This paper investigates a fractional-order mathematical model of predator-prey interaction in the ecology considering the fear of the prey, which is generated in addition by competition of two prey species, to the predator that is in cooperation with its species to hunt the preys. At first, we show that the system has non-negative solutions. The existence and uniqueness of the established fractional-order differential equation system were proven using the Lipschitz Criteria. In applying the theory of Routh-Hurwitz Criteria, we determine the stability of the equilibria based on specific conditions. The discretization of the fractional-order system provides us information to show that the system undergoes Neimark-Sacker Bifurcation. In the end, a series of numerical simulations are conducted to verify the theoretical part of the study and authenticate the effect of fear and fractional order on our model's behavior.
Citation: Ali Yousef, Ashraf Adnan Thirthar, Abdesslem Larmani Alaoui, Prabir Panja, Thabet Abdeljawad. The hunting cooperation of a predator under two prey's competition and fear-effect in the prey-predator fractional-order model[J]. AIMS Mathematics, 2022, 7(4): 5463-5479. doi: 10.3934/math.2022303
This paper investigates a fractional-order mathematical model of predator-prey interaction in the ecology considering the fear of the prey, which is generated in addition by competition of two prey species, to the predator that is in cooperation with its species to hunt the preys. At first, we show that the system has non-negative solutions. The existence and uniqueness of the established fractional-order differential equation system were proven using the Lipschitz Criteria. In applying the theory of Routh-Hurwitz Criteria, we determine the stability of the equilibria based on specific conditions. The discretization of the fractional-order system provides us information to show that the system undergoes Neimark-Sacker Bifurcation. In the end, a series of numerical simulations are conducted to verify the theoretical part of the study and authenticate the effect of fear and fractional order on our model's behavior.
[1] | M. T. Alves, F. M. Hilker, Hunting cooperation and Allee effects in predators, J. Theor. Biol., 419 (2017), 13–22. https://doi.org/10.1016/j.jtbi.2017.02.002 doi: 10.1016/j.jtbi.2017.02.002 |
[2] | A. Atangana, J. F. Gomez-Aguilar, Decolonisation of fractional calculus rules: Breaking commutativity and associativity to capture more natural phenomena, Eur. Phys. J. Plus., 133 (2018), 166. https://doi.org/10.1140/epjp/i2018-12021-3 doi: 10.1140/epjp/i2018-12021-3 |
[3] | C. M. Baker, F. Diele, D. Lacitignola, C. Marangi, A. Martiradonna, Optimal control of invasive species through a dynamical systems approach, Nonlinear Anal.-Real, 49 (2019), 45–70. https://doi.org/10.1016/j.nonrwa.2019.02.007 doi: 10.1016/j.nonrwa.2019.02.007 |
[4] | D. Barman, J. Roy, H. Alrabaiah, P. Panja, S. P. Mondal, S. Alam, Impact of predator incited fear and prey refuge in a fractional order prey predator model, Chaos Soliton. Fract., 142 (2021), 110420. https://doi.org/10.1016/j.chaos.2020.110420 doi: 10.1016/j.chaos.2020.110420 |
[5] | F. Bozkurt, Stability analysis of a fractional order differential equation system of a GBM-IS interaction depending on the density, Appl. Math. Inf. Sci., 8 (2014), 1021–1028. http://dx.doi.org/10.12785/amis/080310 doi: 10.12785/amis/080310 |
[6] | S. K. Choi, B. Kang, N. Koo, Stability for Caputo fractional differential systems, Abstr. Appl. Anal., 2014 (2014), 631419. https://doi.org/10.1155/2014/631419 doi: 10.1155/2014/631419 |
[7] | K. Diethelm, The analysis of fractional differenial equations, Berlin, Heidelberg: Springer, 2010. https://doi.org/10.1007/978-3-642-14574-2 |
[8] | S. Djilali, B. Ghanbari, The influence of an infectious disease on a prey-predator model equipped with a fractional-order derivative, Adv. Differ. Equ., 2021 (2021), 20. https://doi.org/10.1186/s13662-020-03177-9 doi: 10.1186/s13662-020-03177-9 |
[9] | L. Edelstein-Keshet, Mathematical models in biology, Philadelphia, Pa, USA: Society for Industrial and Applied Mathematics, 2005. https://doi.org/10.1137/1.9780898719147 |
[10] | B. Ghanbari, S. Djilali, Mathematical and numerical analysis of a three-species predator-prey model with herd behavior and time fractional-order derivative, Math Method. Appl. Sci., 43 (2020), 1736–1752. https://doi.org/10.1002/mma.5999 doi: 10.1002/mma.5999 |
[11] | B. Ghanbari, S. Djilali, Mathematical analysis of a fractional-order predator-prey model with prey social behavior and infection developed in predator population, Chaos Soliton. Fract., 138 (2020), 109960. https://doi.org/10.1016/j.chaos.2020.109960 doi: 10.1016/j.chaos.2020.109960 |
[12] | M. E. Gilpin, M. L. Rosenzweig, Enriched predator-prey systems: Theoretical stability, Science, 177 (1972), 902–904. http://doi.org/10.1126/science.177.4052.902 doi: 10.1126/science.177.4052.902 |
[13] | L. L. Hong, L. Zhang, C. Hu, Y. L. Jiang, Z. D. Teng, Dynamical analysis of a fractional order predator-prey model incorporating a prey refuge, J. Appl. Math. Comput., 54 (2017), 435–449. https://doi.org/10.1007/s12190-016-1017-8 doi: 10.1007/s12190-016-1017-8 |
[14] | S. B. Hsu, J. P. Shi, Relaxation oscillation profile of limit cycle in predator-prey system, Discrete Cont. Dyn. Syst. B, 11 (2009), 893–911. https://doi.org/10.3934/dcdsb.2009.11.893 doi: 10.3934/dcdsb.2009.11.893 |
[15] | S. B. Hsu, T. W. Hwang, Y. Kuang, Global dynamics of a predator-prey model with Hassell-Varley type functional response, Discrete Cont. Dyn. Syst. B, 10 (2008), 857–871. https://doi.org/10.3934/dcdsb.2008.10.857 doi: 10.3934/dcdsb.2008.10.857 |
[16] | M. Kot, Elements of mathematical ecology, Cambridge: Cambridge University Press, 2001. http://doi.org/10.1017/CBO9780511608520 |
[17] | S. Kumar, R. Kumar, R. P. Agarwal, B. Samet, A study of fractional Lotka-Volterra population model using Haar wavelet and Adams-Bashforth-Moulton methods, Math. Method. Appl. Sci., 43 (2020), 5564–5578. https://doi.org/10.1002/mma.6297 doi: 10.1002/mma.6297 |
[18] | S. Kumar, A. Ahmadian, R. Kumar, D. Kumar, J. Singh, D. Baleanu, et al., An efficient numerical method for fractional SIR epidemic model of infectious disease by using Bernstein wavelets, Mathematics, 8 (2020), 558. https://doi.org/10.3390/math8040558 doi: 10.3390/math8040558 |
[19] | S. Kumar, R. Kumar, C. Cattani, B. Samet, Chaotic behavior of fractional predator-prey dynamical system, Chaos Soliton. Fract., 135 (2020), 109811. https://doi.org/10.1016/j.chaos.2020.109811 doi: 10.1016/j.chaos.2020.109811 |
[20] | Y. Kuznetsov, S. Rinaldi, Remarks on food chain dynamics, Math. Biosci., 134 (1996), 1–33. http://doi.org/10.1016/0025-5564(95)00104-2 doi: 10.1016/0025-5564(95)00104-2 |
[21] | A. J. Lotka, Elements of physical biology, Nature, 461 (1925), 116. http://dx.doi.org/10.1038/116461b0 |
[22] | S. J. Majeed, R. K. Naji, A. A. Thirthar, The dynamics of an Omnivore-predator-prey model with harvesting and two different nonlinear functional responses, AIP Conf. Proc., 2096 (2019), 020008. https://doi.org/10.1063/1.5097805 doi: 10.1063/1.5097805 |
[23] | S. Mondal, G. P. Samanta, Dynamics of an additional food provided predator-prey system with prey refuge dependent on both species and constant harvest in predator, Physica A, 534 (2019), 122301. https://doi.org/10.1016/j.physa.2019.122301 doi: 10.1016/j.physa.2019.122301 |
[24] | S. Mondal, A. Maiti, G. P. Samanta, Effects of fear and additional food in a delayed predator-prey model, Biophys. Rev. Lett., 13 (2018), 157–177. https://doi.org/10.1142/S1793048018500091 doi: 10.1142/S1793048018500091 |
[25] | D. Mukherjee, Study of fear mechanism in predator-prey system in the presence of competitor for the prey, Ecol. Genet. Genomics, 15 (2020), 100052. https://doi.org/10.1016/j.egg.2020.100052 doi: 10.1016/j.egg.2020.100052 |
[26] | J. D. Murray, Mathematical biology, Springer, New York, 1993. https://doi.org/10.1007/978-3-662-08542-4 |
[27] | Z. Odibat, S. Momani, An algorithm for the numerical solution of differential equations of fractional order, J. Appl. Math. Inform., 26 (2008), 15–27. |
[28] | K. M. Owolabi, E. Pindza, A. Atangana, Analysis and pattern formation scenarios in the superdiffusive system of predation described with Caputo operator, Chaos Soliton. Fract., 152 (2021), 111468. https://doi.org/10.1016/j.chaos.2021.111468 doi: 10.1016/j.chaos.2021.111468 |
[29] | K. M. Owolabi, Analysis and simulation of herd behaviour dynamics based on derivative with non local and non-singular kernel, Results Phys., 22 (2021), 103941. https://doi.org/10.1016/j.rinp.2021.103941 doi: 10.1016/j.rinp.2021.103941 |
[30] | I. Ozturk, F. Ozkose, Stability analysis of fractional order mathematical model of tumor-immune system interaction, Chaos Soliton. Fract., 133 (2020), 109614. https://doi.org/10.1016/j.chaos.2020.109614 doi: 10.1016/j.chaos.2020.109614 |
[31] | S. Pal, S. Majhi, S. Mandal, N. Pal, Role of fear in a predator-prey model with Beddington-DeAngelis functional response, Zeitschrift für Naturforschung A, 74 (2019), 581–585. https://doi.org/10.1515/zna-2018-0449 doi: 10.1515/zna-2018-0449 |
[32] | P. Panja, S. Jana, S. K. Mondal, Dynamics of a stage structure prey-predator model with ratio-dependent functional response and anti-predator behavior of adult prey, Numer. Algebra Control. Optim., 11 (2021), 391–405. https://doi.org/10.3934/naco.2020033 doi: 10.3934/naco.2020033 |
[33] | S. Saha, G. P. Samanta, Analysis of a predator-prey model with herd behavior and disease in prey incorporating prey refuge, Int. J. Biomath., 12 (2019), 1950007. https://doi.org/10.1142/S1793524519500074 doi: 10.1142/S1793524519500074 |
[34] | P. Veeresha, D. G. Prakasha, S. Kumar, A fractional model for propagation of classical optical solitons by using nonsingular derivative, Math. Method. Appl. Sci., 2020. https://doi.org/10.1002/mma.6335 |
[35] | V. Volterra, Fluctuations in the abundance of species considered mathematically, Nature, 118 (1926), 558–560. https://doi.org/10.1038/118558a0 doi: 10.1038/118558a0 |
[36] | X. H. Wang, Z. Wang, J. W. Xia, Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders, J. Franklin I., 356 (2019), 8278–8295. https://doi.org/10.1016/j.jfranklin.2019.07.028 doi: 10.1016/j.jfranklin.2019.07.028 |
[37] | Z. L. Wei, Q. D. Li, J. L. Che, Initial value problems for fractional differential equations involving Riemann-Liouville sequential derivative, J. Math. Anal. Appl., 367 (2010), 260–272. https://doi.org/10.1016/j.jmaa.2010.01.023 doi: 10.1016/j.jmaa.2010.01.023 |
[38] | G. L. Wen, Criterion to identify Hopf bifurcations in maps of arbitrary dimension, Phys. Rev. E, 72 (2005), 026201. https://doi.org/10.1103/PhysRevE.72.026201 doi: 10.1103/PhysRevE.72.026201 |
[39] | Y. K. Xie, Z. Wang, B. Meng, X. Huang, Dynamical analysis for a fractional-order prey-predator model with Holling III type functional response, Appl. Math. Lett., 16 (2020), 106342. https://doi.org/10.1016/j.aml.2020.106342 doi: 10.1016/j.aml.2020.106342 |
[40] | Y. Xie, Z. Wang, H. Shen, Y. Li, The dynamics of a delayed generalized fractional-order biological networks with predation behavior and material cycle, Nonlinear Anal. Model. Control, 25 (2020), 745–765. https://doi.org/10.15388/namc.2020.25.18391 doi: 10.15388/namc.2020.25.18391 |
[41] | A. Yousef, F. Bozkurt, Bifurcation and stability analysis of a system of fractional-order differential equations for a Plant-Herbivore model with Allee effect, Mathematics, 7 (2019), 454. https://doi.org/10.3390/math7050454 doi: 10.3390/math7050454 |
[42] | H. S. Zhang, Y. L. Cai, S. M. Fu, W. M. Wang, Impact of the fear effect in a prey-predator model incorporating a prey refuge, Appl. Math. Comput., 356 (2019), 328–337. https://doi.org/10.1016/j.amc.2019.03.034 doi: 10.1016/j.amc.2019.03.034 |