Research article Special Issues

Mathematical modelling of COVID-19 disease dynamics: Interaction between immune system and SARS-CoV-2 within host

  • Received: 23 September 2021 Accepted: 05 November 2021 Published: 17 November 2021
  • MSC : 34A12, 34A34, 37C75

  • SARS-COV-2 (Coronavirus) viral growth kinetics within-host become a key fact to understand the COVID-19 disease progression and disease severity since the year 2020. Quantitative analysis of the viral dynamics has not yet been able to provide sufficient information on the disease severity in the host. The SARS-CoV-2 dynamics are therefore important to study in the context of immune surveillance by developing a mathematical model. This paper aims to develop such a mathematical model to analyse the interaction between the immune system and SARS-CoV-2 within the host. The model is developed to explore the viral load dynamics within the host by considering the role of natural killer cells and T-cell. Through analytical simplifications, the model is found well-posed and asymptotically stable at disease-free equilibrium. The numerical results demonstrate that the influx of external natural killer (NK) cells alone or integrating with anti-viral therapy plays a vital role in suppressing the SARS-CoV-2 growth within-host. Also, within the host, the virus can not grow if the virus replication rate is below a threshold limit. The developed model will contribute to understanding the disease dynamics and help to establish various potential treatment strategies against COVID-19.

    Citation: S. M. E. K. Chowdhury, J. T. Chowdhury, Shams Forruque Ahmed, Praveen Agarwal, Irfan Anjum Badruddin, Sarfaraz Kamangar. Mathematical modelling of COVID-19 disease dynamics: Interaction between immune system and SARS-CoV-2 within host[J]. AIMS Mathematics, 2022, 7(2): 2618-2633. doi: 10.3934/math.2022147

    Related Papers:

  • SARS-COV-2 (Coronavirus) viral growth kinetics within-host become a key fact to understand the COVID-19 disease progression and disease severity since the year 2020. Quantitative analysis of the viral dynamics has not yet been able to provide sufficient information on the disease severity in the host. The SARS-CoV-2 dynamics are therefore important to study in the context of immune surveillance by developing a mathematical model. This paper aims to develop such a mathematical model to analyse the interaction between the immune system and SARS-CoV-2 within the host. The model is developed to explore the viral load dynamics within the host by considering the role of natural killer cells and T-cell. Through analytical simplifications, the model is found well-posed and asymptotically stable at disease-free equilibrium. The numerical results demonstrate that the influx of external natural killer (NK) cells alone or integrating with anti-viral therapy plays a vital role in suppressing the SARS-CoV-2 growth within-host. Also, within the host, the virus can not grow if the virus replication rate is below a threshold limit. The developed model will contribute to understanding the disease dynamics and help to establish various potential treatment strategies against COVID-19.



    加载中


    [1] A. Sharma, S. Tiwari, M. K. Deb, J. L. Marty, Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2): A global pandemic and treatment strategies, Int. J. Antimicrob. Ag., 56 (2020), 106054. doi: 10.1016/j.ijantimicag.2020.106054. doi: 10.1016/j.ijantimicag.2020.106054
    [2] N. Ramadan, H. Shaib, Middle East respiratory syndrome coronavirus (MERS-CoV): A review, Germs, 9 (2019), 35–42. doi: 10.18683/germs.2019.1155. doi: 10.18683/germs.2019.1155
    [3] H. Ouassou, L. Kharchoufa, M. Bouhrim, N. E. Daoudi, H. Imtara, N. Bencheikh, et al., The pathogenesis of coronavirus disease 2019 (COVID-19): Evaluation and prevention, J. Immunol. Res., 2020 (2020), 1357983. doi: 10.1155/2020/1357983. doi: 10.1155/2020/1357983
    [4] M. Mofijur, I. M. R. Fattah, M. A. Alam, A. B. M. S. Islam, H. C. Ong, S. M. A. Rahman, et al., Impact of COVID-19 on the social, economic, environmental and energy domains: Lessons learnt from a global pandemic, Sustain. Prod. Consump., 26 (2021), 343–359. doi: 10.1016/j.spc.2020.10.016. doi: 10.1016/j.spc.2020.10.016
    [5] S. F. Ahmed, A. A. Quadeer, M. R. McKay, Preliminary identification of potential vaccine targets for the COVID-19 coronavirus (SARS-CoV-2) based on SARS-CoV immunological studies, Viruses, 12 (2020), 254. doi: 10.3390/v12030254. doi: 10.3390/v12030254
    [6] Q. Nie, X. G. Li, W. Chen, D. H. Liu, Y. Y. Chen, H. T. Li, et al., Phylogenetic and phylodynamic analyses of SARS-CoV-2, Virus Res., 287 (2020), 198098. doi: 10.1016/j.virusres.2020.198098, doi: 10.1016/j.virusres.2020.198098,
    [7] F. Krammer, SARS-CoV-2 vaccines in development, Nature, 586 (2020), 516–527. doi: 10.1038/s41586-020-2798-3. doi: 10.1038/s41586-020-2798-3
    [8] X. L. Lai, X. F. Zou, Modeling cell-to-cell spread of HIV-1 with logistic target cell growth, J. Math. Anal. Appl., 426 (2015), 563–584. doi: 10.1016/j.jmaa.2014.10.086. doi: 10.1016/j.jmaa.2014.10.086
    [9] F. Li, J. L. Wang, Analysis of an HIV infection model with logistic target-cell growth and cell-to-cell transmission, Chaos, Soliton. Fract., 81 (2015), 136–145. doi: 10.1016/j.chaos.2015.09.003. doi: 10.1016/j.chaos.2015.09.003
    [10] J. L. Wang, J. Y. Lang, X. F. Zou, Analysis of an age structured HIV infection model with virus-to-cell infection and cell-to-cell transmission, Nonlinear Anal.-Real, 34 (2017), 75–96.
    [11] F. Graw, A. S. Perelson, Modeling viral spread, Annu. Rev. Virol., 3 (2016), 555–572. doi: 10.1146/annurev-virology-110615-042249. doi: 10.1146/annurev-virology-110615-042249
    [12] V. K. Nguyen, E. A. Hernandez-Vargas, Windows of opportunity for Ebola virus infection treatment and vaccination, Sci. Rep., 7 (2017), 8975. doi: 10.1038/s41598-017-08884-0. doi: 10.1038/s41598-017-08884-0
    [13] V. K. Nguyen, S. C. Binder, A. Boianelli, M. Meyer-Hermann, E. A. Hernandez-Vargas, Ebola virus infection modelling and identifiability problems, Front. Microbiol., 6 (2015), 257. doi: 10.3389/fmicb.2015.00257. doi: 10.3389/fmicb.2015.00257
    [14] C. Hadjichrysanthou, E. Cauët, E. Lawrence, C. Vegvari, F. de Wolf, R. M. Anderson, Understanding the within-host dynamics of influenza A virus: From theory to clinical implications, J. R. Soc. Interface, 13 (2016), 20160289. doi: 10.1098/rsif.2016.0289. doi: 10.1098/rsif.2016.0289
    [15] E. A. Hernandez-Vargas, E. Wilk, L. Canini, F. R. Toapanta, S. C. Binder, A. Uvarovskii, et al., Effects of aging on influenza virus infection dynamics, J. Virol., 88 (2014), 4123–4131. doi: 10.1128/JVI.03644-13. doi: 10.1128/JVI.03644-13
    [16] R. M. Anderson, H. Heesterbeek, D. Klinkenberg, T. D. Hollingsworth, How will country-based mitigation measures influence the course of the COVID-19 epidemic? The lancet, 395 (2020), 931–934. doi: 10.1016/S0140-6736(20)30567-5.
    [17] N. G. D. Davies, A. J. Kucharski, R. M. Eggo, A. Gimma, W. J. Edmunds, T. Jombart, et al., Effects of non-pharmaceutical interventions on COVID-19 cases, deaths, and demand for hospital services in the UK: A modelling study, The Lancet Public Health, 5 (2020), 375–385. doi: 10.1016/S2468-2667(20)30133-X. doi: 10.1016/S2468-2667(20)30133-X
    [18] L. Ferretti, C. Wymant, M. Kendall, L. Zhao, A. Nurtay, L. Abeler-Dörner, et al., Quantifying SARS-CoV-2 transmission suggests epidemic control with digital contact tracing, Science, 368 (2020), eabb6936. doi: 10.1126/science.abb6936. doi: 10.1126/science.abb6936
    [19] Y. N. Kyrychko, K. B. Blyuss, I. Brovchenko, Mathematical modelling of the dynamics and containment of COVID-19 in Ukraine, Sci. Rep., 10 (2020), 19662. doi: 10.1038/s41598-020-76710-1. doi: 10.1038/s41598-020-76710-1
    [20] S. Q. Du, W. M. Yuan, Mathematical modeling of interaction between innate and adaptive immune responses in COVID‐19 and implications for viral pathogenesis, J. Med. Virol., 92 (2020), 1615–1628. doi: 10.1002/jmv.25866. doi: 10.1002/jmv.25866
    [21] E. A. Hernandez-Vargas, J. X. Velasco-Hernandez, In-host mathematical modelling of COVID-19 in humans, Annu. Rev. Control, 50 (2020), 448–456. doi: 10.1016/j.arcontrol.2020.09.006. doi: 10.1016/j.arcontrol.2020.09.006
    [22] S. P. Wang, Y. Pan, Q. Y. Wang, H. Y. Miao, A. N. Brown, L. B. Rong, Modeling the viral dynamics of SARS-CoV-2 infection, Math. Biosci., 328 (2020), 108438.
    [23] J. Fajnzylber, J. Regan, K. Coxen, H. Corry, C. Wong, A. Rosenthal, et al., SARS-CoV-2 viral load is associated with increased disease severity and mortality, Nature Commun., 11 (2020), 5493. doi: 10.1038/s41467-020-19057-5. doi: 10.1038/s41467-020-19057-5
    [24] C. T. Li, J. H. Xu, J. W. Liu, Y. C. Zhou, The within-host viral kinetics of SARS-CoV-2, Math. Biosci. Eng., 17 (2020), 2853–2861. doi: 10.3934/mbe.2020159. doi: 10.3934/mbe.2020159
    [25] F. Pan, T. H. Ye, P. Sun, S. Gui, B. Liang, L. L. Li, et al., Time course of lung changes on chest CT during recovery from 2019 novel coronavirus (COVID-19) pneumonia, Radiology, 295 (2020), 715–721. doi: 10.1148/radiol.2020200370. doi: 10.1148/radiol.2020200370
    [26] R. Wölfel, V. M. Corman, W. Guggemos, M. Seilmaier, S. Zange, M. A. Müller, et al., Virological assessment of hospitalized patients with COVID-2019, Nature, 581 (2020), 465–469. doi: 10.1038/s41586-020-2196-x. doi: 10.1038/s41586-020-2196-x
    [27] L. Zou, F. Ruan, M. Huang, L. Liang, H. Huang, Z. Hong, et al., SARS-CoV-2 viral load in upper respiratory specimens of infected patients, N. Engl. J. Med., 382 (2020), 1177–1179. doi: 10.1056/NEJMc2001737. doi: 10.1056/NEJMc2001737
    [28] W. J. Guan, Z. Y. Ni, Y. Hu, W. H. Liang, C. Q. Ou, J. X. He, et al., Clinical characteristics of coronavirus disease 2019 in China, N. Engl. J. med., 382 (2020), 1708–1720.
    [29] X. B. Yang, Y. Yu, J. Q. Xu, H. Q. Shu, J. A. Xia, H. Liu, et al., Clinical course and outcomes of critically ill patients with SARS-CoV-2 pneumonia in Wuhan, China: A single-centered, retrospective, observational study, The Lancet Resp. Med., 8 (2020), 475–481. doi: 10.1016/S2213-2600(20)30079-5. doi: 10.1016/S2213-2600(20)30079-5
    [30] Y. D. Zhou, Y. Hou, J. Y. Shen, Y. Huang, W. Martin, F. X. Cheng, Network-based drug repurposing for novel coronavirus 2019-nCoV/SARS-CoV-2, Cell Discov., 6 (2020), 14. doi: 10.1038/s41421-020-0153-3. doi: 10.1038/s41421-020-0153-3
    [31] K. Frank, S. Paust, Dynamic natural killer cell and T cell responses to influenza infection, Front. Cell. Infect. Microbiol., 10 (2020), 425. doi: 10.3389/fcimb.2020.00425. doi: 10.3389/fcimb.2020.00425
    [32] I. Gutcher, B. Becher, APC-derived cytokines and T cell polarization in autoimmune inflammation, J. Clin. Invest., 117 (2007), 1119–1127. doi: 10.1172/JCI31720. doi: 10.1172/JCI31720
    [33] Z. Varga, A. J. Flammer, P. Steiger, M. Haberecker, R. Andermatt, A. S. Zinkernagel, et al., Endothelial cell infection and endotheliitis in COVID-19, The Lancet, 395 (2020), 1417–1418. doi: 10.1016/S0140-6736(20)30937-5. doi: 10.1016/S0140-6736(20)30937-5
    [34] G. M. Kuster, O. Pfister, T. Burkard, Q. Zhou, R. Twerenbold, P. Haaf, et al., SARS-CoV2: Should inhibitors of the renin–angiotensin system be withdrawn in patients with COVID-19? Eur. Heart J., 41 (2020), 1801–1803. doi: 10.1093/eurheartj/ehaa235. doi: 10.1093/eurheartj/ehaa235
    [35] Z. Xu, L. Shi, Y. Wang, J. Zhang, L. Huang, C. Zhang, et al., Pathological findings of COVID-19 associated with acute respiratory distress syndrome, The Lancet Resp. Med., 8 (2020), 420–422. doi: 10.1016/S2213-2600(20)30076-X. doi: 10.1016/S2213-2600(20)30076-X
    [36] W. E. Boyce, R. C. Diprima, Elementary differential equations and boundary value problems, 9 Eds. Available from: https://s2pnd-matematika.fkip.unpatti.ac.id/wp-content/uploads/2019/03/Elementary-Diffrential-Aquation-and-Boundary-Value-Problem-Boyce-DiPrima.pdf.
    [37] J. M. Heffernan, R. J. Smith, L. M. Wahl, Perspectives on the basic reproductive ratio, J. R. Soc. Interface, 2 (2005), 281–293. doi: 10.1098/rsif.2005.0042. doi: 10.1098/rsif.2005.0042
    [38] O. Diekmann, J. A. P. Heesterbeek, M. G. Roberts, The construction of next-generation matrices for compartmental epidemic models, J. R. Soc. Interface, 7 (2010), 873–885. doi: 10.1098/rsif.2009.0386. doi: 10.1098/rsif.2009.0386
    [39] V. P. Kostov, B. Shapiro, New aspects of descartes' rule of signs, In: Polynomials-theory and application, IntechOpen, 2018.
    [40] K. J. Mahasa, R. Ouifki, A. Eladdadi, L. de Pillis, Mathematical model of tumor–immune surveillance, J. Theor. Biol., 404 (2016), 312–330. doi: 10.1016/j.jtbi.2016.06.012. doi: 10.1016/j.jtbi.2016.06.012
    [41] V. A. Kuznetsov, I. A. Makalkin, M. A. Taylor, A. S. Perelson, Nonlinear dynamics of immunogenic tumors: parameter estimation and global bifurcation analysis, B. Math. Biol., 56 (1994), 295–321. doi: 10.1016/S0092-8240(05)80260-5. doi: 10.1016/S0092-8240(05)80260-5
    [42] L. G. de Pillis, W. Gu, A. F. Radunskaya, Mixed immunotherapy and chemotherapy of tumors: modeling, applications and biological interpretations, J. Theor. Biol., 238 (2006), 841–862. doi: 10.1016/j.jtbi.2005.06.037. doi: 10.1016/j.jtbi.2005.06.037
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3201) PDF downloads(486) Cited by(31)

Article outline

Figures and Tables

Figures(3)  /  Tables(2)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog