Research article

Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds

  • Received: 13 October 2021 Revised: 19 December 2021 Accepted: 31 December 2021 Published: 06 January 2022
  • MSC : 53C15, 53C25, 53D10

  • The present paper is to deliberate the class of ϵ-Kenmotsu manifolds which admits conformal η-Ricci soliton. Here, we study some special types of Ricci tensor in connection with the conformal η-Ricci soliton of ϵ-Kenmotsu manifolds. Moving further, we investigate some curvature conditions admitting conformal η-Ricci solitons on ϵ-Kenmotsu manifolds. Next, we consider gradient conformal η-Ricci solitons and we present a characterization of the potential function. Finally, we develop an illustrative example for the existence of conformal η-Ricci soliton on ϵ-Kenmotsu manifold.

    Citation: Yanlin Li, Dipen Ganguly, Santu Dey, Arindam Bhattacharyya. Conformal η-Ricci solitons within the framework of indefinite Kenmotsu manifolds[J]. AIMS Mathematics, 2022, 7(4): 5408-5430. doi: 10.3934/math.2022300

    Related Papers:

    [1] Abdelkader Moumen, Amin Benaissa Cherif, Fatima Zohra Ladrani, Keltoum Bouhali, Mohamed Bouye . Fourth-order neutral dynamic equations oscillate on timescales with different arguments. AIMS Mathematics, 2024, 9(9): 24576-24589. doi: 10.3934/math.20241197
    [2] Petr Hasil, Michal Veselý . Conditionally oscillatory linear differential equations with coefficients containing powers of natural logarithm. AIMS Mathematics, 2022, 7(6): 10681-10699. doi: 10.3934/math.2022596
    [3] Yibing Sun, Yige Zhao . Oscillatory and asymptotic behavior of third-order neutral delay differential equations with distributed deviating arguments. AIMS Mathematics, 2020, 5(5): 5076-5093. doi: 10.3934/math.2020326
    [4] A. A. El-Gaber, M. M. A. El-Sheikh, M. Zakarya, Amirah Ayidh I Al-Thaqfan, H. M. Rezk . On the oscillation of solutions of third-order differential equations with non-positive neutral coefficients. AIMS Mathematics, 2024, 9(11): 32257-32271. doi: 10.3934/math.20241548
    [5] Mohammed Ahmed Alomair, Ali Muhib . On the oscillation of fourth-order canonical differential equation with several delays. AIMS Mathematics, 2024, 9(8): 19997-20013. doi: 10.3934/math.2024975
    [6] Duoduo Zhao, Kai Zhou, Fengming Ye, Xin Xu . A class of time-varying differential equations for vibration research and application. AIMS Mathematics, 2024, 9(10): 28778-28791. doi: 10.3934/math.20241396
    [7] Shaimaa Elsaeed, Osama Moaaz, Kottakkaran S. Nisar, Mohammed Zakarya, Elmetwally M. Elabbasy . Sufficient criteria for oscillation of even-order neutral differential equations with distributed deviating arguments. AIMS Mathematics, 2024, 9(6): 15996-16014. doi: 10.3934/math.2024775
    [8] Fawaz Khaled Alarfaj, Ali Muhib . Second-order differential equations with mixed neutral terms: new oscillation theorems. AIMS Mathematics, 2025, 10(2): 3381-3391. doi: 10.3934/math.2025156
    [9] Maged Alkilayh . Nonlinear neutral differential equations of second-order: Oscillatory properties. AIMS Mathematics, 2025, 10(1): 1589-1601. doi: 10.3934/math.2025073
    [10] Elmetwally M. Elabbasy, Amany Nabih, Taher A. Nofal, Wedad R. Alharbi, Osama Moaaz . Neutral differential equations with noncanonical operator: Oscillation behavior of solutions. AIMS Mathematics, 2021, 6(4): 3272-3287. doi: 10.3934/math.2021196
  • The present paper is to deliberate the class of ϵ-Kenmotsu manifolds which admits conformal η-Ricci soliton. Here, we study some special types of Ricci tensor in connection with the conformal η-Ricci soliton of ϵ-Kenmotsu manifolds. Moving further, we investigate some curvature conditions admitting conformal η-Ricci solitons on ϵ-Kenmotsu manifolds. Next, we consider gradient conformal η-Ricci solitons and we present a characterization of the potential function. Finally, we develop an illustrative example for the existence of conformal η-Ricci soliton on ϵ-Kenmotsu manifold.



    Functional differential equations arise widely in many fields such as mathematical biology, economy, physics, or biology, see [16,19,28,40]. This explains the great interest in the qualitative properties of these kinds of equations. Oscillation phenomena appear in various models from real world applications; see, e.g., the papers [12,35,38] for models from mathematical biology where oscillation and/or delay actions may be formulated by means of cross-diffusion terms. As a part of this approach, the oscillation theory of this type of equation has been extensively developed, see [1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45]. In particular, the oscillation criteria of first-order differential equations with deviating arguments have numerous applications in the study of higher-order functional differential equations (e.g., one can study the oscillatory behavior of higher-order functional differential equations by relating oscillation of these equations to that of associated first-order functional differential equations); see, e.g., the papers [13,36,37].

    Recently, there has been great interest in studying the oscillation of all solutions of the first-order delay differential equation

    x(t)+b(t)x(τ(t))=0,tt0, (1.1)

    and its dual advanced equation

    x(t)c(t)x(σ(t))=0,tt0, (1.2)

    where b,c,τ,σC([t0,),[0,)) such that τ(t)t, limt τ(t)=, and σ(t)t. In most of these works, the delay (advanced) function is assumed to be nondecreasing, see [14,16,29,31,32,33,34,42,45] and the references therein. As shown in [8], the oscillation character of Eq (1.1) with nonmontone delay, is not an easy extension to the oscillation problem for the nondecreasing delay case. Many authors [1,3,5,6,7,8,9,10,11,15,20,25,27,39,43] have developed and generalized the methods used to study the oscillation of equations (1.1) and (1.2) with monotone delays and to study this property for the nonmonotone case. Only a few works, however, dealt with the oscillation of equations (1.1) and (1.2) with oscillatory coefficients. For example, [16,44] studied the oscillation of Eq (1.1) where the delay function τ(t) is assumed to be nondecreasing and constant (i.e., τ(t)=tα, α>0), respectively. Also, Kulenovic and Grammatikopoulos [29] studied the oscillation of a first-order nonlinear functional differential equation that contains both equations (1.1) and (1.2). The authors obtained liminf and limsup oscillation criteria for the case when the coefficient function does not need to be nonnegative. However, the delay (advanced) and the coefficient functions are assumed to be nondecreasing (for limsup conditions) and nonnegative on a sequence of intervals {(rn,sn)}n0 such that limn (snrn)= (for liminf conditions), respectively.

    Our aim in this work is to obtain oscillation criteria for equations (1.1) and (1.2) where b(t) and c(t) are continuous functions on [t0,). We relax the nonnegative restriction on the coefficient functions b(t) and c(t). To accomplish this goal, using the ideas of [27], we develop and enhance the work of Kwong [30]. This procedure leads to new sufficient oscillation criteria that improve and generalize those mentioned in [16,29,44].

    From now on, we assume that b(t) and c(t) are only continuous functions on [t0,).

    Let Λ(t) and Λi(t), tt0, iN be defined as follows (see [27]):

    Λ(t)=max{ut: τ(u)t},Λ1(t)=Λ(t),Λi(t)=Λ(t)Λi1(t), i=2,3, . (2.1)

    Also, we define the function g(t) and the sequence {Qn(v,u)}n=0, τ(v)uv, as follows:

    g(t)=suput τ(u),tt0 (2.2)

    and

    Q0(v,u)=1,Qn(v,u)=exp(vub(ζ)Qn1(ζ,τ(ζ))dζ),nN.

    The proofs of our main results are essentially based on the following lemma.

    Lemma 2.1. Let nN0, T>t0, TT and x(t) be a solution of Eq (1.1) such that x(t)>0 for all tT. If b(t)0 on [T,T1], T1Λn+2(T), then

    x(u)x(v)Qn(v,u),τ(v)uv,for  v[Λn+2(T),T1]. (2.3)

    Proof. It follows from Eq (1.1) that x(t)0 on [Λ1(T),T1]. Therefore,

    x(u)x(v)1=Q0(v,u),τ(v)uv, for v[Λ2(T),T1].

    Dividing Eq (1.1) by x(t) and integrating from u to v, τ(v)uv, we obtain

    x(u)x(v)=exp(vub(ζ)x(τ(ζ))x(ζ)dζ). (2.4)

    Since x(t)0 on [Λ1(T),T1], we get

    x(u)x(v)exp(vub(ζ)dζ)=exp(vub(ζ)Q0(ζ,τ(ζ))dζ)=Q1(v,u),τ(v)uv

    for v[Λ3(T),T1] and consequently, for uζv, we have

    x(τ(ζ))x(ζ)Q1(ζ,τ(ζ)),τ(v)uv for v[Λ4(T),T1].

    Substituting in (2.4), we get

    x(u)x(v)exp(vub(ζ)Q1(ζ,τ(ζ))dζ)=Q2(v,u) for v[Λ4(T),T1].

    Repeating this argument n times, we obtain

    x(u)x(v)exp(vub(ζ)Qn1(ζ,τ(ζ))dζ)=Qn(v,u) for t[Λn+2(T),T1].

    The proof of the lemma is complete.

    Let {Tk}k0 be a sequence of real numbers such that limk Tk= and

    b(t)0 for t[Tk,Λn+4(Tk)], for all  kN for some nN0. (2.5)

    Also, we define the sequence {βn}n1, βn>1 for all nN as follows:

    Qn(t,g(t))>βn,t[g(Λn+3(Tk)),Λn+3(Tk)] for all  kN0 for some nN. (2.6)

    Theorem 2.1. Let nN such that (2.5) and (2.6) are satisfied. If

    Λn+4(Tk)g(Λn+4(Tk))b(ζ)Qn+1(g(ζ),τ(ζ)) dζln(βn+1)+1βn+1for all   kN0,

    then every solution of Eq (1.1) is oscillatory.

    Proof. Assume, for the sake of contradiction, that x(t) is an eventually positive solution of Eq (1.1). Then there exists a sufficiently large T>t0 such that x(t)>0 for t>T. Suppose that Tk1{Tk}k0 such that Tk1>T. In view of (2.3), (2.5) and (2.6), it follows that

    x(g(Λn+4(Tk1)))x(Λn+4(Tk1))Qn+1(Λn+4(Tk1),g(Λn+4(Tk1)))>βn+1>1.

    Then there exists t(g(Λn+4(Tk1)),Λn+4(Tk1)) such that

    x(g(Λn+4(Tk1)))x(t)=βn+1. (2.7)

    Integrating Eq (1.1) from t to t, we get

    x(Λn+4(Tk1))x(t)+Λn+4(Tk1)tb(ζ)x(τ(ζ))dζ=0. (2.8)

    It is easy to see that

    x(τ(ζ))=x(g(ζ))exp(g(ζ)τ(ζ)b(ζ1)x(τ(ζ1))x(ζ1)dζ1). (2.9)

    Substituting in (2.8), we have

    x(Λn+4(Tk1))x(t)+Λn+4(Tk1)tb(ζ)exp(g(ζ)τ(ζ)b(ζ1)x(τ(ζ1))x(ζ1)dζ1)x(g(ζ))dζ=0.

    Since x(t)0 on [Λ1(Tk1),Λn+4(Tk1)], it follows that

    x(Λn+4(Tk1))x(t)+x(g(Λn+4(Tk1)))Λn+4(Tk1)tb(ζ)exp(g(ζ)τ(ζ)b(ζ1)x(τ(ζ1))x(ζ1)dζ1)dζ0.

    By (2.3) and ζ1[Λn+2(Tk1),Λn+3(Tk1)] for τ(ζ)<ζ1<g(ζ), g(Λn+4(Tk1))<ζ<Λn+4(Tk1), we get

    Λn+4(Tk1)tb(ζ)exp(g(ζ)τ(ζ)b(ζ1)Qn(ζ1,τ(ζ1))dζ1)dζx(t)x(g(Λn+4(Tk1)))x(Λn+4(Tk1))x(g(Λn+4(Tk1)))<1βn+1. (2.10)

    Dividing Eq (1.1) by x(t) and integrating from g(Λn+4(Tk1)) to t, we obtain

    tg(Λn+4(Tk1))x(ζ)x(ζ)dζ=tg(Λn+4(Tk1))b(ζ) x(τ(ζ))x(ζ)dζ.

    Using (2.9), we get

    ln(x(g(Λn+4(Tk1)))x(t))=tg(Λn+4(Tk1))b(ζ) x(g(ζ)))x(ζ)exp(g(ζ)τ(ζ)b(ζ1)x(τ(ζ1))x(ζ1)dζ1)dζ.

    From this, (2.3) and (2.6), we get

    tg(Λn+4(Tk1))b(ζ)Qn+1(ζ,g(ζ)) exp(g(ζ)τ(ζ)b(ζ1)Qn(ζ1,τ(ζ1))dζ1)dζln(x(g(Λn+4(Tk1)))x(t)).

    It follows from (2.6) and (2.7) that

    tg(Λn+4(Tk1))b(ζ) exp(g(ζ)τ(ζ)b(ζ1)Qn(ζ1,τ(ζ1))dζ1)dζln(βn+1)βn+1.

    Combining this and (2.10) we get

    Λn+4(Tk1)g(Λn+4(Tk1))b(ζ) exp(g(ζ)τ(ζ)b(ζ1)Qn(ζ1,τ(ζ1))dζ1)dζ<ln(βn+1)+1βn+1,

    that is

    Λn+4(Tk)g(Λn+4(Tk))b(ζ)Qn+1(g(ζ),τ(ζ)) dζ<ln(βn+1)+1βn+1.

    The proof of the theorem is complete.

    Theorem 2.2. Let nN0 such that (2.5) is satisfied. If

    Λn+4(Tk)g(Λn+4(Tk))b(ζ)Qn+1(g(Λn+4(Tk)),τ(ζ))dζ1for all kN0, (2.11)

    then every solution of Eq (1.1) is oscillatory.

    Proof. Let x(t) be an eventually positive solution of Eq (1.1). Then the exists T>t0 such that x(t)>0 for all tT. It is not difficult to prove that

    x(Λn+4(Tk1))x(g(Λn+4(Tk1)))+x(g(Λn+4(Tk1)))Λn+4(Tk1)g(Λn+4(Tk1))b(ζ)exp(g(Λn+4(Tk1))τ(ζ)b(ζ1)x(τ(ζ1))x(ζ1)dζ1)dζ=0,

    where Tk1{Tk} such that Tk1>T. Using (2.3), we get

    x(Λn+4(Tk1))+x(g(Λn+4(Tk1)))(Λn+4(Tk1)g(Λn+4(Tk1))b(ζ)exp(g(Λn+4(Tk1))τ(ζ)b(ζ1)Qn(ζ1,τ(ζ1))dζ1)dζ1)0.

    Using the positivity of x(Λn+4(Tk1)) we have

    Λn+4(Tk1)g(Λn+4(Tk1))b(ζ)exp(g(Λn+4(Tk1))τ(ζ)b(ζ1)Qn(ζ1,τ(ζ1))dζ1)dζ<1.

    Then

    Λn+4(Tk)g(Λn+4(Tk))b(ζ)Qn+1(g(Λn+4(Tk)),τ(ζ))dζ<1,

    which contradicts (2.11). The proof of the theorem is complete.

    Remark 2.1.

    ● (1) It should be noted that the monotonicity of the delay function τ(t) is required in many previous works to study the oscillation of Eq (1.1) with oscillating coefficients; see, for example, [16,29,44]. In this work, the sequence {Λi(t)}i0 plays a central role in the derivation of our results. In fact the delay function τ(t) does not need to be monotone. Therefore, our results substantially improve and generalize [29, Theroems 6, 7] for Eq (1.1). Furthermore, using our approach, many previous oscillation studies for Eq (1.1) with monotone delays can be used to study the oscillation of Eq (1.1) with general delays (the delay does not need to be monotone) and oscillating coefficients.

    (2) There are numerous lower bounds for the quotient x(τ(t))x(t), where x(t) is a positive solution of Eq (1.1) with a nonnegative continuous function b(t), see [6,16,22,24,42]. For example, [22], Lemma 1] and Lemma 2.1 can be used instead of Lemma 2.1 to improve our results in the case where b(t) is a nonnegative continuous function. In this case, the adjusted version of the results improves Theorems 2.1 and 2.2. Even in the case where τ(t) is nondecreasing, the improvement is substantial.

    Similar results for the (dual) advanced differential equation (1.2) can be obtained easily. The details of the proofs are omitted since they are quite similar to Eq (1.1).

    We will use the following notation:

    h(t)=infut σ(u),tt0 (2.12)
    Ω1(t)=Ω(t),Ωi(t)=Ω(t)Ωi1(t), tt0, i=2,3,, (2.13)

    where

    Ω(t)=min{t0ut: σ(u)t}.

    Also, we define the sequence {Rn(u,v)}n=0, vuσ(v) as follows:

    R0(u,v)=1,Rn(u,v)=exp(uvb(ζ)Rn1(σ(ζ),ζ)dζ),nN.

    In order to obtain the oscillation criteria for Eq (1.2) we need the following conditions:

    Let the sequence {Tk}k0 be a sequence of real numbers such that limk Tk= and

    c(t)0 for t[Ωn+4(Tk),Tk] for all kN0 for some nN. (2.14)

    Also, we define the sequence {γn}n1, γn>1 for all nN as follows:

    Rn(h(t),t)>γn,t[Ωn+3(Tk),h(Ωn+3(Tk))] for all kN0 for some nN. (2.15)

    Theorem 2.3. Let nN such that (2.14) and (2.15) are satisfied. If

    h(Ωn+4   (Tk))Ωn+4   (Tk)c(ζ)Rn+1(σ(ζ),h(ζ))dζln(γn+1)+1γn+1   for all  kN0,

    then every solution of Eq (1.2) is oscillatory.

    Theorem 2.4. Let nN0 such that (2.14) is satisfied. If

    h(Ωn+4  (Tk))Ωn+4  (Tk)c(ζ)Rn+1(σ(ζ),h(Ωn+4(Tk)))dζ1for all   kN0,

    then every solution of Eq (1.2) is oscillatory.

    Example 3.1. Consider the delay differential equation

    x(t)+b(t)x(τ(t))=0,t1, (3.1)

    where bC([1,),R) such that

    b(t)=η>0 for t[3rk,3rk+645121] for all kN0,

    {rk}k0 is a sequence of positive integers such that rk+1>rk+215121 and limk rk=, and

    τ(t)={t1 if t[3l,3l+2],t+6l+3 if t[3l+2,3l+2.1],119t23l53 if t[3l+2.1,3l+3],lN0.

    In view of (2.1) and (2.2), it is easy to see that

    g(t)={t1 if t[3l,3l+2],3l+1 if t[3l+2,3l+2411],119t23l53 if t[3l++2411,3l+3],lN0

    and

    Λ(t)={t+1 if t[3l,3l+0.9],911t+611l+1511 if t[3l+0.9,3l+2],t+1 if t[3l+2,3l+3],lN0,

    respectively.

    Letting Tk=3rk, kN0, so Λ5(Tk)=3rk+645121, and hence

    b(t)=η for t[Tk,Λ5(Tk)] for all kN0. (3.2)

    It is obvious that g(Λ5(Tk))=3rk+4611 and

    t1.2τ(t)g(t)t1 for all t1.

    Therefore,

    Q2(t,g(t))=exp(tg(t)b(ζ)exp(ζτ(ζ)b(ζ1)dζ1)dζ)exp(tt1b(ζ)exp(ζζ1b(ζ1)dζ1)dζ)exp(ηexp(η))

    for t[3rk+4611,3rk+645121]. Denote β2=exp(ηexp(η))>1. Then

    Q2(t,g(t))>β2 for t[g(Λ5(Tk)),Λ5(Tk)] for all kN0. (3.3)

    Also,

    Λ5(Tk)g(Λ5(Tk))b(ζ)Q2(g(ζ),τ(ζ))dζ=3rk+6451213rk+4611b(ζ)exp(g(ζ)τ(ζ)Q1(ζ1,τ(ζ1))b(ζ1))dζ=117121η+20(exp(110ηexp(η))1)exp(η)11>0.707

    for all η0.61 and kN0 and

    (1+ln(β2)β2)<0.691 for all η0.61 and kN0.

    It is obvious that

    Λ5(Tk)g(Λ5(Tk))b(ζ)Q2(g(ζ),τ(ζ))dζ>(1+ln(β2)β2) for all η0.61 and kN0.

    In view of this, (3.2) and (3.3), all conditions of Theorem 2.1 with n=1 are satisfied for all η0.61. Therefore all solutions of Eq (3.1) are oscillatory for η0.61.

    However, if we assume that ak=3rk and bk=3rk+645121, then bkak=645121<. It follows that [29,Theorem 3] cannot be applied to Eq (3.1). Note also that since τ is not monotone, [29,Theorem 6] cannot be applied to this example.

    Example 3.2. Consider the advanced differential equation

    x(t)c(t)x(σ(t))=0,t0, (3.4)

    where cC([0,),R) such that

    c(t)={δ(1+sin(9πt)) for t[4rk689,4rk419],(αδ)(9t36rk+41)+δ for t[4rk419,4rk409],α for t[4rk409,4rk+103],kN0, (3.5)

    where α,δ0 and {rk}k0 is a sequence of positive integers such that rk+1>rk+4918 and limk rk=, and

    σ(t)={t+3 if t[4l,4l+2],t+8l+7 if t[4l+2,4l+3],3t8l5 if t[4l+3,4l+4],lN0.

    In view of (2.12) and (2.13), it follows that

    h(t)={t+3 if t[4l,4l+2],4l+5 if t[4l+2,4l+103],3t8l5 if t[4l+103,4l+4],lN0

    and

    Ω(t)={t3 if t[4l,4l+1],13t+83l1 if t[4l+1,4l+3],t3 if t[4l+3,4l+4],lN0,

    respectively.

    Clearly,

    t+1h(t)σ(t)t+3, for all t1.

    If we assume that Tk=4rk+103, kN0, then Ω4(Tk)=4rk689. It follows from (3.5) that

    c(t)0 for t[Ω4(Tk),Tk] for all  kN0.

    Thus

    h(Ω4(Tk))Ω4(Tk)c(ζ)R1(h(Ω4(Tk)),τ(ζ))dζ4rk4194rk689c(ζ)dζ=4rk4194rk689δ(1+sin(9πζ))dζ=δ(2+27π)9π1, for all δ9π2+27π and kN0.

    Therefore all conditions of Theorem 2.4 with n=0 are satisfied for all δ9π2+27π, and hence Eq (3.4) is oscillatory for δ9π2+27π.

    The authors extend their appreciation to the Deputyship for Research and Innovation, Ministry of Education in Saudi Arabia for funding this research work through the project number (IF-PSAU- 2022/01/22323).

    The authors declare that they have no competing of interests regarding the publication of this paper.



    [1] E. Barbosa, J. E. Ribeiro, On conformal solutions of the Yamabe flow, Arch. Math., 101 (2013), 79–89. https://doi.org/10.1007/s00013-013-0533-0 doi: 10.1007/s00013-013-0533-0
    [2] A. Barros, J. E. Ribeiro, Some characterizations for compact almost Ricci solitons, Proc. Amer. Math. Soc., 140 (2012), 1033–1040. https://doi.org/10.1090/S0002-9939-2011-11029-3 doi: 10.1090/S0002-9939-2011-11029-3
    [3] A. Barros, R. Batista, J. E. Ribeiro, Compact almost Ricci solitons with constant scalar curvature are gradient, Monatsh Math., 174 (2014), 29–39. https://doi.org/10.1007/s00605-013-0581-3 doi: 10.1007/s00605-013-0581-3
    [4] A. M. Blaga, Almost η-Ricci solitons in (LCS)n-manifolds, B. Belg. Math. Soc.-Sim., 25 (2018), 641–653. https://doi.org/10.36045/bbms/1547780426 doi: 10.36045/bbms/1547780426
    [5] A. M. Blaga, η-Ricci solitons on para-Kenmotsu manifolds, Balkan J. Geom. Appl., 20 (2015), 1–13. https://doi.org/10.1111/nep.12552_10 doi: 10.1111/nep.12552_10
    [6] N. Basu, A. Bhattacharyya, Conformal Ricci soliton in Kenmotsu manifold, Glo. J. Adv. Res. Clas. Mod. Geom., 4 (2015), 15–21.
    [7] A. Bejancu, K. L. Duggal, Real hypersurfaces of indefinite Kaehler manifolds, Int. J. Math. Sci., 16 (1993), 545–556. https://doi.org/10.1155/S0161171293000675 doi: 10.1155/S0161171293000675
    [8] G. Calvaruso, A. Perrone, Ricci solitons in three-dimensional paracontact geometry, J. Geom. Phys., 98 (2015), 1–12. https://doi.org/10.1016/j.geomphys.2015.07.021 doi: 10.1016/j.geomphys.2015.07.021
    [9] J. T. Cho, R. Sharma, Contact geometry and Ricci solitons, Int. J. Geom. Methods M., 7 (2010), 951–960.
    [10] C. Calin, M. Crasmareanu, η-Ricci solitons on Hopf hypersurfaces in complex space forms, Rev. Roum. Math. Pures, 57 (2012), 53–63.
    [11] H. D. Cao, B. Chow, Recent developments on the Ricci flow, Bull. Amer. Math. Soc., 36 (1999), 59–74. https://doi.org/10.1090/S0273-0979-99-00773-9 doi: 10.1090/S0273-0979-99-00773-9
    [12] J. T. Cho, M. Kimura, Ricci solitons and real hypersurfaces in a complex space forms, Tohoku Math. J., 36 (2009), 205–212.
    [13] S. Dey, S. Roy, -η-Ricci Soliton within the framework of Sasakian manifold, J. Dyn. Syst. Geom. The., 18 (2020), 163–181.
    [14] U. C. De, A. Sarkar, On ϵ-Kenmotsu manifold, Hardonic J., 32 (2009), 231–242. https://doi.org/10.5414/ALP32242 doi: 10.5414/ALP32242
    [15] T. Dutta, N. Basu, A. Bhattacharyya, Conformal Ricci soliton in Lorentzian α-Sasakian manifolds, Acta Univ. Palac. Olomuc. Fac. Rerum Natur. Math., 55 (2016), 57–70.
    [16] A. E. Fischer, An introduction to conformal Ricci flow, Clas. Quan. Grav., 21 (2004), 171–218. https://doi.org/10.1016/S0022-5347(18)38074-1 doi: 10.1016/S0022-5347(18)38074-1
    [17] D. Ganguly, S. Dey, A. Ali, A. Bhattacharyya, Conformal Ricci soliton and Quasi-Yamabe soliton on generalized Sasakian space form, J. Geom. Phys., 169 (2021), 104339. https://doi.org/10.1142/S1793557122500358 doi: 10.1142/S1793557122500358
    [18] D. Ganguly, Kenmotsu metric as conformal η-Ricci soliton, 2021.
    [19] A. Gray, Einstein like manifolds which are not Einstein, Goem. Dedicata, 7 (1978), 259–280.
    [20] A. Haseeb, Some results on projective curvature tensor in an ϵ-Kenmotsu manifold, Palestine J. Math., 6 (2017), 196–203.
    [21] A. Haseeb, M. A. Khan, M. D. Siddiqi, Some more results on an ϵ-Kenmotsu manifold with a semi-symmetric metric connection, Acta Math. Univ. Comen., 85 (2016), 9–20.
    [22] R. S. Hamilton, Three manifolds with positive Ricci curvature, J. Differ. Geom., 17 (1982), 255–306. https://doi.org/10.1086/wp.17.4.1180866 doi: 10.1086/wp.17.4.1180866
    [23] R. S. Hamilton, The formation of singularities in the Ricci flow, Surveys Diff. Geom., 1995, 7–136.
    [24] S. K. Hui, S. K. Yadav, A. Patra, Almost conformal Ricci solitons on f-Kenmotsu manifolds, Khayyam J. Math., 5 (2019), 89–104.
    [25] K. Kenmotsu, A class of almost contact Riemannian manifold, Tohoku Math. J., 24 (1972), 93–103. https://doi.org/10.1016/0022-460X(72)90125-3 doi: 10.1016/0022-460X(72)90125-3
    [26] Y. L. Li, M. A. Lone, U. A. Wani, Biharmonic submanifolds of Kaehler product manifolds, AIMS Math., 6 (2021), 9309–9321. https://doi.org/10.3934/math.2021541 doi: 10.3934/math.2021541
    [27] Y. L. Li, A. Ali, R. Ali, A general inequality for CR-warped products in generalized Sasakian space form and its applications, Adv. Math. Phys., 2021 (2021), 5777554. https://doi.org/10.1155/2021/5777554 doi: 10.1155/2021/5777554
    [28] Y. L. Li, A. H. Alkhaldi, A. Ali, Geometric mechanics on warped product semi-slant submanifold of generalized complex space forms, Adv. Math. Phys., 2021 (2021), 5900801. https://doi.org/10.1155/2021/5900801 doi: 10.1155/2021/5900801
    [29] Y. L. Li, A. Ali, F. Mofarreh, A. Abolarinwa, R. Ali, Some eigenvalues estimate for the ϕ-Laplace operator on slant submanifolds of Sasakian space forms, J. Funct. Space., 2021 (2021), 6195939. https://doi.org/10.1155/2021/6195939 doi: 10.1155/2021/6195939
    [30] Y. L. Li, F. Mofarreh, N. Alluhaibi, Homology groups in warped product submanifolds in hyperbolic spaces, J. Math., 2021 (2021), 8554738. https://doi.org/10.1155/2021/8554738 doi: 10.1155/2021/8554738
    [31] Y. L. Li, L. I. Pişcoran, A. Ali, A. H. Alkhaldi, Null homology groups and stable currents in warped product submanifolds of Euclidean spaces, Symmetry, 13 (2021). https://doi.org/10.3390/sym13091587 doi: 10.3390/sym13091587
    [32] Y. L. Li, S. Y. Liu, Z. G. Wang, Tangent developables and Darboux developables of framed curves, Topol. Appl., 301 (2021), 107526. doi:10.1016/j.topol.2020.107526 doi: 10.1016/j.topol.2020.107526
    [33] Y. L. Li, Z. G. Wang, Lightlike tangent developables in de Sitter 3-space, J. Geom. Phys., 164 (2021), 1–11. https://doi.org/10.1016/j.geomphys.2021.104188 doi: 10.1016/j.geomphys.2021.104188
    [34] Y. L. Li, Z. G. Wang, T. H. Zhao, Geometric algebra of singular ruled surfaces, Adv. Appl. Clifford Al., 31 (2021), 1–19. https://doi.org/10.1007/s00006-020-01097-1 doi: 10.1007/s00006-020-01097-1
    [35] Y. L. Li, Y. S. Zhu, Q. Y. Sun, Singularities and dualities of pedal curves in pseudo-hyperbolic and de Sitter space, Int. J. Geom. Methods M., 18 (2021), 1–31. https://doi.org/10.1142/S0219887821500080 doi: 10.1142/S0219887821500080
    [36] Y. L. Li, Z. G. Wang, T. H. Zhao, Slant helix of order n and sequence of darboux developables of principal-directional curves, Math. Methods Appl. Sci., 43 (2020), 9888–9903. https://doi.org/10.1002/mma.6663 doi: 10.1002/mma.6663
    [37] Y. L. Li, A. H. Alkhaldi, A. Ali, L. I. Pişcoran, On the topology of warped product pointwise semi-slant submanifolds with positive curvature, Mathematics, 9 (2021). https://doi.org/10.3390/math9243156 doi: 10.3390/math9243156
    [38] G. Perelman, The entropy formula for the Ricci flow and its geometric applications, 2002.
    [39] G. P. Pokhariyal, R. S. Mishra, The curvature tensor and their relativistic significance, Yokohoma Math. J., 18 (1970), 105–108. https://doi.org/10.1501/Ilhfak_0000001354 doi: 10.1501/Ilhfak_0000001354
    [40] S. Roy, A. Bhattacharyya, Conformal Ricci solitons on 3-dimensional trans-Sasakian manifold, Jordan J. Math. Statis., 13 (2020), 89–109.
    [41] S. Roy, S. Dey, A. Bhattacharyya, S. K. Hui, -Conformal η-Ricci Soliton on Sasakian manifold, Asian-Eur. J. Math., 2021, 2250035. https://doi.org/10.1142/S1793557122500358 doi: 10.1142/S1793557122500358
    [42] S. Roy, S. Dey, A. Bhattacharyya, Yamabe Solitons on (LCS)n-manifolds, J. Dyn. Syst. Geom. The., 18 (2020), 261–279. https://doi.org/10.1080/1726037X.2020.1868100 doi: 10.1080/1726037X.2020.1868100
    [43] S. Roy, S. Dey, A. Bhattacharyya, Some results on η-Yamabe Solitons in 3-dimensional trans-Sasakian manifold, 2020.
    [44] S. Roy, S. Dey, A. Bhattacharyya, Geometrical structure in a perfect fluid spacetime with conformal Ricci-Yamabe soliton, 2021.
    [45] S. Roy, S. Dey, A. Bhattacharyya, Conformal Einstein soliton within the framework of para-Kähler manifold, Diff. Geom. Dyn. Syst., 23 (2021), 235–243.
    [46] S. Roy, S. Dey, A. Bhattacharyya, A Kenmotsu metric as a conformal η-Einstein soliton, Carpathian Math. Publ., 13 (2021), 110–118. https://doi.org/10.15330/cmp.13.1.110-118 doi: 10.15330/cmp.13.1.110-118
    [47] S. Roy, S. Dey, A. Bhattacharyya, Conformal Yamabe soliton and -Yamabe soliton with torse forming potential vector field, 2021.
    [48] S. Sarkar, S. Dey, -Conformal η-Ricci Soliton within the framework of Kenmotsu manifolds, 2021.
    [49] S. Sarkar, S. Dey, A. Bhattacharyya, Ricci solitons and certain related metrics on 3-dimensional trans-Sasakian manifold, 2021.
    [50] S. Sarkar, S. Dey, X. Chen, Certain results of conformal and -conformal Ricci soliton on para-cosymplectic and para-Kenmotsu manifolds, Filomat, 2021.
    [51] M. D. Siddiqi, Conformal η-Ricci solitons in δ-Lorentzian trans Sasakian manifolds, Int. J. Maps Math., 1 (2018), 15–34.
    [52] R. N. Singh, S. K. Pandey, G. Pandey, K. Tiwari, On a semi-symmetric metric connection in an ϵ-Kenmotsu manifold, Commun. Korean Math. Soc., 29 (2014), 331–343. https://doi.org/10.4134/CKMS.2014.29.2.331 doi: 10.4134/CKMS.2014.29.2.331
    [53] X. Xu, X. Chao, Two theorems on ϵ-Sasakian manifolds, Int. J. Math. Sci., 21 (1998), 249–254.
    [54] K. Yano, Concircular geometry I. Concircular transformations, Proc. Impe. Acad. Tokyo., 16 (1940), 195–200. https://doi.org/10.3792/pia/1195579139 doi: 10.3792/pia/1195579139
    [55] K. Yano, M. Kon, Structures on manifolds, Ser. Pure Math., 1984.
    [56] K. Yano, On torse-forming directions in Riemannian spaces, Proc. Impe. Acad. Tokyo., 20 (1944), 701–705. https://doi.org/10.3792/pia/1195572958 doi: 10.3792/pia/1195572958
  • This article has been cited by:

    1. Nurten Kılıç, Özkan Öcalan, Mustafa Kemal Yıldız, An improved oscillation theorem for nonlinear delay differential equations, 2024, 478, 00963003, 128852, 10.1016/j.amc.2024.128852
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2737) PDF downloads(91) Cited by(53)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog