Research article

Conjugate gradient algorithm for consistent generalized Sylvester-transpose matrix equations

  • Received: 26 October 2021 Revised: 13 December 2021 Accepted: 21 December 2021 Published: 06 January 2022
  • MSC : 15A60, 15A69, 65F45

  • We develop an effective algorithm to find a well-approximate solution of a generalized Sylvester-transpose matrix equation where all coefficient matrices and an unknown matrix are rectangular. The algorithm aims to construct a finite sequence of approximated solutions from any given initial matrix. It turns out that the associated residual matrices are orthogonal, and thus, the desire solution comes out in the final step with a satisfactory error. We provide numerical experiments to show the capability and performance of the algorithm.

    Citation: Kanjanaporn Tansri, Sarawanee Choomklang, Pattrawut Chansangiam. Conjugate gradient algorithm for consistent generalized Sylvester-transpose matrix equations[J]. AIMS Mathematics, 2022, 7(4): 5386-5407. doi: 10.3934/math.2022299

    Related Papers:

  • We develop an effective algorithm to find a well-approximate solution of a generalized Sylvester-transpose matrix equation where all coefficient matrices and an unknown matrix are rectangular. The algorithm aims to construct a finite sequence of approximated solutions from any given initial matrix. It turns out that the associated residual matrices are orthogonal, and thus, the desire solution comes out in the final step with a satisfactory error. We provide numerical experiments to show the capability and performance of the algorithm.



    加载中


    [1] Y. Kim, H. S. Kim, J. Junkins, Eigenstructure assignment algorithm for second order systems, J. Guid. Control Dyn., 22 (1999), 729–731. http://dx.doi.org/10.2514/2.4444 doi: 10.2514/2.4444
    [2] B. Zhou, G. R. Duan, On the generalized Sylvester mapping and matrix equations, Syst. Control Lett., 57 (2008), 200–208. http://dx.doi.org/10.1016/j.sysconle.2007.08.010 doi: 10.1016/j.sysconle.2007.08.010
    [3] L. Dai, Singular control systems, Berlin: Springer, 1989.
    [4] G. R. Duan, Eigenstructure assignment in descriptor systems via output feedback: A new complete parametric approach, Int. J. Control., 72 (1999), 345–364. http://dx.doi.org/10.1080/002071799221154 doi: 10.1080/002071799221154
    [5] F. Lewis, A survey of linear singular systems, Circ. Syst. Signal Process., 5 (1986), 3–36. http://dx.doi.org/10.1007/BF01600184 doi: 10.1007/BF01600184
    [6] G. R. Duan, Parametric approaches for eigenstructure assignment in high-order linear systems, Int. J. Control Autom. Syst., 3 (2005), 419–429.
    [7] K. Nouri, S. Beik, L. Torkzadeh, D Baleanu, An iterative algorithm for robust simulation of the Sylvester matrix differential equations, Adv. Differ. Equ., 2020 (2020), http://dx.doi.org/10.1186/s13662-020-02757-z doi: 10.1186/s13662-020-02757-z
    [8] M. Epton, Methods for the solution of $AXD$ - $BXC$ = $E$ and its applications in the numerical solution of implicit ordinary differential equations, BIT., 20 (1980), 341–345. http://dx.doi.org/10.1007/BF01932775 doi: 10.1007/BF01932775
    [9] D. Hyland, D. Bernstein, The optimal projection equations for fixed order dynamic compensation, IEEE Trans. Control., 29 (1984), 1034–1037. http://dx.doi.org/10.1109/TAC.1984.1103418 doi: 10.1109/TAC.1984.1103418
    [10] D. Calvetti, L. Reichel, Application of ADI iterative methods to the restoration of noisy images, SIAM J. Matrix Anal. Appl., 17 (1996), 165–186. http://dx.doi.org/10.1137/S0895479894273687 doi: 10.1137/S0895479894273687
    [11] M. Dehghan, A. Shirilord, A generalized modified Hermitian and skew-Hermitian splitting (GMHSS) method for solving complex Sylvester matrix equation, Appl. Math. Comput., 348 (2019), 632–651. http://dx.doi.org/10.1016/j.amc.2018.11.064 doi: 10.1016/j.amc.2018.11.064
    [12] S. Y. Li, H. L. Shen, X. H. Shao, PHSS Iterative method for solving generalized Lyapunov equations, Mathematics, 7 (2019), 38. http://dx.doi.org/10.3390/math7010038 doi: 10.3390/math7010038
    [13] H. L. Shen, Y. R. Li, X. H. Shao, The four-parameter PSS method for solving the Sylvester equation, Mathematics, 7 (2019), 105. http://dx.doi.org/10.3390/math7010105 doi: 10.3390/math7010105
    [14] M. Dehghan, A. Shirilord, Solving complex Sylvester matrix equation by accelerated double-step scale splitting (ADSS) method, Engineering with Computers, 37 (2021), 489–508. http://dx.doi.org/10.1007/s00366-019-00838-6 doi: 10.1007/s00366-019-00838-6
    [15] F. Ding, T. Chen, Gradient based iterative algorithms for solving a class of matrix equations, IEEE Trans. Automat. Comtr., 50 (2005), 1216–1221. http://dx.doi.org/10.1109/TAC.2005.852558 doi: 10.1109/TAC.2005.852558
    [16] Q. Niu, X. Wang, L. Z. Lu, A relaxed gradient based algorithm for solving Sylvester equation, Asian J. Control, 13 (2011), 461–464. http://dx.doi.org/10.1002/asjc.328 doi: 10.1002/asjc.328
    [17] X. Wang, L. Dai, D. Liao, A modified gradient based algorithm for solving Sylvester equation, Appl. Math. Comput., 218 (2012), 5620–5628. http://dx.doi.org/10.1016/j.amc.2011.11.055 doi: 10.1016/j.amc.2011.11.055
    [18] Z. Tian, M. Tian, C. Gu, X. Hao, An accelerated Jacobi-gradient based iterative algorithm for solving Sylvester matrix equations, Filomat, 31 (2017), 2381–2390. http://dx.doi.org/10.2298/FIL1708381T doi: 10.2298/FIL1708381T
    [19] N. Sasaki, P. Chansangiam, Modified Jacobi-gradient iterative method for generalized Sylvester matrix equation, Symmetry, 12 (2020), 1831. http://dx.doi.org/10.3390/sym12111831 doi: 10.3390/sym12111831
    [20] X. Zhang, X. Sheng, The relaxed gradient based iterative algorithm for the symmetric (skew symmetric) solution of the Sylvester equation $AX + XB = C$, Math. Probl. Eng., 2017 (2017), 1624969. http://dx.doi.org/10.1155/2017/1624969 doi: 10.1155/2017/1624969
    [21] A. Kittisopaporn, P. Chansangiam, W. Lewkeeratiyukul, Convergence analysis of gradient-based iterative algorithms for a class of rectangular Sylvester matrix equation based on Banach contraction principle, Adv. Differ. Equ., 2021 (2021), 17. http://dx.doi.org/10.1186/s13662-020-03185-9 doi: 10.1186/s13662-020-03185-9
    [22] N. Boonruangkan, P. Chansangiam, Convergence analysis of a gradient iterative algorithm with optimal convergence factor for a generalized Sylvester-transpose matrix equation, AIMS Mathematics, 6 (2021), 8477–8496. http://dx.doi.org/10.3934/math.2021492 doi: 10.3934/math.2021492
    [23] L. Xie, J. Ding, F. Ding, Gradient based iterative solutions for general linear matrix equations, Comput. Math. Appl., 58 (2009), 1441–1448. http://dx.doi.org/10.1016/j.camwa.2009.06.047 doi: 10.1016/j.camwa.2009.06.047
    [24] Y. J. Xie, C. F. Ma, The accelerated gradient based iterative algorithm for solving a class of generalized Sylvester ­transpose matrix equation, Appl. Math. Comp., 273 (2016), 1257–1269. http://dx.doi.org/10.1016/j.amc.2015.07.022 doi: 10.1016/j.amc.2015.07.022
    [25] A. Kittisopaporn, P. Chansangiam, Gradient-descent iterative algorithm for solving a class of linear matrix equations with applications to heat and Poisson equations, Adv. Differ. Equ., 2020 (2020), 324. http://dx.doi.org/10.1186/s13662-020-02785-9 doi: 10.1186/s13662-020-02785-9
    [26] A. Kittisopaporn, P. Chansangiam, The steepest descent of gradient-based iterative method for solving rectangular linear system with an application to Poisson's equation, Adv. Differ. Equ., 2020 (2020), 259. http://dx.doi.org/10.1186/s13662-020-02715-9 doi: 10.1186/s13662-020-02715-9
    [27] Y. Qi, L. Jin, H. Li, Y. Li, M. Liu, Discrete computational neural dynamics models for solving time-dependent Sylvester equation with applications to robotics and MIMO systems, IEEE Trans. Ind. Inform., 16 (2020), 6231–6241. http://dx.doi.org/10.1109/TII.2020.2966544 doi: 10.1109/TII.2020.2966544
    [28] V. Simoncini, Computational methods for linear matrix equations, SIAM Rev., 58 (2016), 377–441. http://dx.doi.org/10.1137/130912839 doi: 10.1137/130912839
    [29] H. Zhang, H. Yin, Refinements of the Hadamard and Cauchy Schwarz inequalities with two inequalities of the principal angles, J. Math. Inequal., 13 (2019), 423–435. http://dx.doi.org/10.7153/jmi-2019-13-28 doi: 10.7153/jmi-2019-13-28
    [30] H. Zhang, Quasi gradient-based inversion-free iterative algorithm for solving a class of the nonlinear matrix equations, Comput. Math. Appl., 77 (2019), 1233–1244. http://dx.doi.org/10.1016/j.camwa.2018.11.006 doi: 10.1016/j.camwa.2018.11.006
    [31] H. Zhang, L. Wan, Zeroing neural network methods for solving the Yang-Baxter-like matrix equation, Neurocomputing, 383 (2020), 409–418. http://dx.doi.org/10.1016/j.neucom.2019.11.101 doi: 10.1016/j.neucom.2019.11.101
    [32] F. Ding, G. Liu, X. Liu, Parameter estimation with scarce measurements, Automatica, 47 (2011), 1646–1655. http://dx.doi.org/10.1016/j.automatica.2011.05.007 doi: 10.1016/j.automatica.2011.05.007
    [33] F. Ding, Y. Liu, B. Bao, Gradient based and least squares based iterative estimation algorithms for multi-input multi-output systems, P. I. Mech. Eng. I-J. Sys., 226 (2012), 43–55. http://dx.doi.org/10.1177/0959651811409491 doi: 10.1177/0959651811409491
    [34] F. Ding, Combined state and least squares parameter estimation algorithms for dynamic systems, Appl. Math. Model., 38 (2014), 403–412. http://dx.doi.org/10.1016/j.apm.2013.06.007 doi: 10.1016/j.apm.2013.06.007
    [35] M. Hajarian, Developing Bi­CG and Bi­CR methods to solve generalized Sylvester-transpose matrix equations, Int. J. Autom. Comput., 11 (2014), 25–29. http://dx.doi.org/10.1007/s11633-014-0762-0 doi: 10.1007/s11633-014-0762-0
    [36] M. Hajarian, Matrix form of the CGS method for solving general coupled matrix equations, Appl. Math. Lett., 34 (2014), 37–42. http://dx.doi.org/10.1016/j.aml.2014.03.013 doi: 10.1016/j.aml.2014.03.013
    [37] Y. F. Ke, C. F. Ma, A preconditioned nested splitting conjugate gradient iterative method for the large sparse generalized Sylvester equation, Appl. Math. Comput., 68 (2014), 1409–1420. http://dx.doi.org/10.1016/j.camwa.2014.09.009 doi: 10.1016/j.camwa.2014.09.009
    [38] M. Hajarian, Generalized conjugate direction algorithm for solving the general coupled matrix equations over symmetric matrices, Numer. Algor., 73 (2016), 591–609. http://dx.doi.org/10.1007/s11075-016-0109-8 doi: 10.1007/s11075-016-0109-8
    [39] M. Hajarian, Extending the CGLS algorithm for least squares solutions of the generalized Sylvester-transpose matrix equations, J. Franklin Inst., 353 (2016), 1168–1185. http://dx.doi.org/10.1016/j.jfranklin.2015.05.024 doi: 10.1016/j.jfranklin.2015.05.024
    [40] M. Dehghan, R. Mohammadi-Arani, Generalized product-type methods based on Bi-conjugate gradient (GPBiCG) for solving shifted linear systems, Comput. Appl. Math., 36 (2017), 1591–1606. http://dx.doi.org/10.1007/s40314-016-0315-y doi: 10.1007/s40314-016-0315-y
    [41] R. Horn, C. Johnson, Topics in matrix analysis, Cambridge: Cambridge University Press, 1991. http://dx.doi.org/10.1017/CBO9780511840371
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2108) PDF downloads(106) Cited by(4)

Article outline

Figures and Tables

Figures(6)  /  Tables(4)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog