Research article

Liapounoff type inequality for pseudo-integral of interval-valued function

  • Received: 27 September 2021 Revised: 13 December 2021 Accepted: 13 December 2021 Published: 07 January 2022
  • MSC : 28A25, 28B20, 54C60

  • In this paper, two new Liapounoff type inequalities in terms of pseudo-analysis dealing with set-valued functions are given. The first one is given for a pseudo-integral of set-valued function where pseudo-operations are given by a generator $ g:[0, \infty]\to [0, \infty] $ and the second one is given for the semiring $ ([0, \infty], \sup, \odot) $ with generated pseudo-multiplication. The interval Liapounoff inequality is applied for estimation of interval-valued central $ g $-moment of order $ n $ for interval-valued functions in a $ g $-semiring.

    Citation: Tatjana Grbić, Slavica Medić, Nataša Duraković, Sandra Buhmiler, Slaviša Dumnić, Janja Jerebic. Liapounoff type inequality for pseudo-integral of interval-valued function[J]. AIMS Mathematics, 2022, 7(4): 5444-5462. doi: 10.3934/math.2022302

    Related Papers:

  • In this paper, two new Liapounoff type inequalities in terms of pseudo-analysis dealing with set-valued functions are given. The first one is given for a pseudo-integral of set-valued function where pseudo-operations are given by a generator $ g:[0, \infty]\to [0, \infty] $ and the second one is given for the semiring $ ([0, \infty], \sup, \odot) $ with generated pseudo-multiplication. The interval Liapounoff inequality is applied for estimation of interval-valued central $ g $-moment of order $ n $ for interval-valued functions in a $ g $-semiring.



    加载中


    [1] H. Agahi, R. Mesiar, Y. Ouyang, Chebyshev type inequalities for pseudo-integrals, Nonlinear Anal.-Theor., 72 (2010), 2737–2743. https://doi.org/10.1016/j.na.2009.11.017 doi: 10.1016/j.na.2009.11.017
    [2] H. Agahi, R. Mesiar, Y. Ouyang, General Minkowski type inequalities for Sugeno integrals, Fuzzy Set. Syst., 161 (2010), 708–715. https://doi.org/10.1016/j.fss.2009.10.007 doi: 10.1016/j.fss.2009.10.007
    [3] H. Agahi, Y. Ouyang, R. Mesiar, E. Pap, M. Štrboja, Hölder and Minkowski type inequalities for pseudo-integral, Appl. Math. Comput., 217 (2011), 8630–8639. https://doi.org/10.1016/j.amc.2011.03.100 doi: 10.1016/j.amc.2011.03.100
    [4] R. J. Aumann, Integrals of set-valued functions, J. Math. Anal. Appl., 12 (1965), 1–12.
    [5] P. S. Bullen, A dictionary of inequalities, Chapman & Hall, 1998.
    [6] J. Caballero, K. Sadarangani, A Cauchy-Schwarz type inequality for fuzzy integrals, Nonlinear Anal.-Theor., 73 (2010), 3329–3335. https://doi.org/10.1016/j.na.2010.07.013 doi: 10.1016/j.na.2010.07.013
    [7] J. Caballero, K. Sadarangani, Chebyshev inequality for Sugeno integrals, Fuzzy Set. Syst., 161 (2010), 1480–1487. https://doi.org/10.1016/j.fss.2009.12.006 doi: 10.1016/j.fss.2009.12.006
    [8] B. Daraby, Generalization of the Stolarsky type inequality for pseudo-integrals, Fuzzy Set. Syst., 194 (2012), 90–96. https://doi.org/10.1016/j.fss.2011.08.005 doi: 10.1016/j.fss.2011.08.005
    [9] N. Duraković, S. Medić, T. Grbić, A. Perović, L. Nedović, Generalization of Portmanteau Theorem for a sequence of interval-valued pseudo-probability measures, Fuzzy Set. Syst., 364 (2019), 96–110. https://doi.org/10.1016/j.fss.2018.03.009 doi: 10.1016/j.fss.2018.03.009
    [10] T. Grbić, I. Štajner Papuga, M. Štrboja, An approach to pseudo-integration of set-valued functions, Inform. Sci., 181 (2011), 2278–2292. https://doi.org/10.1016/j.ins.2011.01.038 doi: 10.1016/j.ins.2011.01.038
    [11] D. H. Hong, A Liapunov type inequality for Sugeno integrals, Nonlinear Anal.-Theor., 74 (2011), 7296–7303. https://doi.org/10.1016/j.na.2011.07.046 doi: 10.1016/j.na.2011.07.046
    [12] E. Klein, A. C. Thompson, Theory of correspondences: Including applications to mathematical economics, John Wiley & Sons, New York, 1984.
    [13] V. N. Kolokoltsov, V. P. Maslov, Idempotent analysis and its applications, Kluwer Academic Publishers, Dordrecht, 1997.
    [14] L. C. Jang, J. G. Lee, H. M. Kim, On Jensen-type and Hölder-type inequality for interval-valued Choquet integrals, Int. J. Fuzzy Log. Inte., 2 (2018), 97–102.
    [15] D. Q. Li, X. Q. Song, T. Yue, Y. Z. Song, Generalization of the Lyapunov type inequality for pseudo-integrals, Appl. Math. Comput., 241 (2014), 64–69. https://doi.org/10.1016/j.amc.2014.05.006 doi: 10.1016/j.amc.2014.05.006
    [16] S. Medić, T. Grbić, A. Perović, N. Duraković, Interval-valued Chebyshev, Hölder and Minkowski inequalities based on g-integrals, Proceedings of IEEE 12th International Symposium on Intelligent Systems and Informatics, 2014,273–277. https://doi.org/10.1109/SISY.2014.6923599
    [17] S. Medić, T. Grbić, A. Perović, S Nikoličić, Inequalities of Hölder and Minkowski type for pseudo-integrals with respect to interval-valued $\oplus$-measures, Fuzzy Set. Syst., 304 (2016), 110–130. https://doi.org/10.1016/j.fss.2015.11.014 doi: 10.1016/j.fss.2015.11.014
    [18] S. Medić, T. Grbić, I. Štajner Papuga, G. Grujić, Central $g$-moments of the order $n$ for random variables, Proceedings of IEEE 12th International Symposium on Intelligent Systems and Informatics, 2014,279–283. https://doi.org/10.1109/SISY.2014.6923601
    [19] R. Mesiar, E. Pap, Idempotent integral as limit of g-integrals, Fuzzy Set. Syst., 102 (1999), 385–392. https://doi.org/10.1016/S0165-0114(98)00213-9 doi: 10.1016/S0165-0114(98)00213-9
    [20] E. Pap, $g$-calculus, Novi Sad J. Math., 23 (1993), 145–156. https://doi.org/10.1007/BF00000447 doi: 10.1007/BF00000447
    [21] E. Pap, Null-additive set functions, Kluwer Academic Publishers, Dordrecht, 1995.
    [22] E. Pap, Pseudo-additive measures and their applications, Elsevier, North-Holland, 2 (2002).
    [23] E. Pap, M. Štrboja, I. Rudas, Pseudo-${L}^p$ space and convergence, Fuzzy Set. Syst., 238 (2014), 113–128. https://doi.org/10.1016/j.fss.2013.06.010 doi: 10.1016/j.fss.2013.06.010
    [24] H. Román-Flores, Y. Chalco-Cano, W. A. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math., 37 (2008), 1306–1318. https://doi.org/10.1007/s40314-016-0396-7 doi: 10.1007/s40314-016-0396-7
    [25] I. Štajner-Papuga, T. Grbić, M. Štrboja, A note on absolute continuity for the interval-valued measures based on pseudo-integral of interval-valued function, Proceedings of IEEE 7th International Symposium on Intelligent Systems and Informatics, 2009,279–284. https: //doi.org/10.1109/SISY.2009.5291149
    [26] M. Štrboja, T. Grbić, I. Štajner Papuga, G. Grujić, S. Medić, Jensen and Chebyshev inequalities for pseudo-integrals of set-valued functions, Fuzzy Set. Syst., 222 (2013), 18–32. https://doi.org/10.1016/j.fss.2012.07.011 doi: 10.1016/j.fss.2012.07.011
    [27] Z. Wang, G. J. Klir, Fuzzy measure theory, Plenum Press, New York, 1992.
    [28] K. Weichselberger, The theory of interval-probability as a unifying concept for uncertainty, Int. J. Approx. Reason., 24 (2000), 145–156. https://doi.org/10.1007/978-3-642-57065-0_18 doi: 10.1007/978-3-642-57065-0_18
    [29] T. Xie, Z. Gong, Inequalities of Lyapunov and Stolarsky type for Choquet-like integrals with respect to nonmonotonic fuzzy measures, J. Funct. Space., 2019 (2019), 4631530. https://doi.org/10.1155/2019/4631530 doi: 10.1155/2019/4631530
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2056) PDF downloads(68) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog