The development of certain aspects of geometric function theory after incorporating fractional calculus and $ q $-calculus aspects is obvious and indisputable. The study presented in this paper follows this line of research. New results are obtained by applying means of differential subordination and superordination theories involving an operator previously defined as the Riemann-Liouville fractional integral of the $ q $-hypergeometric function. Numerous theorems are stated and proved involving the fractional $ q $-operator and differential subordinations for which the best dominants are found. Associated corollaries are given as applications of those results using particular functions as best dominants. Dual results regarding the fractional $ q $-operator and differential superordinations are also considered and theorems are proved where the best subordinants are given. Using certain functions known for their remarkable geometric properties applied in the results as best subordinant, interesting corollaries emerge. As a conclusion of the investigations done by applying the means of the two dual theories considering the fractional $ q $-operator, several sandwich-type theorems combine the subordination and superordiantion established results.
Citation: Alina Alb Lupaş, Georgia Irina Oros. Differential sandwich theorems involving Riemann-Liouville fractional integral of $ q $-hypergeometric function[J]. AIMS Mathematics, 2023, 8(2): 4930-4943. doi: 10.3934/math.2023246
The development of certain aspects of geometric function theory after incorporating fractional calculus and $ q $-calculus aspects is obvious and indisputable. The study presented in this paper follows this line of research. New results are obtained by applying means of differential subordination and superordination theories involving an operator previously defined as the Riemann-Liouville fractional integral of the $ q $-hypergeometric function. Numerous theorems are stated and proved involving the fractional $ q $-operator and differential subordinations for which the best dominants are found. Associated corollaries are given as applications of those results using particular functions as best dominants. Dual results regarding the fractional $ q $-operator and differential superordinations are also considered and theorems are proved where the best subordinants are given. Using certain functions known for their remarkable geometric properties applied in the results as best subordinant, interesting corollaries emerge. As a conclusion of the investigations done by applying the means of the two dual theories considering the fractional $ q $-operator, several sandwich-type theorems combine the subordination and superordiantion established results.
[1] | H. M. Srivastava, Operators of basic (or $q$-) calculus and fractional q-calculus and their applications in geometric function theory of complex analysis, Iran. J. Sci. Technol. Trans. A Sci., 44 (2020), 327–344. https://doi.org/10.1007/s40995-019-00815-0 doi: 10.1007/s40995-019-00815-0 |
[2] | F. Ghanim, H. F. Al-Janaby, An analytical study on Mittag-Leffler-confluent hypergeometric functions with fractional integral operator, Math. Methods Appl. Sci., 44 (2021), 3605–3614. https://doi.org/10.1002/mma.6966 doi: 10.1002/mma.6966 |
[3] | F. Ghanim, S. Bendak, A. Al Hawarneh, Certain implementations in fractional calculus operators involving Mittag-Leffler-confluent hypergeometric functions, Proc. R. Soc. A, 478 (2022), 20210839. https://doi.org/10.1098/rspa.2021.0839 doi: 10.1098/rspa.2021.0839 |
[4] | S. Rashid, A. Khalid, O. Bazighifan, G. I. Oros, New modifications of integral inequalities via $\gamma $-Convexity pertaining to fractional calculus and their applications, Mathematics, 9 (2021), 1753. https://doi.org/10.3390/math9151753 doi: 10.3390/math9151753 |
[5] | S. K. Sahoo, M. Tariq, H. Ahmad, B. Kodamasingh, A. A. Shaikh, T. Botmart, et al., Some novel fractional integral inequalities over a new class of generalized convex function, Fractal Fract, 6 (2022), 42. ttps://doi.org/10.3390/fractalfract6010042 doi: 10.3390/fractalfract6010042 |
[6] | H. M. Srivastava, A. Kashuri, P. O. Mohammed, A. M. Alsharif, J. L. Guirao, New Chebyshev type inequalities via a general family of fractional integral operators with a modified Mittag-Leffler kernel, AIMS Math., 6 (2021), 11167–11186. ttps://doi.org/10.3934/math.2021648 doi: 10.3934/math.2021648 |
[7] | H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, K. Nonlaopon, K. M. Abualnaja, Interval valued Hadamard, Fejér and Pachpatte Type inequalities pertaining to a new fractional integral operator with exponential kernel, AIMS Math., 7 (2022), 15041–15063. ttps://doi.org/10.3934/math.2022824 doi: 10.3934/math.2022824 |
[8] | H. M. Srivastava, A. Kashuri, P. O. Mohammed, K. Nonlaopon, Certain inequalities pertaining to some new generalized fractional integral operators, Fractal Fract, 5 (2021), 160. https://doi.org/10.3390/fractalfract5040160 doi: 10.3390/fractalfract5040160 |
[9] | A. Alb Lupaş, G. I. Oros, Differential subordination and superordination results using fractional integral of confluent hypergeometric function, Symmetry, 13 (2021), 327. https://doi.org/10.3390/sym13020327 doi: 10.3390/sym13020327 |
[10] | M. Acu, G. Oros, A. M. Rus, Fractional integral of the confluent hypergeometric function related to fuzzy differential subordination theory, Fractal Fract, 6 (2022), 413. https://doi.org/10.3390/fractalfract6080413 doi: 10.3390/fractalfract6080413 |
[11] | A. Alb Lupaş, G. I. Oros, On special differential subordinations using fractional integral of Sălăgean and Ruscheweyh operators, Symmetry, 13 (2021), 1553. https://doi.org/10.3390/sym13091553 doi: 10.3390/sym13091553 |
[12] | G. I. Oros, S. Dzitac, Applications of subordination chains and fractional integral in fuzzy differential subordinations, Mathematics, 10 (2022), 1690. https://doi.org/10.3390/math10101690 doi: 10.3390/math10101690 |
[13] | H. M. Srivastava, Univalent functions, fractional calculus and associated generalized hypergeometric functions, New York: John Wiley and Sons, 1989. |
[14] | A. Mohammed, M. Darus, A generalized operator involving the q-hypergeometric function, Math. Vesnik, 65 (2013), 454–465. |
[15] | K. A. Challab, M. Darus, F. Ghanim, On subclass of meromorphically univalent functions defined by a linear operator associated with $\lambda $-generalized Hurwitz–Lerch zeta function and q-hypergeometric function, Ital. J. Pure Appl. Math., 39 (2018), 410–423. |
[16] | K. A. Challab, M. Darus, F. Ghanim, On $q$-hypergeometric function, Far East J. Math. Sci. FJMS, 101 (2017), 2095–2109. https://doi.org/10.17654/MS101102095 doi: 10.17654/MS101102095 |
[17] | K. A. Challab, M. Darus, F. Ghanim, On meromorphic parabolic starlike functions involving the $q$-hypergeometric function, AIP Conf. Proc., 1974 (2018), 030003. https://doi.org/10.1063/1.5041647 doi: 10.1063/1.5041647 |
[18] | H. M. Srivastava, S. Arjika, A general family of $q$ -hypergeometric polynomials and associated generating functions, Mathematics, 9 (2021), 1161. https://doi.org/10.3390/math9111161 doi: 10.3390/math9111161 |
[19] | S. Owa, On the distortion theorems Ⅰ, Kyungpook Math. J., 18 (1978), 53–59. |
[20] | S. Owa, H. M. Srivastava, Univalent and starlike generalized hypergeometric functions, Can. J. Math., 39 (1987), 1057–1077. https://doi.org/10.4153/CJM-1987-054-3 doi: 10.4153/CJM-1987-054-3 |
[21] | S. S. Miller, P. T. Mocanu, Second order differential inequalities in the complex plane, J. Math. Anal. Appl., 65 (1978), 289–305. https://doi.org/10.1016/0022-247X(78)90181-6 doi: 10.1016/0022-247X(78)90181-6 |
[22] | S. S. Miller, P. T. Mocanu, Differential subordinations and univalent functions, Mich. Math. J., 28 (1981), 157–172. |
[23] | S. S. Miller, P. T. Mocanu, Subordinations of differential superordinations, Complex Var., 48 (2003), 815–826. |
[24] | S. S. Miller, P. T. Mocanu, Differential subordinations: theory and applications, New York: Switzerland, 2000. |
[25] | G. Gasper, M. Rahman, Basic hypergeometric series, In: Encyclopedia of mathematics and its applications, Cambridge: Cambridge University Press, 1990. |
[26] | A. Alb Lupas, G. I. Oros, Sandwich type results regarding Riemann-Liouville fractional integral of $q$-hypergeometric function, Demonstr. Math., 2022. |
[27] | A. Alb Lupaş, G. I. Oros, Fractional integral of a confluent hypergeometric function applied to defining a new class of analytic functions, Symmetry, 14 (2022), 427. https://doi.org/10.3390/sym14020427 doi: 10.3390/sym14020427 |
[28] | B. A. Frasin, A new differential operator of analytic functions involving binomial series, Bol. Soc. Paran. Mat., 38 (2020), 205–213. https://doi.org/10.5269/bspm.v38i5.40188 doi: 10.5269/bspm.v38i5.40188 |
[29] | T. N. Shanmugam, S. Sivasubramanian, B. A. Frasin, S. Kavitha, On sandwich theorems for certain subclasses of analytic functions involving Carlson-Shaffer operator, J. Korean Math. Soc., 45, (2008), 611–620. https://doi.org/10.4134/JKMS.2008.45.3.611 doi: 10.4134/JKMS.2008.45.3.611 |
[30] | A. Alb Lupaş, G. I. Oros, Fractional calculus and confluent hypergeometric function applied in the study of subclasses of analytic functions, Mathematics, 10 (2022), 705. https://doi.org/10.3390/math10050705 doi: 10.3390/math10050705 |
[31] | A. Akyar, A new subclass of certain analytic univalent functions associated with hypergeometric functions, Turkish J. Math., 46 (2022), 145–156. https://doi.org/10.3906/mat-2108-101 doi: 10.3906/mat-2108-101 |
[32] | G. I. Oros, G. Oros, A. M. Rus, Applications of confluent hypergeometric function in strong superordination theory, Axioms, 11 (2022), 209. https://doi.org/10.3390/axioms11050209 doi: 10.3390/axioms11050209 |