Citation: Essam R. El-Zahar. Approximate analytical solution of singularly perturbed boundary value problems in MAPLE[J]. AIMS Mathematics, 2020, 5(3): 2272-2284. doi: 10.3934/math.2020150
[1] | R. E. O'Malley, Singular perturbation methods for ordinary differential equations, New York: Springer, 1991. |
[2] | R. E. O'Malley, Introduction to Singular Perturbations, Academic Press, New York, 1974. |
[3] | E. P. Doolan, J. J. Miller and W. H. Schilders, Uniform numerical methods for problems with initial and boundary layers, Boole Press, 1980. |
[4] | H. G. Roos, M. Stynes and L. Tobiska, Numerical Methods for Singularly Perturbed Differential Equations, Springer, Berlin, 1980. |
[5] | J. J. Miller, E. O'Riordan and G. I. Shishkin, Fitted Numerical Methods for Singular Perturbation Problems, World Scientific, Singapore, 2012. |
[6] | C. M. Bender and S. A. Orszag, Advanced mathematical methods for scientists and engineers I, Springer Science & Business Media, 1999. |
[7] | J. Kevorkian and J. D. Cole, Perturbation methods in applied mathematics, Springer Science & Business Media, 2013. |
[8] | L. Wang, A novel method for a class of nonlinear singular perturbation problems, Appl. Math. Comput., 156 (2004), 847-856. |
[9] | W. Wang, An algorithm for solving nonlinear singular perturbation problems with mechanization, Appl. Math. Comput., 169 (2005), 995-1009. |
[10] | C. Liu, The Lie-group shooting method for singularly perturbed two-point boundary value problems, Computer Modeling in Engineering and Sciences, 15 (2006), 179-196. |
[11] | E. R. El-Zahar, S. M. El-Kabeir, A new method for solving singularly perturbed boundary value problems, Appl. Math. Inform. Sci., 7 (2013), 927-938. doi: 10.12785/amis/070310 |
[12] | Z. Li, W. Wang, Mechanization for solving SPP by reducing order method, Appl. Math. Comput., 169 (2005), 1028-1037. |
[13] | H. M. Habib, E. R. El-Zahar, An algorithm for solving singular perturbation problems with mechanization, Appl. Math. Comput., 188 (2007), 286-302. |
[14] | A. Khan, P. Khandelwal, Non-polynomial sextic spline solution of singularly perturbed boundaryvalue problems, Int. J. Comput. Math., 91 (2014), 1122-1135. doi: 10.1080/00207160.2013.828865 |
[15] | M. K. Kadalbajoo, Y. N. Reddy, Initial-value technique for a class of nonlinear singular perturbation problems, J. Optimiz. Theory Appl., 53 (1987), 395-406. doi: 10.1007/BF00938946 |
[16] | Y. N. Reddy, P. P. Chakravarthy, Numerical patching method for singularly perturbed two-point boundary value problems using cubic splines, Appl. Math. Comput., 149 (2004), 441-468. |
[17] | Y. N. Reddy, P. P. Chakravarthy, An initial-value approach for solving singularly perturbed twopoint boundary value problems, Appl. Math. Comput., 155 (2004), 95-110. |
[18] | M. Kumar, A recent development of computer methods for solving singularly perturbed boundary value problems, International Journal of Differential Equations, 2011 (2011), 1-32. |
[19] | E. R. El-Zahar, Applications of Adaptive Multi step Differential Transform Method to Singular Perturbation Problems Arising in Science and Engineering, Appl. Math. Inform. Sci., 9 (2015), 223-232. doi: 10.12785/amis/090128 |
[20] | E.R. El-Zahar, Piecewise approximate analytical solutions of high order singular perturbation problems with a discontinuous source term, International Journal of Differential Equations, 2016 (2016), 1-12. |
[21] | J. D. Faires, R. L. Burden, Numerical Analysis, Brooks/Cole, 2005. |
[22] | W. Chen, Z. Lu, An algorithm for Adomian decomposition method, Appl. Math. Comput., 159 (2004), 221-235. |
[23] | W. Wang, Y. Lin, Z. Zeng, A new mechanical algorithm for solving system of Fredholm integral equation using resolvent method, International Conference on Intelligent Computing, Springer Berlin Heidelberg, 2008. |
[24] | W. Wang, A new mechanical algorithm for solving the second kind of Fredholm integral equation, Appl. Math. Comput., 172 (2006), 946-962. |
[25] | V. R. Subramanian, R. E. White, Symbolic solutions for boundary value problems using Maple, Comput. Chem. Eng., 24 (2000), 2405-2416. doi: 10.1016/S0098-1354(00)00567-6 |
[26] | H. A. El-Arabawy, I. K. Youssef, A symbolic algorithm for solving linear two-point boundary value problems by modified Picard technique, Math. Comput. Model., 49 (2009), 344-351. doi: 10.1016/j.mcm.2008.07.030 |