Research article Special Issues

Haar wavelet method for solution of variable order linear fractional integro-differential equations

  • Received: 22 October 2021 Revised: 14 December 2021 Accepted: 20 December 2021 Published: 06 January 2022
  • MSC : 34K05, 34K30

  • In this paper, we developed a computational Haar collocation scheme for the solution of fractional linear integro-differential equations of variable order. Fractional derivatives of variable order is described in the Caputo sense. The given problem is transformed into a system of algebraic equations using the proposed Haar technique. The results are obtained by solving this system with the Gauss elimination algorithm. Some examples are given to demonstrate the convergence of Haar collocation technique. For different collocation points, maximum absolute and mean square root errors are computed. The results demonstrate that the Haar approach is efficient for solving these equations.

    Citation: Rohul Amin, Kamal Shah, Hijaz Ahmad, Abdul Hamid Ganie, Abdel-Haleem Abdel-Aty, Thongchai Botmart. Haar wavelet method for solution of variable order linear fractional integro-differential equations[J]. AIMS Mathematics, 2022, 7(4): 5431-5443. doi: 10.3934/math.2022301

    Related Papers:

  • In this paper, we developed a computational Haar collocation scheme for the solution of fractional linear integro-differential equations of variable order. Fractional derivatives of variable order is described in the Caputo sense. The given problem is transformed into a system of algebraic equations using the proposed Haar technique. The results are obtained by solving this system with the Gauss elimination algorithm. Some examples are given to demonstrate the convergence of Haar collocation technique. For different collocation points, maximum absolute and mean square root errors are computed. The results demonstrate that the Haar approach is efficient for solving these equations.



    加载中


    [1] Y. Xu, V. S. Erturk, A finite difference technique for solving variable-order fractional integro-differential equation, Bull. Iran. Math. Soc., 40 (2014), 699–712.
    [2] Y. Chen, Y. Wei, D. Liu, H. Yu, Numerical solution for a class of nonlinear variable order fractional differential equations with Legendre wavelets, Appl. Math. Lett., 46 (2015), 83–88. https://doi.org/10.1016/j.aml.2015.02.010 doi: 10.1016/j.aml.2015.02.010
    [3] K. Sun, M. Zhu, Numerical algorithm to solve a class of variable order fractional integral-differential equation based on Chebyshev polynomials, Math. Probl. Eng., 2015 (2015). https://doi.org/10.1155/2015/902161 doi: 10.1155/2015/902161
    [4] Y. Chen, L. Liu, B. Li, Y. Sun, Numerical solution for the variable order linear cable equation with Bernstein polynomials, Appl. Math. Comput., 238 (2014), 329–341. https://doi.org/10.1016/j.amc.2014.03.066 doi: 10.1016/j.amc.2014.03.066
    [5] M. Zayernouri, G. E. Karniadakis, Fractional spectral collocation methods for linear and nonlinear variable order FPDEs, J. Comput. Phys., 293 (2015), 312–338. https://doi.org/10.1016/j.jcp.2014.12.001 doi: 10.1016/j.jcp.2014.12.001
    [6] E. H. Doha, M. A. Abdelkawy, A. Z. Amin, A. M. Lopes, On spectral methods for solving variable order fractional integro differential equations, Comp. Appl. Math., 37 (2018), 3937–3950. https://doi.org/10.1007/s40314-017-0551-9 doi: 10.1007/s40314-017-0551-9
    [7] B. P. Moghaddam, J. A. T. Machado, A computational approach for solution of a class of variable order fractional integro differential equation with weakly singular kernels, Fract. Calc. Appl. Anal., 20 (2017), 1023–1042. https://doi.org/10.1515/fca-2017-0053 doi: 10.1515/fca-2017-0053
    [8] D. Tavares, R. Almeida, D. M. Torres, Caputo derivatives of fractional variable order: Numerical approximations, Commun. Nonlinear Sci., 35 (2016), 69–87. https://doi.org/10.1016/j.cnsns.2015.10.027 doi: 10.1016/j.cnsns.2015.10.027
    [9] S. G. Samko, B. Ross, Integration and differentiation to a variable fractional order, Integr. Transf. Spec. F., 4 (1993), 277–300. https://doi.org/10.1080/10652469308819027 doi: 10.1080/10652469308819027
    [10] S. Samko, Fractional integration and differentiation of variable order:an overview, Nonlinear Dyn., 71 (2013), 653–662. https://doi.org/10.1007/s11071-012-0485-0 doi: 10.1007/s11071-012-0485-0
    [11] S. Patnaik, J. P. Hollkamp, F. Semperlotti, Applications of variable-order fractional operators: A review, P. Roy. Soc. A, 476 (2020), 20190498. https://doi.org/10.1098/rspa.2019.0498 doi: 10.1098/rspa.2019.0498
    [12] C. F. Lorenzo, T. T. Hartley, Variable order and distributed order fractional operators, Nonlinear Dyn., 29 (2002), 57–98. https://doi.org/10.1023/A:1016586905654 doi: 10.1023/A:1016586905654
    [13] A. C. Escamilla, J. F. G. Aguilar, L. Torres, R. F. E.Jiménez, M. V. Rodríguez, Physica A, 487 (2017), 1–21.
    [14] A. Khan, H. M. Alshehri, J. F. G. Aguilar, Z. A. Khan, G. F. Anaya, Adv. Differ. Eqs., 183 (2021), 1–18.
    [15] S. Patnaik, M. Jokar, F. Semperlotti, Variable-order approach to nonlocal elasticity: Theoretical formulation, order identification via deep learning, and applications, Comput. Mech., 2021, 1–32. https://doi.org/10.1007/s00466-021-02093-3 doi: 10.1007/s00466-021-02093-3
    [16] J. E. S. Pérez, J. F. G. Aguilar, A. Atangana, Novel numerical method for solving variable-order fractional differential equations with power, exponential and Mittag-Leffler laws, Chaos Soliton. Fract., 114 (2018), 175–185. https://doi.org/10.1016/j.chaos.2018.06.032 doi: 10.1016/j.chaos.2018.06.032
    [17] C. Chen, C. Hsiao, Haar wavelet method for solving lumped and distributed parameter systems, IEE P.-Contr. Theor. Ap., 144 (1997), 87–94. https://doi.org/10.1049/ip-cta:19970702 doi: 10.1049/ip-cta:19970702
    [18] U. Lepik, Numerical solution of differential equations using Haar wavelets, Math. Comp. Simul., 68 (2005), 127–143. https://doi.org/10.1016/j.matcom.2004.10.005 doi: 10.1016/j.matcom.2004.10.005
    [19] I. Aziz, S. Islam, New algorithms for the numerical solution of nonlinear Fredholm and Volterra integral equations using Haar wavelets, J. Comput. Appl. Math., 239 (2013), 333–345. https://doi.org/10.1016/j.cam.2012.08.031 doi: 10.1016/j.cam.2012.08.031
    [20] U. Lepik, Haar wavelet method for nonlinear integro-differential equations, Appl. Math. Comput., 176 (2006), 324–333. https://doi.org/10.1016/j.amc.2005.09.021 doi: 10.1016/j.amc.2005.09.021
    [21] U. Lepik, Solving PDEs with the aid of two-dimensional Haar wavelets, Comput. Math. Appl., 61 (2011), 1873–1879. https://doi.org/10.1016/j.camwa.2011.02.016 doi: 10.1016/j.camwa.2011.02.016
    [22] U. Lepik, Application of the Haar wavelet transform to solving integral and differential equations, P. Est. Acad. Sci., 56 (2007), 28–46. https://doi.org/10.3176/phys.math.2007.1.03 doi: 10.3176/phys.math.2007.1.03
    [23] U. Lepik, Solving fractional integral equations by the Haar wavelet method, Appl. Math. Comput., 214 (2009), 468–478. https://doi.org/10.1016/j.amc.2009.04.015 doi: 10.1016/j.amc.2009.04.015
    [24] J. Majak, B. S. Shvartsman, M. Kirs, M. Pohlak, M. Herranen, Convergence theorem for the Haar wavelet based discretization method, Comp. Struct., 126 (2015), 227–232. https://doi.org/10.1016/j.compstruct.2015.02.050 doi: 10.1016/j.compstruct.2015.02.050
    [25] J. Majak, B. Shvartsman, K. Karjust, M. Mikola, A. Haavajõe, M. Pohlak, On the accuracy of the Haar wavelet discretization method, Compos. Part B-Eng., 80 (2015), 321–327. https://doi.org/10.1016/j.compositesb.2015.06.008 doi: 10.1016/j.compositesb.2015.06.008
    [26] J. Majak, M. Pohlak, K. Karjust, M. Eerme, J. Kurnitski, B. Shvartsman, New higher order Haar wavelet method: Application to FGM structures, Compos. Struct., 201 (2018), 72–78. https://doi.org/10.1016/j.compstruct.2018.06.013 doi: 10.1016/j.compstruct.2018.06.013
    [27] M. Ratas, A. Salupere, Application of higher order Haar wavelet method for solving nonlinear evolution equations, Math. Model. Anal., 25 (2020), 271–288. https://doi.org/10.3846/mma.2020.11112 doi: 10.3846/mma.2020.11112
    [28] J. Majak, B. Shvartsman, M. Ratas, D. Bassir, M. Pohlak, K. Karjust, et al., Higher-order Haar wavelet method for vibration analysis of nanobeams, Mater. Today Commun., 25 (2020), 101290. https://doi.org/10.1016/j.mtcomm.2020.101290 doi: 10.1016/j.mtcomm.2020.101290
    [29] J. Majak, M. Pohlak, M. Eerme, B. Shvartsman, Solving ordinary differential equations with higher order Haar wavelet method, AIP Conf. Proc., 2116 (2019), 330002. https://doi.org/10.1063/1.5114340 doi: 10.1063/1.5114340
    [30] J. Majak, M. Pohlak, M. Eerme, Application of the Haar wavelet-based discretization technique to problems of orthotropic plates and shells, Mech. Compos. Mater., 45 (2009), 631–642. https://doi.org/10.1007/s11029-010-9119-0 doi: 10.1007/s11029-010-9119-0
    [31] I. Aziz, R. Amin, Numerical solution of a class of delay differential and delay partial differential equations via haar wavelet, Appl. Math. Model., 40 (2016), 10286–10299. https://doi.org/10.1016/j.apm.2016.07.018 doi: 10.1016/j.apm.2016.07.018
    [32] R. Amin, B. Alshahrani, A. H. Aty, K. Shah, Wejdan Deebani, Haar wavelet method for solution of distributed order time-fractional differential equations, Alex. Eng. J., 60 (2021), 3295–3303. https://doi.org/10.1016/j.aej.2021.01.039 doi: 10.1016/j.aej.2021.01.039
    [33] R. Amin, K. Shah, M. Asif, I. Khan, A computational algorithm for the numerical solution of fractional order delay differential equations, Appl. Math. Comput., 402 (2021), 125863. https://doi.org/10.1016/j.amc.2020.125863 doi: 10.1016/j.amc.2020.125863
    [34] R. Amin, H. Ahmad, K. Shah, M. B. Hafeez, W. Sumelka, Theoretical and computational analysis of nonlinear fractional integro-differential equations via collocation method, Chaos Soliton. Fract., 151 (2021), 111252. https://doi.org/10.1016/j.chaos.2021.111252 doi: 10.1016/j.chaos.2021.111252
    [35] M. M. Alqarni, R. Amin, K.Shah, S. Nazir, M. Awais, E. E. Mahmoud, Solution of third order linear and nonlinear boundary value problems of integro-differential equations using Haar wavelet method, Results Phys., 25 (2021), 104176. https://doi.org/10.1016/j.rinp.2021.104176 doi: 10.1016/j.rinp.2021.104176
    [36] R. Amin, K. Shah, M. Asif, I. Khan, F. Ullah, An efficient algorithm for numerical solution of fractional integro-differential equations via Haar wavelet, J. Comput. Appl. Math., 381 (2021), 113028. https://doi.org/10.1016/j.cam.2020.113028 doi: 10.1016/j.cam.2020.113028
    [37] R. Amin, S. Nazir, I. G. Magarino, Efficient sustainable algorithm for numerical solution of nonlinear delay Fredholm-Volterra integral equations via haar wavelet for dense sensor networks in emerging telecommunications, T. Emerg. Telecommun. T., 20 (2020), e3877. https://doi.org/10.1002/ett.3877 doi: 10.1002/ett.3877
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2518) PDF downloads(251) Cited by(10)

Article outline

Figures and Tables

Figures(3)  /  Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog