Research article

Regularity of extended conjugate graphs of finite groups

  • Received: 27 September 2021 Revised: 31 December 2021 Accepted: 04 January 2022 Published: 07 January 2022
  • MSC : Primary 20E45; Secondary 05C25, 20D99

  • The extended conjugate graph associated to a finite group $ G $ is defined as an undirected graph with vertex set $ G $ such that two distinct vertices joined by an edge if they are conjugate. In this article, we show that several properties of finite groups can be expressed in terms of properties of their extended conjugate graphs. In particular, we show that there is a strong connection between a graph-theoretic property, namely regularity, and an algebraic property, namely nilpotency. We then give some sufficient conditions and necessary conditions for the non-central part of an extended conjugate graph to be regular. Finally, we study extended conjugate graphs associated to groups of order $ pq $, $ p^3 $, and $ p^4 $, where $ p $ and $ q $ are distinct primes.

    Citation: Piyapat Dangpat, Teerapong Suksumran. Regularity of extended conjugate graphs of finite groups[J]. AIMS Mathematics, 2022, 7(4): 5480-5498. doi: 10.3934/math.2022304

    Related Papers:

  • The extended conjugate graph associated to a finite group $ G $ is defined as an undirected graph with vertex set $ G $ such that two distinct vertices joined by an edge if they are conjugate. In this article, we show that several properties of finite groups can be expressed in terms of properties of their extended conjugate graphs. In particular, we show that there is a strong connection between a graph-theoretic property, namely regularity, and an algebraic property, namely nilpotency. We then give some sufficient conditions and necessary conditions for the non-central part of an extended conjugate graph to be regular. Finally, we study extended conjugate graphs associated to groups of order $ pq $, $ p^3 $, and $ p^4 $, where $ p $ and $ q $ are distinct primes.



    加载中


    [1] N. Ahmadkhah, M. Zarrin, On the set of same-size conjugate classes, Comm. Algebra, 47 (2019), 3932–3938. https://doi.org/10.1080/00927872.2019.1572171 doi: 10.1080/00927872.2019.1572171
    [2] M. Bianchi, J. M. A. Brough, R. D. Camina, E. Pacifici, On vanishing class sizes in finite groups, J. Algebra, 489 (2017), 446–459. https://doi.org/10.1016/j.jalgebra.2017.07.007 doi: 10.1016/j.jalgebra.2017.07.007
    [3] M. Bianchi, R. D. Camina, M. Herzog, E. Pacifici, Conjugacy classes of finite groups and graph regularity, Forum Math., 27 (2015), 3167–3172. https://doi.org/10.1515/forum-2013-0098 doi: 10.1515/forum-2013-0098
    [4] A. R. Camina, Arithmetical conditions on the conjugacy class numbers of a finite group, J. Lond. Math. Soc., 5 (1972), 127–132. https://doi.org/10.1112/jlms/s2-5.1.127 doi: 10.1112/jlms/s2-5.1.127
    [5] A. R. Camina, R. D. Camina, The influence of conjugacy class sizes on the structure of finite groups: A survey, Asian-Eur. J. Math., 4 (2011), 559–588. https://doi.org/10.1142/S1793557111000459 doi: 10.1142/S1793557111000459
    [6] R. D. Camina, Applying combinatorial results to products of conjugacy classes, J. Group Theory, 23 (2020), 917–923. https://doi.org/10.1515/jgth-2020-0036 doi: 10.1515/jgth-2020-0036
    [7] G. Chartrand, L. Lesniak, P. Zhang, Graphs & digraphs, 6 Eds., Boca Raton: CRC Press, 2015.
    [8] J. Cossey, T. Hawkes, A. Mann, A criterion for a group to be nilpotent, Bull. Lond. Math. Soc., 24 (1992), 267–270. https://doi.org/10.1112/blms/24.3.267 doi: 10.1112/blms/24.3.267
    [9] D. S. Dummit, R. M. Foote, Abstract algebra, 3 Eds., Hoboken: John Wiley & Sons, 2004.
    [10] A. Erfanian, B. Tolue, Conjugate graphs of finite groups, Discrete Math. Algorit. Appl., 4 (2012). https: //doi.org/10.1142/S1793830912500358
    [11] P. X. Gallagher, The number of conjugacy classes in a finite group, Math. Z., 118 (1970), 175–179.
    [12] N. Gavioli, A. Mann, V. Monti, A. Previtali, C. M. Scoppola, Groups of prime power order with many conjugacy classes, J. Algebra, 202 (1998), 129–141.
    [13] R. Hirshon, On cancellation in groups, Am. Math. Mon., 76 (1969), 1037–1039. https: //doi.org/10.2307/2317133
    [14] N. Itô, On finite groups with given conjugate types. I, Nagoya Math. J., 6 (1953), 17–28. https://doi.org/10.1111/j.1365-201X.1953.tb10725.x doi: 10.1111/j.1365-201X.1953.tb10725.x
    [15] D. MacHale, How commutative can a non-commutative group be? Math. Gaz., 58 (1974), 199–202. https: //doi.org/10.2307/3615961
    [16] S. Wang, When is the Cayley graph of a semigroup isomorphic to the Cayley graph of a group, Math. Slovaca, 67 (2017), 33–40. https://doi.org/10.1515/ms-2016-0245 doi: 10.1515/ms-2016-0245
    [17] J. Xu, Theory and application of graphs, Dordrecht: Kluwer Academic Publishers, 2003.
    [18] A. Zulkarnain, N. Sarmin, A. Noor, On the conjugate graphs of finite $p$-groups, Malays. J. Fundam. Appl. Sci., 13 (2017), 100–102. https://doi.org/10.11113/mjfas.v13n2.557 doi: 10.11113/mjfas.v13n2.557
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1912) PDF downloads(77) Cited by(1)

Article outline

Figures and Tables

Figures(5)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog