In this paper, we show the almost everywhere pointwise convergence of free Benjamin-Ono-Burgers equation in $ H^{s}({\bf{R}}) $ with $ s > 0 $ with the aid of the maximal function estimate.
Citation: Fei Zuo, Junli Shen. Pointwise convergence problem of free Benjamin-Ono-Burgers equation[J]. AIMS Mathematics, 2022, 7(4): 5527-5533. doi: 10.3934/math.2022306
In this paper, we show the almost everywhere pointwise convergence of free Benjamin-Ono-Burgers equation in $ H^{s}({\bf{R}}) $ with $ s > 0 $ with the aid of the maximal function estimate.
[1] | J. Bourgain, Some new estimates on osillatory integrals, In: Essays on Fourier analysis in honor of Elias M. Stein (PMS-42), New Jersey: Princeton University Press, 1995, 83–112. http://dx.doi.org/10.1515/9781400852949.83 |
[2] | J. Bourgain, On the Schrödinger maximal function in higher dimensions, Proc. Steklov Inst. Math., 280 (2013), 46–60. http://dx.doi.org/10.1134/S0081543813010045 doi: 10.1134/S0081543813010045 |
[3] | J. Bourgain, A note on the Schrödinger maximal function, JAMA, 130 (2016), 393–396. http://dx.doi.org/10.1007/s11854-016-0042-8 doi: 10.1007/s11854-016-0042-8 |
[4] | L. Carleson, Some analytical problems related to statistical mechanics, In: Euclidean harmonic analysisi, Berlin: Springer, 1980, 5–45. http://dx.doi.org/10.1007/BFb0087666 |
[5] | M. Chen, B. Guo, L. Han, Uniform local well-posedness and inviscid limit for the Benjamin-Ono-Burgers equation, Sci. China Math., 2021, in press. http://dx.doi.org/10.1007/s11425-020-1807-4 |
[6] | C. Cho, S. Lee, A. Vargas, Problems on pointwise convergence of solutions to the Schrödinger equation, J. Fourier Anal. Appl., 18 (2012), 972–994. http://dx.doi.org/10.1007/s00041-012-9229-2 doi: 10.1007/s00041-012-9229-2 |
[7] | M. Cowling, Pointwise behavior of solutions to Schrödinger equations, In: Harmonic analysis, Berlin: Springer, 1983, 83–90. http://dx.doi.org/10.1007/BFb0069152 |
[8] | B. E. Dahlberg, C. E. Kenig, A note on the almost everywhere behavior of solutions to the Schrödinger equation, In: Harmonic analysis, Berlin: Springer, 1982,205–209. http://dx.doi.org/10.1007/BFb0093289 |
[9] | C. Demeter, S. Guo, Schrödinger maximal function estimates via the pseudoconformal transformation, arXiv: 1608.07640. |
[10] | X. M. Du, A sharp Schrödinger maximal estimate in ${\bf{R}}^{2}$, 2017. Available from: http://hdl.handle.net/2142/98116. |
[11] | X. M. Du, L. Guth, X. C. Li, A sharp Schrödinger maximal estimate in $ {\bf{R}}^2, $ Ann. Math., 186 (2017), 607–640. http://dx.doi.org/10.4007/annals.2017.186.2.5 |
[12] | X. M. Du, R. X. Zhang, Sharp $L^2$ estimates of the Schrödinger maximal function in higher dimensions, Ann. Math., 189 (2019), 837–861. http://dx.doi.org/10.4007/annals.2019.189.3.4 doi: 10.4007/annals.2019.189.3.4 |
[13] | P. M. Edwin, B. Roberts, The Benjamin-Ono-Burgers equation: an application in solar physics, Wave Motion, 8 (1986), 151–158. http://dx.doi.org/10.1016/0165-2125(86)90021-1 doi: 10.1016/0165-2125(86)90021-1 |
[14] | G. Gigante, F. Soria, On the the boundedness in $H^{1/4}$ of the maximal square function associated with the Schrödinger equation, J. Lond. Math. Soc., 77 (2008), 51–68. http://dx.doi.org/10.1112/jlms/jdm087 doi: 10.1112/jlms/jdm087 |
[15] | Z. Guo, L. Peng, B. Wang, Y. Wang, Uniform well-posedness and inviscid limit for the Benjamin-Ono-Burgers equation, Adv. Math., 228 (2011), 647–677. http://dx.doi.org/10.1016/j.aim.2011.03.017 doi: 10.1016/j.aim.2011.03.017 |
[16] | S. Lee, On pointwise convergence of the solutions to Schrödinger equation in $ {\bf{R}}^2$, Int. Math. Res. Notices, 2006 (2006), 32597. http://dx.doi.org/10.1155/IMRN/2006/32597 doi: 10.1155/IMRN/2006/32597 |
[17] | R. Luca, M. Rogers, Coherence on fractals versus pointwise convergence for the Schrödinger equation, Commun. Math. Phys., 351 (2017), 341–359. http://dx.doi.org/10.1007/s00220-016-2722-8 doi: 10.1007/s00220-016-2722-8 |
[18] | L. Molinet, A note on the inviscid limit of the Benjamin-Ono-Burgers equation in the energy space, Proc. Amer. Math. Soc., 141 (2013), 2793–2798. http://dx.doi.org/10.1090/S0002-9939-2013-11693-X doi: 10.1090/S0002-9939-2013-11693-X |
[19] | C. Miao, J. Yang, J. Zheng, An improved maximal inequality for 2D fractional order Schrödinger operators, Stud. Math., 230 (2015), 121–165. http://dx.doi.org/10.4064/sm8190-12-2015 doi: 10.4064/sm8190-12-2015 |
[20] | A. Moyua, A. Vargas, L. Vega, Schrödinger maximal function and restriction properties of the Fourier transform, Int. Math. Res. Notices, 1996 (1996), 793–815. http://dx.doi.org/10.1155/S1073792896000499 doi: 10.1155/S1073792896000499 |
[21] | S. Shao, On localization of the Schrödinger maximal operator, arXiv: 1006.2787v1. |
[22] | P. Sjölin, Regularity of solutions to the Schrödinger equation, Duke Math. J., 55 (1987), 699–715. http://dx.doi.org/10.1215/S0012-7094-87-05535-9 doi: 10.1215/S0012-7094-87-05535-9 |
[23] | T. Tao, A sharp bilinear restriction estimate for parabloids, Geom. Funct. Anal., 13 (2003), 1359–1384. http://dx.doi.org/10.1007/s00039-003-0449-0 doi: 10.1007/s00039-003-0449-0 |
[24] | L. Vega, Schrödinger equations: pointwise convergence to the initial data, Proc. Amer. Math. Soc., 102 (1988), 874–878. http://dx.doi.org/10.1090/S0002-9939-1988-0934859-0 doi: 10.1090/S0002-9939-1988-0934859-0 |
[25] | C. Zhang, Pointwise convergence of solutions to Schrödinger type equations, Nonlinear Anal. Theor., 109 (2014), 180–186. http://dx.doi.org/10.1016/j.na.2014.06.019 doi: 10.1016/j.na.2014.06.019 |