Citation: Qaiser Khan, Muhammad Arif, Bakhtiar Ahmad, Huo Tang. On analytic multivalent functions associated with lemniscate of Bernoulli[J]. AIMS Mathematics, 2020, 5(3): 2261-2271. doi: 10.3934/math.2020149
[1] | R. M. Ali, N. E. Cho, V. Ravichandran, et al. Differential subordination for functions associated with the lemniscate of Bernoulli's, Taiwan. J. Math., 16 (2012), 1017-1026. doi: 10.11650/twjm/1500406676 |
[2] | M. Arif, K. Ahmad, J.-L. Liu, et al. A new class of analytic functions associated with Salagean operator, Journal of Function Spaces, 2019. |
[3] | N. E. Cho, V. Kumar, S. S. Kumar, Ravichandran. Radius problems for starlike functions associated with the sine function, B. Iran. Math. Soc., 45 (2019), 213-232. doi: 10.1007/s41980-018-0127-5 |
[4] | N. E. Cho, S. Kumar, V. Kumar, et al. Starlike functions related to the Bell numbers, Symmetry, 11 (2019), 219. |
[5] | J. Dziok, R. K. Raina, J. Sokół, On a class of starlike functions related to a shell-like curve connected with Fibonacci numbers, Math. Comput. Model., 57 (2013), 1203-1211. doi: 10.1016/j.mcm.2012.10.023 |
[6] | S. A. Halim, R. Omar, Applications of certain functions associated with lemniscate Bernoulli, Journal of the Indonesian Mathematical Society, 18 (2012), 93-99. |
[7] | M. Haq, M. Raza, M. Arif, et al. q-analogue of differential subordinations, Mathematics, 7 ( 2019), 724. |
[8] | W. H. Hayman, Multivalent Functions, Second Edition, Cambridge Uni. Press, 1994. |
[9] | I. S. Jack, Functions starlike and convex of order alpha, J. Lond. Math. Soc., 2 (1971), 469-474. |
[10] | W. Janowski, Extremal problems for a family of functions with positive real part and for some related families, Ann. Pol. Math., 23 (1970), 159-177. doi: 10.4064/ap-23-2-159-177 |
[11] | S. Kanas, D. Răducanu, Some class of analytic functions related to conic domains, Math. Slovaca, 64 (2014), 1183-1196. |
[12] | R. Kargar, A. Ebadian, J. Sokół, On Booth lemniscate and starlike functions, Anal. Math. Phys., 9 (2019), 143-154. doi: 10.1007/s13324-017-0187-3 |
[13] | S. S. Kumar, V. Kumar, V. Ravichandran, et al. Sufficient conditions for starlike functions associated with the lemniscate of Bernoulli, J. Inequal. Appl., 2013 (2013), 176. |
[14] | S. Kumar, V. Ravichandran, A subclass of starlike functions associated with a rational function, Southeast Asian Bulletin of Mathematics, 40 (2016), 199-212. |
[15] | S. Kumar, V. Ravichandran, Subordinations for functions with positive real part, Complex Anal. Oper. Th., 12 (2018), 1179-1191. doi: 10.1007/s11785-017-0690-4 |
[16] | W. Ma, D. Minda, A unified treatment of some special classes of univalent functions, Proceeding of the Conference on Complex Analysis, Z. Li, F. Ren, L. Yang and S. Zhang (Eds), Int. Press, 1994. |
[17] | R. Mendiratta, S. Nagpal, V. Ravichandran, On a subclass of strongly starlike functions associated with exponential function, B. Malays. Math. Sci. So., 38 (2015), 365-386. doi: 10.1007/s40840-014-0026-8 |
[18] | E. Paprocki, J. Sokół, The extremal problems in some subclass of strongly starlike functions, Zeszyty Nauk. Politech. Rzeszowskiej Mat., 20 (1996), 89-94. |
[19] |
R. K. Raina, J. Sokół, On coefficient estimates for a certain class of starlike functions, Hacettepe Journal of Mathematics and Statistics, 44 (2015), 1427-1433. |
[20] | M. Raza, J. Sokół, M. Mushtaq, Differential Subordinations for Analytic Functions, Iranian Journal of Science and Technology, Transactions A: Science, 43 (2019), 883-890. doi: 10.1007/s40995-017-0430-7 |
[21] | K. Sharma, N. K. Jain, V. Ravichandran, Starlike functions associated with a cardioid, Afrika Matematika, 27 (2016), 923-939. doi: 10.1007/s13370-015-0387-7 |
[22] | K. Sharma, V. Ravichandran, Applications of subordination theory to starlike functions, B. Iran. Math. Soc., 42 (2016), 761-777. |
[23] | L. Shi, I. Ali, M. Arif, et al. A study of third Hankel determinant problem for certain subfamilies of analytic functions involving cardioid domain, Mathematics, 7 (2019), 418. |
[24] | L. Shi, H. M. Srivastava, M. Arif, et al. An investigation of the third Hankel determinant problem for certain subfamilies of univalent functions involving the exponential function, Symmetry, 11 (2019), 598. |
[25] | J. Sokół, J. Stankiewicz, Radius of convexity of some subclasses of strongly starlike functions, Zeszyty Nauk, Politech. Rzeszowskiej Mat., 19 (1996), 101-105. |