(1ψ(s)ψ(t)2αyx)u(x,y).

    We use the following notation:

    CDα;ψθu(x,y)=2αψuψyαψxα(x,y).

    We define the norm for a function of two variables as follows

    CDα;ψθf=sup|CDα;ψθf(x,y)|.

    Similarly as in Definition (2.3) and (2.4) we define the ψ fractional partial integral with respect to another functions and ψ Caputo fractional partial derivative of functions of three variables as follows:

    Definition 2.5 Let Θ=(a,b,c) and α=(α1,α2,α3) where 0α1,α2,α31. Also put I=[a,k]×[b,m]×[c,n] where a,b,c and k,m,n are positive constants. Also let ψ(.) be an increasing positive monotone function on (a,k]×(b,m]×[c,n] having continuous derivative ψ(.) on (a,k]×(b,m]×(c,n].

    Then the fractional partial integral is

    Iα;ψΘu(x,y,z)=1Γ(α1)Γ(α2)xaybzcψ(s)ψ(t)ψ(r)×(ψ(x)ψ(s))α11(ψ(y)ψ(t))α21(ψ(z)ψ(r))α31f(s,t,r)drdtds.

    Definition 2.6 Let θ=(a,b,c) and α=(α1,α2,α3) where 0α1,α2,α31. Also put I=[a,k]×[b,m]×[c,n] where a,b,c and k,m,n are positive constants. Also let ψ(.) be an increasing function on (a,k]×(b,m]×(c,n] and ψ(.)0 on (a,k]×(b,m]×(c,n]. The ψ Caputo fractional partial derivative of functions of three variables of order α is given by

    CDα;ψΘu(x,y,z)=I3α;ψΘ(1ψ(s)ψ(t)ψ(r)3zyx)u(x,y,z).

    We use the following notation:

    CDα;ψΘu(x,y,z)=3αψuψzαψyαxα(x,y,z).

    We define the norm for a function of three variables as follows

    CDα;ψΘf=sup|CDα;ψΘf(x,y,z)|.

    Now we give the ψ Caputo fractional Čebyšev inequality involving functions of two variables as follows:

    Theorem 3.1 Let f,g:[a,l]×[b,m]R be a continuous function on [a,l]×[b,m] and 2αfψyαψxα, 2αgψyαψxα exists continuous and bounded on [a,l]×[b,m] and α=(α1,α2). Then

    |lamb[f(x,y)g(x,y)12[G(f(x,y))g(x,y)+G(g(x,y))f(x,y)]dydx]|18(ψ(l)ψ(a))(ψ(m)ψ(b))lamb[|g(x,y)|Dα;ψθf+g(x,y)Dα;ψθg]dydx, (3.1)

    where

    G(f(x,y))=12[f(a,y)+f(x,m)+f(x,b)+f(l,y)]14[f(a,b)+f(a,m)+f(l,b)+f(l,m)]

    and

    H(2αfψyαψxα(x,y))=1Γ(α1)Γ(α2)××[xaybψ(t)ψ(s)(ψ(x)ψ(t))α11(ψ(y)ψ(s))α212αfψsαψtα(t,s)dsdtxamyψ(t)ψ(s)(ψ(x)ψ(t))α11(ψ(m)ψ(s))α212αfψsαψtα(t,s)dsdtlxybψ(t)ψ(s)(ψ(l)ψ(t))α11(ψ(y)ψ(s))α212αfψsαψtα(t,s)dsdt+lxmyψ(t)ψ(s)(ψ(l)ψ(t))α11(ψ(m)ψ(s))α212αfψsαψtα(t,s)dsdt].

    Proof. From the given hypotheses for (x,y)[a,l]×[b,m] we have

    1Γ(α1)Γ(α2)xaybψ(t)ψ(s)×(ψ(x)ψ(t))α11(ψ(y)ψ(s))α212αfψsαψtα(t,s)dsdt=1Γ(α1)xaψ(s)(ψ(x)ψ(t))α11[αfψsα(s,t)|yc]=1Γ(α1)xaψ(s)(ψ(y)ψ(t))α11[αfψsα(t,y)αfψsα(t,b)]=f(t,y)|xaf(t,b)|xa=f(x,y)f(a,y)f(x,b)+f(a,b). (3.2)

    Similarly we have

    1Γ(α1)Γ(α2)xamyψ(t)ψ(s)×(ψ(x)ψ(t))α11(ψ(m)ψ(s))α212αfψsαψtα(t,s)dsdt=f(x,y)f(a,m)+f(x,m)+f(a,y), (3.3)
    1Γ(α1)Γ(α2)lxybψ(t)ψ(s)×(ψ(l)ψ(t))α11(ψ(y)ψ(s))α212αfψsαψtα(t,s)dsdt=f(x,y)f(l,b)+f(x,b)+f(l,y), (3.4)
    1Γ(α1)Γ(α2)lxmyψ(t)ψ(s)×(ψ(l)ψ(t))α11(ψ(m)ψ(s))α212αfψsαψtα(s,t)dsdt=f(x,y)+f(l,b)f(x,b)f(l,y). (3.5)

    Adding the above identities we have

    4f(x,y)2[f(a,y)+f(x,m)+f(x,b)+f(l,y)]+[f(a,b)+f(a,m)+f(l,b)+f(l,m)]=1Γ(α1)Γ(α2)[xaybψ(t)ψ(s)(ψ(x)ψ(t))α11(ψ(y)ψ(s))α212αfψsαψtα(t,s)dsdtxadyψ(t)ψ(s)(ψ(x)ψ(t))α11(ψ(m)ψ(s))α212αfψsαψtα(t,s)dsdtlxybψ(t)ψ(s)(ψ(l)ψ(t))α11(ψ(y)ψ(s))α212αfψsαψtα(t,s)dsdt+lxmyψ(t)ψ(s)(ψ(l)ψ(t))α11(ψ(m)ψ(s))α212αfψsαψtα(t,s)dsdt]. (3.6)

    From (3.6) we have

    f(x,y)G(f(x,y))=14H(2αfψyαψxα(x,y)), (3.7)

    for (x,y)[a,l]×[b,m]. Similarly we have

    g(x,y)G(g(x,y))=14H(2αgψyαψxα(x,y)), (3.8)

    for (x,y)[a,l]×[b,m].

    Multiplying (3.7) by g(x,y), (3.8) by f(x,y) adding them and Integrating over (x,y)[a,l]×[b,m] we get

    lamb[2f(x,y)g(x,y)g(x,y)G(f(x,y))f(x,y)G(g(x,y))]dydx=18lamb[H(2αfψyαψxα(x,y))g(x,y)+14f(x,y)H(2αgψyαψxα(x,y))]. (3.9)

    From the properties of modulus we have

    |H(2αfψyαψxα(x,y))|1Γ(α1)Γ(α2)lambψ(t)ψ(s)(ψ(l)ψ(t))α11(ψ(m)ψ(s))α21|2αfψsαψtα(t,s)|dsdt(ψ(l)ψ(a))α1(ψ(m)ψ(b))α2cDα;ψθf, (3.10)
    |H(2αgψyαψxα(x,y))|1Γ(α1)Γ(α2)lambψ(t)ψ(s)(ψ(l)ψ(t))α11(ψ(m)ψ(s))α21|2αgψsαψtα(t,s)|dsdt(ψ(l)ψ(a))α1(ψ(m)ψ(b))α2cDα;ψθg. (3.11)

    From (3.9), (3.10) and (3.11) we have

    |lamb[f(x,y)g(x,y)12[G(f(x,y))g(x,y)+G(g(x,y))f(x,y)]]dydx|18lamb[|H(2αfψyαψxα(x,y))||g(x,y)|+|H(2αgψyαψxα(x,y))||f(x,y)|]18lamb{|g(x,y)|[1Γ(α1)Γ(α2)×[lambψ(t)ψ(s)(ψ(l)ψ(t))α11(ψ(m)ψ(s))α21|2αfψsαψtα(t,s)|dsdt]+|f(x,y)|×[lambψ(t)ψ(s)(ψ(l)ψ(t))α11(ψ(m)ψ(s))α21|2αgψsαψtα(t,s)|dsdt]}dydx18(ψ(l)ψ(a))α1(ψ(m)ψ(b))α2×lamb[|g(x,y)|cDα;ψθf+|f(x,y)|cDα;ψθg]dydx, (3.12)

    which is required inequality.

    Theorem 3.2 Let f,g,G(f(x,y)),G(g(f(x,y)),2αfψyαψxα,2αgψyαψxα be as in Theorem 3.1 then

    |lamb{f(x,y)g(x,y)[G(f(x,y))g(x,y)+G(g(x,y))f(x,y)G(f(x,y))G(g(x,y))]}dydx116{(ψ(l)ψ(a))α1(ψ(m)ψ(b))α2}2cDα;ψθfcDα;ψθg, (3.13)

    for (x,y)[a,l]×[b,m].

    Proof. Multiplying left hand side and right hand side of (3.7) and (3.8) we have

    f(x,y)g(x,y)[f(x,y)G(g(x,y))+g(x,y)G(f(x,y))]=116H(2αfψyαψxα(x,y))H(2αgψyαψxα(x,y)). (3.14)

    Integrating (3.14) over [a,l]×[b,m] and from the properties of modulus we get

    |lamb{f(x,y)g(x,y)[G(g(x,y))f(x,y)+G(f(x,y))g(x,y)]G(f(x,y))G(g(x,y))}dydx|116lamb|H(2αfψyαψxα(x,y))||H(2αgψyαψxα(x,y))|dydx. (3.15)

    Now using (3.13),(3.14) in (3.19) we get required inequality (3.13).

    Now in our result we give the ψ Caputo fractional Čebyšev inequality involving functions of three variables. We use some notations as follows:

    A(p(u,v,w))=18[p(a,b,c)+p(k,m,n)]14[p(u,b,c)+p(u,m,n)+p(u,m,c)+p(u,b,n)]14[p(a,v,c)+p(k,v,n)+p(a,v,n)+p(k,v,c)]14[p(a,b,w)+p(k,m,w)+p(k,b,w)+p(a,m,w)]+12[p(a,v,w)+p(k,v,w)]+12[p(u,b,w)+p(u,m,w)]+12[p(u,v,c)+p(u,v,n)] (4.1)

    and

    B(3αpψwαψvαψuα(u,v,w))=1Γ(α1)Γ(α2)Γ(α3)uavbwcψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11×(ψ(v)ψ(s))α21(ψ(w)ψ(t))α313αpψtαψsαψrα(r,s,t)dtdsdr1Γ(α1)Γ(α2)Γ(α3)uavbncψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11×(ψ(v)ψ(s))α21(ψ(n)ψ(t))α313αpψtαψsαψrα(r,s,t)dtdsdr1Γ(α1)Γ(α2)Γ(α3)uamvwcψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11×(ψ(m)ψ(s))α21(ψ(w)ψ(t))α313αpψtαψsαψrα(r,s,t)dtdsdr1Γ(α1)Γ(α2)Γ(α3)kuvbwcψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11×(ψ(u)ψ(s))α21(ψ(w)ψ(t))α313αpψtαψsαψrα(r,s,t)dtdsdr+1Γ(α1)Γ(α2)Γ(α3)uamrnwψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11×(ψ(m)ψ(s))α21(ψ(n)ψ(t))α313αpψtαψsαψrα(r,s,t)dtdsdr+1Γ(α1)Γ(α2)Γ(α3)kumvwcψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11×(ψ(m)ψ(s))α21(ψ(w)ψ(t))α313αpψtαψsαψrα(r,s,t)dtdsdr+1Γ(α1)Γ(α2)Γ(α3)kuvbnwψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11×(ψ(v)ψ(s))α21(ψ(n)ψ(t))α313αpψtαψsαψrα(r,s,t)dtdsdr1Γ(α1)Γ(α2)Γ(α3)kumvnwψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11×(ψ(m)ψ(s))α21(ψ(n)ψ(t))α313αpψtαψsαψrα(r,s,t)dtdsdr. (4.2)

    Now we give our next result as

    Theorem 4.1 Let f,g:[a,k]×[b,m]×[c,n]R be a continuous function on [a,l]×[b,m] and 3αfψtαψsαψrα, 3αgψtαψsαψrα exists and continuous and bounded on [a,k]×[b,m]×[c,n]. Then

    kambnc[f(u,v,w)g(u,v,w)12[f(u,v,w)A(g(u,v,w))+g(u,v,w)A(f(u,v,w))]]dwdvdu116(ψ(k)ψ(a))α1(ψ(m)ψ(b))α2(ψ(n)ψ(c))α3×kambnc[|g(u,v,w)|cDα;ψΘf+|f(u,v,w)|cDα;ψΘg]dwdvdu, (4.3)

    where A,B are as given in (4.1),(4.2).

    Proof. From the hypotheses we have for u,v,w[a,k]×[b,m]×[c,n]

    1Γ(α1)Γ(α2)Γ(α3)uavbwcψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11(ψ(v)ψ(s))α21(ψ(w)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr=1Γ(α1)Γ(α2)uavbψ(r)ψ(s)(ψ(u)ψ(r))α11(ψ(v)ψ(s))α212αfψsαψrα(r,s,t)|wcdsdr=1Γ(α1)Γ(α2)uavbψ(r)ψ(s)(ψ(u)ψ(r))α11(ψ(v)ψ(s))α212αfψsαψrα(r,s,w)dsdr1Γ(α1)Γ(α2)uavbψ(r)ψ(s)(ψ(u)ψ(r))α11(ψ(v)ψ(s))α212αfψsαψrα(r,s,c)dsdr=1Γ(α1)uaψ(r)(ψ(u)ψ(r))α11αfψrα(r,s,w)|vbdr1Γ(α1)uaψ(r)(ψ(u)ψ(r))α11αfψrα(r,s,c)|vbdr=1Γ(α1)uaψ(r)(ψ(u)ψ(r))α11αfψrα(r,v,w)dr1Γ(α1)uaψ(r)(ψ(u)ψ(r))α11αfψrα(r,b,w)dr1Γ(α1)uaψ(r)(ψ(u)ψ(r))α11αfψrα(r,v,c)dr+1Γ(α1)uaψ(r)(ψ(u)ψ(r))α11αfψrα(r,b,c)dr=f(r,v,w)|uaf(r,b,w)|uaf(r,v,c)|ua+f(r,b,c)|ua=f(u,v,w)f(a,v,w)f(u,b,w)+f(a,b,w)f(u,v,c)+f(a,v,c)+f(u,b,c)+f(a,b,c).

    Thus we have

    f(u,v,w)=f(a,v,w)+f(u,b,w)f(a,b,w)+f(u,v,c)f(a,v,c)f(u,b,c)f(a,b,c)1Γ(α1)Γ(α2)Γ(α3)uavbwcψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11(ψ(v)ψ(s))α21(ψ(w)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr, (4.4)

    Similarly we have

    f(u,v,w)=f(u,v,n)+f(a,v,w)+f(u,b,w)+f(a,b,n)f(a,b,w)f(a,v,n)f(v,b,n)1Γ(α1)Γ(α2)Γ(α3)uavbnwψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11(ψ(v)ψ(s))α21(ψ(n)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr, (4.5)
    f(u,v,w)=f(u,m,w)+f(u,v,c)+f(a,m,c)+f(a,v,w)f(u,m,c)f(a,m,w)f(a,v,c)1Γ(α1)Γ(α2)Γ(α3)uamvwcψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11(ψ(m)ψ(s))α21(ψ(w)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr, (4.6)
    f(u,v,w)=f(k,s,t)+f(k,b,c)+f(u,v,c)+f(u,b,w)f(k,v,c)f(k,b,w)f(u,b,c)1Γ(α1)Γ(α2)Γ(α3)kuvbwcψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11(ψ(v)ψ(s))α21(ψ(w)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr, (4.7)
    f(u,v,w)=f(u,m,w)+f(u,v,n)+f(a,m,n)+f(a,v,w)f(u,m,n)f(a,m,w)f(a,v,n)+1Γ(α1)Γ(α2)Γ(α3)uamvnwψ(r)ψ(s)ψ(t)(ψ(u)ψ(r))α11(ψ(m)ψ(s))α21(ψ(n)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr, (4.8)
    f(u,v,w)=f(r,m,t)+f(u,v,c)+f(k,s,t)+f(k,m,c)f(k,m,w)f(k,v,c)f(u,m,c)+1Γ(α1)Γ(α2)Γ(α3)kumvwcψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11(ψ(m)ψ(s))α21(ψ(w)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr, (4.9)
    f(u,v,w)=f(k,v,w)+f(k,b,n)+f(u,v,n)+f(u,b,t)f(k,v,n)f(k,b,w)f(u,b,n)+1Γ(α1)Γ(α2)Γ(α3)kuvbnwψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11(ψ(v)ψ(s))α21(ψ(n)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr (4.10)

    and

    f(u,v,w)=f(k,m,n)+f(k,v,w)+f(u,m,w)+f(u,v,n)f(k,m,w)f(k,v,n)f(u,m,n)+1Γ(α1)Γ(α2)Γ(α3)kumvnwψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11(ψ(m)ψ(s))α21(ψ(n)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr. (4.11)

    Adding the above identities we have

    f(u,v,w)A(f(u,v,w))=18B(3αfψwαψvαψuα(u,v,w)), (4.12)

    for (u,v,w)[a,k]×[b,m]×[c,n].

    Similarly we have

    g(u,v,w)A(g(u,v,w))=18B(3αgψwαψvαψuα(u,v,w)), (4.13)

    for (u,v,w)[a,k]×[b,m]×[c,n].

    Now multiplying (4.12) and (4.13) by g(u,v,w) and f(u,v,w) respectively, adding them and Integrating over [a,k]×[b,m]×[c,n] we have

    kambnc[f(u,v,w)g(u,v,w)12[g(u,v,w)A(f(u,v,w))g(u,v,w)A(f(u,v,w))]]dwdvdu=116kambnc[g(u,v,w)B(3αfψwαψvαψuα(u,v,w))+f(u,v,w)B(3αgψwαψvαψuα(u,v,w))]. (4.14)

    From the properties of modulus we have

    |B(3αfψwαψvαψuα(u,v,w))|kambncψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11(ψ(m)ψ(s))α21×(ψ(n)ψ(t))α313αfψtαψsαψrα(r,s,t)dtdsdr(ψ(k)ψ(a))α1(ψ(m)ψ(b))α2(ψ(n)ψ(c))α3CDα;ψΘf, (4.15)
    |B(3αgψwαψvαψuα(u,v,w))|kambncψ(r)ψ(s)ψ(t)(ψ(k)ψ(r))α11(ψ(m)ψ(s))α21×(ψ(n)ψ(t))α313αgψtαψsαψrα(r,s,t)dtdsdr(ψ(k)ψ(a))α1(ψ(m)ψ(b))α2(ψ(n)ψ(c))α3CDα;ψΘg. (4.16)

    Now by substituting the values from equation (4.15) and (4.16) in (4.14) we get the required inequality (4.3).

    Theorem 4.2 Let f,g, 3αfψtαψsαψrα and 3αgψtαψsαψrα be as in Theorem 4.1. Then

    |kambnc[f(u,v,w)g(u,v,w)[A(f(u,v,w))g(u,v,w)A(g(u,v,w))f(u,v,w)A(f(u,v,w))A(g(u,v,w))|dwdvdu164{(ψ(k)ψ(a))α1(ψ(m)ψ(b))α2(ψ(n)ψ(c))α3}2CDα;ψΘfCDα;ψΘg, (4.17)

    for (r,s,t)[a,k]×[b,m]×[c,n] and A,B are as given in (4.1),(4.2).

    Proof. Multiplying left hand and right hand side of equation (4.12) and (4.13) we have

    f(u,v,w)g(u,v,w)[f(u,v,w)A(g(u,v,w))+g(u,v,w)A(f(u,v,w))A(f(u,v,w))A(g(u,v,w))]=164B(3αfψwαψvαψuα(u,v,w))B(3αgψwαψvαψuα(u,v,w)). (4.18)

    Integrating over [a,k]×[b,m]×[c,n] and from the properties of modulus we have

    |kambnc[f(u,v,w)g(u,v,w)[f(u,v,w)A(g(u,v,w))+g(u,v,w)A(f(u,v,w))A(f(u,v,w))A(g(u,v,w))]]|dwdvdu164kambnc|B(3αfψwαψvαψuα(u,v,w))B(3αfψwαψvαψuα(u,v,w))|dwdvdu. (4.19)

    Using (4.15) and (4.16) in (4.19) we get the required inequality (4.17).

    Remark: If we put different values for ψ(x) as x,lnx,xσthen it reduces to various types of fractional Čebyšev inequalities such as Riemann Liouville fractional, Hadmard Fractional and Erdelyi-Kober fractional inequalities respectively.

    In this paper, we studied Čebyšev like inequalities. We proved some new ψ Caputo fractional Čebyšev type inequalities involving functions of two and three variables.

    All authors declare no conflict of interest in this paper.



    [1] B. G. Pachpatte, New Čebyšev type inequalities via Trapezoidal like Rules, J. Inequal. Pure Appl. Math., 7 (2006).
    [2] B. G. Pachpatte, New Čebyšev type inequalities involving functions of two and three variables, Soochow J. Math., 33 (2007), 569-577.
    [3] P. Cerone, S. S. Dragomir, Mathematical inequalities, Springer, 2011.
    [4] B. G. Pachpatte, Analytic inequalities, Recent Advances, Atlantis press, 2012.
    [5] G. A. Anastassiou, Fractional differentation inequalities, Springer, 2009.
    [6] G. A. Anastassiou, Advances on fractional inequalities, Springer, 2011.
    [7] A. A. Kilbas, H. M. Srivastava, J. J. Trujilio, Theory and applications of fractional differential equations, North-Holland Math. stud., 204 (2006).
    [8] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional integrals and derivatives: Theory and applications, Gordon and Breach Science Publishers, 1993.
    [9] D. Baleanu, S. D. Purohit, Chebyshev type integral inequalities involving the fractional hypergeometric operators, Abstr. Appl. Anal., 2014 (2014), 1-10.
    [10] E. Set, I. Mumcu, S. DemirbaÅ, Conformable fractional integral inequalities of Chebyshev type, RACSAM, 113 (2019), 2253-2259. doi: 10.1007/s13398-018-0614-9
    [11] K. Nisar, G. Rahman, K. Mehrez, Chebyshev type inequalities via generalized fractional conformable integrals, J. Inequal. Appl., 2019 (2019), 1-9. doi: 10.1186/s13660-019-1955-4
    [12] S. D. Purohit, R. K. Raina, Chebyshev type inequalities for the Saigo fractional integrals and their q-analogus, J. Math. Inequal., 7 (2013), 239-249.
    [13] F. Qi, G. Rahman, M. Hussain, et al, Some inequalities of Čebyšev type for conformable k-fractional integral operators, Symmetry, 10 (2018), 614.
    [14] E. Set, Z. Dahmani, I. Mumcu, New extensions of Chebyshev type inequalities using generalized Katugampola integrals via PolyaSzeg inequality, Int. J. Optim. Control Theor. Appl., 8 (2018), 137-144. doi: 10.11121/ijocta.01.2018.00541
    [15] E. Set, J. Choi, I. Mumcu, Chebyshev type inequalities involving generalized Katugampola fractional integral operators, Tamkang J. Math., 50 (4), 381-390.
    [16] R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci. Numer. Simult., 44 (2017), 460-481. doi: 10.1016/j.cnsns.2016.09.006
    [17] J. Vanterler, C. Sousa, E. C. De Oliveira, A gronwall inequality and the Cauchy type problem by means of ψ-Hilfer operator, Differ. Equ. Appl., 11 (2019), 87-106.
    [18] J. Vanterler, C. Sousa, E. C. De Oliveira, On the stability of a hyperbolic fractional partial differential Equation, Differ. Equ. Dyn. Syst., (2019), 1-22.
  • This article has been cited by:

    1. Tamer Nabil, Ulam stabilities of nonlinear coupled system of fractional differential equations including generalized Caputo fractional derivative, 2021, 6, 2473-6988, 5088, 10.3934/math.2021301
    2. MAYSAA AL-QURASHI, SAIMA RASHID, YELIZ KARACA, ZAKIA HAMMOUCH, DUMITRU BALEANU, YU-MING CHU, ACHIEVING MORE PRECISE BOUNDS BASED ON DOUBLE AND TRIPLE INTEGRAL AS PROPOSED BY GENERALIZED PROPORTIONAL FRACTIONAL OPERATORS IN THE HILFER SENSE, 2021, 29, 0218-348X, 2140027, 10.1142/S0218348X21400272
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3308) PDF downloads(329) Cited by(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog