Research article

Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions via Riemann-Liouville fractional integrals

  • Received: 16 July 2021 Accepted: 22 September 2021 Published: 17 November 2021
  • MSC : 26E70, 34N05, 35A23

  • In the present research, we develop Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions in Riemann-Liouville interval-valued fractional operator settings. Moreover, we develop He's inequality for interval-valued exponential type pre-invex functions.

    Citation: Hongling Zhou, Muhammad Shoaib Saleem, Waqas Nazeer, Ahsan Fareed Shah. Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions via Riemann-Liouville fractional integrals[J]. AIMS Mathematics, 2022, 7(2): 2602-2617. doi: 10.3934/math.2022146

    Related Papers:

  • In the present research, we develop Hermite-Hadamard type inequalities for interval-valued exponential type pre-invex functions in Riemann-Liouville interval-valued fractional operator settings. Moreover, we develop He's inequality for interval-valued exponential type pre-invex functions.



    加载中


    [1] H. L. Fu, M. S. Saleem, W. Nazeer, M. Ghafoor, P. G. Li, On Hermite-Hadamard type inequalities for $n$-polynomial convex stochastic processes, AIMS Mathematics, 6 (2021), 6322–6339. doi: 10.3934/math.2021371. doi: 10.3934/math.2021371
    [2] Y. P. Lv, G. Farid, H. Yasmeen, W. Nazeer, C. Y. Jung, Generalization of some fractional versions of Hadamard inequalities via exponentially $(\alpha, h-m)$-convex functions, AIMS Mathematics, 6 (2021), 8978–8999. doi: 10.3934/math.2021521. doi: 10.3934/math.2021521
    [3] Y. Chalco-Cano, A. Flores-Franulic, H. Román-Flores, Ostrowski type inequalities for interval-valued functions using generalized Hukuhara derivative, Comput. Appl. Math., 31 (2012), 457–472. doi: 10.1590/S1807-03022012000300002. doi: 10.1590/S1807-03022012000300002
    [4] Y. Chalco-Cano, W. A. Lodwick, W. Condori-Equice, Ostrowski type inequalities and applications in numerical integration for interval-valued functions, Soft Comput., 19 (2015), 3293–3300. doi: 10.1007/s00500-014-1483-6. doi: 10.1007/s00500-014-1483-6
    [5] H. Román-Flores, Y. Chalco-Cano, W. A. Lodwick, Some integral inequalities for interval-valued functions, Comput. Appl. Math., 37 (2018), 1306–1318. doi: 10.1007/s40314-016-0396-7. doi: 10.1007/s40314-016-0396-7
    [6] A. Barani, A. G. Ghazanfari, S. S. Dragomir, Hermite-Hadamard inequality for functions whose derivatives absolute values are preinvex, J. Inequal. Appl., 2012 (2012), 1–9. doi: 10.1186/1029-242X-2012-247. doi: 10.1186/1029-242X-2012-247
    [7] R. E. Moore, Methods and applications of interval analysis, Philadelphia: SIAM, 1979.
    [8] B. Piatek, On the Riemann integral of set-valued functions, Zeszyty Naukowe. Matematyka Stosowana/Politechnika Ślaska, 2 (2012), 5–18.
    [9] R. E. Moore, R. B. Kearfott, M. J. Cloud, Introduction to interval analysis, Philadelphia: SIAM, 2009.
    [10] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematics Studies, Vol. 204, Amsterdam: Elsevier, 2006.
    [11] V. Lupulescu, Fractional calculus for interval-valued functions, Fuzzy Sets Syst., 265 (2015), 63–85. doi: 10.1016/j.fss.2014.04.005. doi: 10.1016/j.fss.2014.04.005
    [12] H. Budak, T. Tuna, M. Z. Sarikaya, Fractional Hermite-Hadamard-type inequalities for interval-valued functions, Proc. Amer. Math. Soc., 148 (2020), 705–718. doi: 10.1090/proc/14741. doi: 10.1090/proc/14741
    [13] T. Weir, B. Mond, Pre-invex functions in multiple objective optimization, J. Math. Anal. Appl., 136 (1988), 29–38. doi: 10.1016/0022-247X(88)90113-8. doi: 10.1016/0022-247X(88)90113-8
    [14] S. R. Mohan, S. K. Neogy, On invex sets and preinvex functions, J. Math. Anal. Appl., 189 (1995), 901–908. doi: 10.1006/jmaa.1995.1057. doi: 10.1006/jmaa.1995.1057
    [15] N. Sharma, S. K. Singh, S. K. Mishra, A. Hamdi, Hermite-Hadamard-type inequalities for interval-valued preinvex functions via Riemann-Liouville fractional integrals, J. Inequal. Appl., 2021 (2021), 1–15. doi: 10.1186/s13660-021-02623-w. doi: 10.1186/s13660-021-02623-w
    [16] M. A. Noor, Hermite-Hadamard integral inequalities for log-preinvex functions, J. Math. Anal. Approx. Theory, 2 (2007), 126–131.
    [17] M. Kadakal, I. Iscan, Exponential type convexity and some related inequalities, J. Inequal. Appl., 2020 (2020), 1–9. doi: 10.1186/s13660-020-02349-1. doi: 10.1186/s13660-020-02349-1
    [18] J. H. He, A tutorial review on fractal spacetime and fractional calculus, Int. J. Theor. Phys., 53 (2014), 3698–3718. doi: 10.1007/s10773-014-2123-8. doi: 10.1007/s10773-014-2123-8
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1735) PDF downloads(80) Cited by(11)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog