Research article

Event-triggered bipartite consensus of multi-agent systems in signed networks

  • Received: 17 August 2021 Revised: 19 December 2021 Accepted: 27 December 2021 Published: 07 January 2022
  • MSC : 93C57, 93C65

  • This paper focuses on the event-triggered bipartite consensus of multi-agent systems in signed networks, where the dynamics of each agent is assumed to be Lur'e system, and both the cooperative interaction and antagonistic interaction are allowed among neighbor agents. A novel event-triggered communication scheme is presented to save limited network resources, and distributed bipartite control techniques are raised to address the bipartite leaderless consensus and bipartite leader-following consensus respectively. By virtue of the Lyapunov stability theory and algebraic graph theory, bipartite consensus conditions are derived, which can be easily solved by MATLAB. In addition, the upper bounds of the sampling period and triggered parameter can be estimated. Finally, two examples are employed to show the validity and advantage of the proposed transmission scheme.

    Citation: Hongjie Li. Event-triggered bipartite consensus of multi-agent systems in signed networks[J]. AIMS Mathematics, 2022, 7(4): 5499-5526. doi: 10.3934/math.2022305

    Related Papers:

  • This paper focuses on the event-triggered bipartite consensus of multi-agent systems in signed networks, where the dynamics of each agent is assumed to be Lur'e system, and both the cooperative interaction and antagonistic interaction are allowed among neighbor agents. A novel event-triggered communication scheme is presented to save limited network resources, and distributed bipartite control techniques are raised to address the bipartite leaderless consensus and bipartite leader-following consensus respectively. By virtue of the Lyapunov stability theory and algebraic graph theory, bipartite consensus conditions are derived, which can be easily solved by MATLAB. In addition, the upper bounds of the sampling period and triggered parameter can be estimated. Finally, two examples are employed to show the validity and advantage of the proposed transmission scheme.



    加载中


    [1] A. Sharma, D. Srinivasan, A. Trivedi, A decentralized multiagent system approach for service restoration using DG islanding, IEEE T. Smart Grid, 6 (2015), 2784–2793. http://dx.doi.org/10.1109/TSG.2015.2418334 doi: 10.1109/TSG.2015.2418334
    [2] B. Jiang, M. Deghat, B. D. O. Anderson, Simultaneous velocity and position estimation via distance-only measurements with application to multi-agent system control, IEEE T. Automat. Contr., 62 (2016), 869–875. http://dx.doi.org/10.1109/TAC.2016.2558040 doi: 10.1109/TAC.2016.2558040
    [3] H. Li, J. Zhang, L. Jing, W. Ying, Neural-network-based adaptive quasi-consensus of nonlinear multi-agent systems with communication constrains and switching topologies, Nonlinear Anal. Hybri., 35 (2020), 100833. https://doi.org/10.1016/j.nahs.2019.100833 doi: 10.1016/j.nahs.2019.100833
    [4] H. Shen, Y. Wang, J. Xia, J. H. Park, Z. Wang, Fault-tolerant leader-following consensus for multi-agent systems subject to semi-Markov switching topologies: An event-triggered control scheme, Nonlinear Anal. Hybri., 34 (2019), 92–107. https://doi.org/10.1016/j.nahs.2019.05.003 doi: 10.1016/j.nahs.2019.05.003
    [5] R. Olfati-Saber, R. M. Murray, Consensus problems in networks of agents with switching topology and time-delays, IEEE T. Automat. Contr., 49 (2004), 1520–1533. https://doi.org/10.1109/TAC.2004.834113 doi: 10.1109/TAC.2004.834113
    [6] W. Ren, R. W. Beard, Consensus seeking in multiagent systems under dynamically changing interaction topologies, IEEE T. Automat. Contr., 50 (2005), 655–661. https://doi.org/10.1109/TAC.2005.846556 doi: 10.1109/TAC.2005.846556
    [7] W. Yu, G. Chen, M. Cao, Some necessary and suncient conditions for second-order consensus in multi-agent dynamical systems, Automatica, 46 (2010), 1089–1095. https://doi.org/10.1016/j.automatica.2010.03.006 doi: 10.1016/j.automatica.2010.03.006
    [8] Z. Liu, X. Hu, M. Ge, Y. Wang, Asynchronous impulsive control for consensus of second-order multi-agent networks, Commun. Nonlinear Sci. Numer. Simul., 79 (2019), 104892. https://doi.org/10.1016/j.cnsns.2019.104892 doi: 10.1016/j.cnsns.2019.104892
    [9] H. Yu, X. Xia, Adaptive leaderless consensus of agents in jointly connected networks, Neurocomputing, 241 (2017), 64–70. https://doi.org/10.1016/j.neucom.2017.02.031 doi: 10.1016/j.neucom.2017.02.031
    [10] H. Li, Y. Zhu, L. Jing, W. Ying, Consensus of second-order delayed nonlinear multi-agent systems via node-based distributed adaptive completely intermittent protocols, Appl. Math. Comput., 326 (2018), 1–15. https://doi.org/10.1016/j.amc.2018.01.005 doi: 10.1016/j.amc.2018.01.005
    [11] Y. Hong, G. Chen, L. Bushnell, Distributed observers design for leader-following control of multi-agent networks, Automatica, 44 (2008), 846–850. https://doi.org/10.1016/j.Automatica.2007.07.004 doi: 10.1016/j.Automatica.2007.07.004
    [12] Y. Wang, H. Li, X. Qiu, X. Xie, Consensus tracking for nonlinear multi-agent systems with unknown disturbance by using model free adaptive iterative learning control, Appl. Math. Comput., 365 (2020), 124701. https://doi.org/10.1016/j.amc.2019.124701 doi: 10.1016/j.amc.2019.124701
    [13] L. Shi, Y. Xiao, J. Shao, W. Zheng, Containment control of asynchronous discrete-time general linear multiagent systems with arbitrary network topology, IEEE T. Cybernetics, 50 (2020), 2546–2556. https://doi.org/10.1109/TCYB.2019.2915941 doi: 10.1109/TCYB.2019.2915941
    [14] H. Li, Leader-following consensus of nonlinear multi-agent systems with mixed delays and uncertain parameters via adaptive pinning intermittent control, Nonlinear Anal. Hybri., 22 (2016), 202–214. https://doi.org/10.1016/j.nahs.2016.04.004 doi: 10.1016/j.nahs.2016.04.004
    [15] M. Lu, J. Wu, X. Zhan, T. Han, H. Yan, Consensus of second-order heterogeneous multi-agent systems with and without input saturation, ISA T., 2021. https://doi.org/10.1016/j.isatra.2021.08.001
    [16] D. Easley, J. Kleinberg, Networks, crowds, and markets: Reasoning about a highly connected world, Significance, 9 (2012), 43–44.
    [17] S. Wasserman, K. Faust, Social network analysis: Methods and applications, Cambridge university press, 1994.
    [18] J. Shao, L. Shi, Y. Cheng, T. Li, Asynchronous tracking control of leader-follower multiagent systems with input uncertainties over switching signed digraphs, IEEE T. Cybernetics, 2021. https://doi.org/10.1109/TCYB.2020.3044627
    [19] J. Shao, W. Zheng, L. Shi, Y. Cheng, Bipartite tracking consensus of generic linear agents with discrete-time dynamics over cooperation-competition networks, IEEE T. Cybernetics, 51 (2021), 5225–5235. https://doi.org/10.1109/TCYB.2019.2957415 doi: 10.1109/TCYB.2019.2957415
    [20] L. Shi, Y. Cheng, J. Shao, X. Zhang, Collective behavior of multileader multiagent systems with random interactions over signed digraphs, IEEE T. Control. Netw., 8 (2021), 1394–1405. https://doi.org/10.1109/TCNS.2021.3065650 doi: 10.1109/TCNS.2021.3065650
    [21] X. Zhan, L. Hao, T. Han, H. Yan, Adaptive bipartite output consensus for heterogeneous multi-agent systems with quantized information: A fixed-time approach, J. Franklin I., 358 (2021), 7221–7236. https://doi.org/10.1016/j.jfranklin.2021.07.009 doi: 10.1016/j.jfranklin.2021.07.009
    [22] J. Wu, Q. Deng, T. Han, H. Yan, Bipartite output regulation for singular heterogeneous multi-agent systems on signed graph, Asian J. Control, 2021. https://doi.org/10.1002/asjc.2654
    [23] C. Altafini, Consensus problems on networks with antagonistic interactions, IEEE T. Automat. Contr., 58 (2013), 935–946. https://doi.org/10.1109/TAC.2012.2224251 doi: 10.1109/TAC.2012.2224251
    [24] D. Meng, M. Du, Y. Jia, Interval bipartite consensus of networked agents associated with signed digraphs, IEEE T. Automat. Contr., 61 (2016), 3755–3770. https://doi.org/10.1109/TAC.2016.2528539 doi: 10.1109/TAC.2016.2528539
    [25] F. Liu, Q. Song, G. Wen, J. Lu, J. Cao, Bipartite synchronization of Lur'e network under signed digraph, Int. J. Robust Nonlin., 28 (2018), 6087–6105. https://doi.org/10.1002/rnc.4358 doi: 10.1002/rnc.4358
    [26] F. Liu, Q. Song, G. Wen, J. Cao, X. Yang, Bipartite synchronization in coupled delayed neural networks under pinning control, Neural Networks, 108 (2018), 146–154. https://doi.org/10.1016/j.neunet.2018.08.009 doi: 10.1016/j.neunet.2018.08.009
    [27] J. Ren, Q. Song, G. Lu, Event-triggered bipartite leader-following consensus of second-order nonlinear multi-agent systems under signed digraph, J. Franklin I., 356 (2019), 6591–6609. https://doi.org/10.1016/j.jfranklin.2019.06.034 doi: 10.1016/j.jfranklin.2019.06.034
    [28] J. Ren, Q. Song, Y. Gao, G. Lu, Leader-following bipartite consensus of second-order time-delay nonlinear multi-agent systems with event-triggered pinning control under signed digraph, Neurocomputing, 385 (2020), 186–196. https://doi.org/10.1016/j.neucom.2019.12.043 doi: 10.1016/j.neucom.2019.12.043
    [29] H. Zhang, J. Chen, Bipartite consensus of multi-agent systems over signed graphs: State feedback and output feedback control approaches, Int. J. Robust Nonlin., 27 (2017), 3–14. https://doi.org/10.1002/rnc.3552 doi: 10.1002/rnc.3552
    [30] G. Wen, H. Wang, X. Yu, W. Yu, Bipartite tracking consensus of linear multi-agent systems with a dynamic leader, IEEE T. Circuits-II, 65 (2018), 1204–1208. https://doi.org/10.1109/TCSII.2017.2777458 doi: 10.1109/TCSII.2017.2777458
    [31] H. Wang, W. Yu, G. Wen, G. Chen, Finite-time bipartite consensus for multi-agent systems on directed signed networks, IEEE T. Circuits-I, 65 (2018), 4336–4348. https://doi.org/10.1109/TCSI.2018.2838087 doi: 10.1109/TCSI.2018.2838087
    [32] J. P. Hu, Y. Wu, L. Liu, G. Feng, Adaptive bipartite consensus control of high-order multiagent systems on coopetition networks, Int. J. Robust Nonlin., 28 (2018), 2868–2886. https://doi.org/10.1002/rnc.4054 doi: 10.1002/rnc.4054
    [33] H. Hu, W. Yu, G. Wen, Q. Xuan, J. Cao, Reverse group consensus of multi-agent systems in the cooperation-competition network, IEEE T. Circuits-I, 63 (2016), 2036–2047. https://doi.org/10.1109/TCSI.2016.2591264 doi: 10.1109/TCSI.2016.2591264
    [34] X. Ai, Adaptive robust bipartite consensus of high-order uncertain multi-agent systems over cooperation-competition networks, J. Franklin I., 357 (2020), 1813–1831. https://doi.org/10.1016/j.jfranklin.2019.12.038 doi: 10.1016/j.jfranklin.2019.12.038
    [35] D. V. Dimarogonas, E. Frazzoli, K. H. Johansson, Distributed event-triggered control for multi-agent systems, IEEE T. Automat. Contr., 57 (2011), 1291–1297. https://doi.org/10.1109/TAC.2011.2174666 doi: 10.1109/TAC.2011.2174666
    [36] P. Tabuada, Event-triggered real-time scheduling of stabilizing control tasks, IEEE T. Automat. Contr., 52 (2007), 1680–1685. https://doi.org/10.1109/TAC.2007.904277 doi: 10.1109/TAC.2007.904277
    [37] X. Wang, M. D. Lemmon, Self-triggered feedback control systems with finite-gain $L_{2}$ stability, IEEE T. Automat. Contr., 54 (2009), 452–467. https://doi.org/10.1109/TAC.2009.2012973 doi: 10.1109/TAC.2009.2012973
    [38] M. Mazo, P. Tabuada, Decentralized event-triggered control over wireless sensor/actuator networks, IEEE T. Automat. Contr, 56 (2011), 2456–2461. https://doi.org/10.1109/TAC.2011.2164036 doi: 10.1109/TAC.2011.2164036
    [39] D. Yue, E. Tian, Q. Han, A delay system method for designing event-triggered controllers of networked control systems, IEEE T. Automat. Contr., 58 (2012), 475–481. https://doi.org/10.1109/TAC.2012.2206694 doi: 10.1109/TAC.2012.2206694
    [40] C. Peng, Q. Han, A novel event-triggered transmission scheme and $L_{2}$ control co-design for sampled-data control systems, IEEE T. Automat. Contr., 58 (2013), 2620–2626. https://doi.org/10.1109/TAC.2013.2256015 doi: 10.1109/TAC.2013.2256015
    [41] X. Yin, D. Yue, S. Hu, Adaptive periodic event-triggered consensus for multi-agent systems subject to input saturation, Int. J. Control, 89 (2016), 653–667. https://doi.org/10.1080/00207179.2015.1088967 doi: 10.1080/00207179.2015.1088967
    [42] A. Hu, J. Cao, M. Hu, L. Guo, Event-triggered group consensus for multi-agent systems subject to input saturation, J. Franklin I., 355 (2018), 7384–7400. doi: https://doi.org/10.1016/j.jfranklin.2018.07.024 doi: 10.1016/j.jfranklin.2018.07.024
    [43] W. Zhu, Z. Jiang, G. Feng, Event-based consensus of multi-agent systems with general linear models, Automatica, 50 (2014), 552–558. https://doi.org/10.1016/j.automatica.2013.11.023 doi: 10.1016/j.automatica.2013.11.023
    [44] W. Xu, D. W. C. Ho, L. Li, J. Cao, Event-triggered schemes on leader-following consensus of general linear multiagent systems under different topologies, IEEE T. Cybernetics, 47 (2015), 212–223. https://doi.org/10.1109/TCYB.2015.2510746 doi: 10.1109/TCYB.2015.2510746
    [45] Z. Cheng, D. Yue, S. Hu, H. Ge, L. Chen, Distributed event-triggered consensus of multi-agent systems under periodic DoS jamming attacks, Neurocomputing, 400 (2020), 458–466. https://doi.org/10.1016/j.neucom.2019.03.089 doi: 10.1016/j.neucom.2019.03.089
    [46] l. Zha, J. Liu, J. Cao, Resilient event-triggered consensus control for nonlinear muti-agent systems with DoS attacks, J. Franklin I., 356 (2019), 7071–7090. https://doi.org/10.1016/j.jfranklin.2019.06.014 doi: 10.1016/j.jfranklin.2019.06.014
    [47] L. Xing, C. Wen, Z. Liu, H. Su, J. Cai, Event-triggered adaptive control for a class of uncertain nonlinear systems, IEEE T. Automat. Contr., 62 (2016), 2071–2076. https://doi.org/10.1109/TAC.2016.2594204 doi: 10.1109/TAC.2016.2594204
    [48] C. Peng, J. Zhang, Q. Han, Consensus of multiagent systems with nonlinear dynamics using an integrated sampled-data-based event-triggered communication scheme, IEEE Trans. Syst. Man Cybern. Syst., 49 (2018), 589–599. https://doi.org/10.1109/TSMC.2018.2814572 doi: 10.1109/TSMC.2018.2814572
    [49] H. Zhang, P. Hu, Z. Liu, L. Ding, Consensus analysis for multi-agent systems via periodic event-triggered algorithms with quantized information, J. Franklin I., 354 (2017), 6364–6380. https://doi.org/10.1016/j.jfranklin.2017.08.003 doi: 10.1016/j.jfranklin.2017.08.003
    [50] H. Zhang, D. Yue, X. Yin, S. Hu, C. Dou, Finite-time distributed event-triggered consensus control for multi-agent systems, Inform. Sciences, 339 (2016), 132–142. https://doi.org/10.1016/j.ins.2015.12.031 doi: 10.1016/j.ins.2015.12.031
    [51] H. Zhang, G. Feng, H. Yan, Q. Chen, Observer-based output feedback event-triggered control for consensus of multi-agent systems, IEEE T. Ind. Electron., 61 (2013), 4885–4894. https://doi.org/10.1109/TIE.2013.2290757 doi: 10.1109/TIE.2013.2290757
    [52] Y. Wu, Z. Wang, H. Zhang, C. Huang, Output-based event-triggered consensus of general linear multi-agent systems with communication delay under directed graphs, J. Franklin I., 357 (2020), 3702–3720. https://doi.org/10.1016/j.jfranklin.2020.02.036 doi: 10.1016/j.jfranklin.2020.02.036
    [53] A. Hu, Y. Wang, J. Cao, A. Alsaedi, Event-triggered bipartite consensus of multi-agent systems with switching partial couplings and topologies, Inform. Sciences, 521 (2020), 1–13. https://doi.org/10.1016/j.ins.2020.02.038 doi: 10.1016/j.ins.2020.02.038
    [54] W. He, S. Lv, X. Wang, F. Qian, Leaderless consensus of multi-agent systems via an event-triggered strategy under stochastic sampling, J. Franklin I., 356 (2019), 6502–6524. https://doi.org/10.1016/j.jfranklin.2019.05.033 doi: 10.1016/j.jfranklin.2019.05.033
    [55] Y. Cui, L. Xu, Bounded average consensus for multi-agent systems with switching topologies by event-triggered persistent dwell time control, J. Franklin I., 356 (2019), 9095–9121. https://doi.org/10.1016/j.jfranklin.2019.07.016 doi: 10.1016/j.jfranklin.2019.07.016
    [56] N. Mu, X. Liao, T. Huang, Consensus of second-order multi-agent systems with random sampling via event-triggered control, J. Franklin I., 353 (2016), 1423–1435. https://doi.org/10.1016/j.jfranklin.2016.01.014 doi: 10.1016/j.jfranklin.2016.01.014
    [57] Y. Yang, D. Yue, C. Xu, Dynamic event-triggered leader-following consensus control of a class of linear multi-agent systems, J. Franklin I., 355 (2018), 7706–7734. https://doi.org/10.1016/j.jfranklin.2018.08.007 doi: 10.1016/j.jfranklin.2018.08.007
    [58] W. He, B. Xu, Q. Han, F. Qian, Adaptive consensus control of linear multiagent systems with dynamic event-triggered strategies, IEEE T. Cybernetics, 50 (2020), 2996–3008. https://doi.org/10.1109/TCYB.2019.2920093 doi: 10.1109/TCYB.2019.2920093
    [59] X. Chen, H. Yu, F. Hao, Prescribed-time event-triggered bipartite consensus of multiagent systems, IEEE T. Cybernetics, 2020. https://doi.org/10.1109/TCYB.2020.3004572
    [60] Y. Cai, H. Zhang, J. Duan, J. Zhang, Distributed bipartite consensus of linear multiagent systems based on event-triggered output feedback control scheme, IEEE Trans. Syst. Man Cybern. Syst., 51 (2021), 6743–6756. https://doi.org/10.1109/TSMC.2020.2964394 doi: 10.1109/TSMC.2020.2964394
    [61] A. Sharifi, M. Pourgholi, Fixed-time bipartite consensus of nonlinear multi-agent systems using event-triggered control design, J. Franklin I., 358 (2021), 9178–9198. https://doi.org/10.1016/j.jfranklin.2021.09.023 doi: 10.1016/j.jfranklin.2021.09.023
    [62] Y. Xu, J. Wang, Y. Zhang, Y. Xu, Event-triggered bipartite consensus for high-order multi-agent systems with input saturation, Neurocomputing, 379 (2020), 284–295. https://doi.org/10.1016/j.neucom.2019.10.095 doi: 10.1016/j.neucom.2019.10.095
    [63] M. Zhao, C. Peng, W. He, Y. Song, Event-triggered communication for leader-following consensus of second-order multiagent systems, IEEE T. Cybernetics, 48 (2018), 1888–1897. https://doi.org/10.1109/TCYB.2017.2716970 doi: 10.1109/TCYB.2017.2716970
    [64] K. Gu, J. Chen, V. L. Kharitonov, Stability of time-delay systems, Springer Science and Business Media, 2003.
    [65] K. Gu, An integral inequality in the stability problem of time-delay systems, Proceedings of the 39th IEEE Conference on Decision and Control, 3 (2000), 2805–2810. https://doi.org/10.1109/CDC.2000.914233 doi: 10.1109/CDC.2000.914233
    [66] E. Fridman, Introduction to time-delay systems: Analysis and control, Springer, 2014.
    [67] S. Boyd, L. E. Chaoui, E. Feron, V. Balakrishnan, Linear matrix inequalities in system and control theory, Society for Industrial and Applied Mathematics, 1994.
    [68] Q. Song, J. Cao, W. Yu, Second-order leader-following consensus of nonlinear multi-agent systems via pinning control, Syst. Control. Lett., 59 (2010), 553–562. https://doi.org/10.1016/j.sysconle.2010.06.016 doi: 10.1016/j.sysconle.2010.06.016
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2172) PDF downloads(139) Cited by(4)

Article outline

Figures and Tables

Figures(8)  /  Tables(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog