Research article Special Issues

Analytical and numerical negative boundedness of fractional differences with Mittag–Leffler kernel

  • Received: 19 October 2022 Revised: 02 December 2022 Accepted: 08 December 2022 Published: 19 December 2022
  • MSC : 26A33, 26A51, 33B10, 39A12, 39B62, 65D15, 65Q20

  • We show that a class of fractional differences with Mittag–Leffler kernel can be negative and yet monotonicity information can still be deduced. Our results are complemented by numerical approximations. This adds to a growing body of literature illustrating that the sign of a fractional difference has a very complicated and subtle relationship to the underlying behavior of the function on which the fractional difference acts, regardless of the particular kernel used.

    Citation: Pshtiwan Othman Mohammed, Rajendra Dahal, Christopher S. Goodrich, Y. S. Hamed, Dumitru Baleanu. Analytical and numerical negative boundedness of fractional differences with Mittag–Leffler kernel[J]. AIMS Mathematics, 2023, 8(3): 5540-5550. doi: 10.3934/math.2023279

    Related Papers:

  • We show that a class of fractional differences with Mittag–Leffler kernel can be negative and yet monotonicity information can still be deduced. Our results are complemented by numerical approximations. This adds to a growing body of literature illustrating that the sign of a fractional difference has a very complicated and subtle relationship to the underlying behavior of the function on which the fractional difference acts, regardless of the particular kernel used.



    加载中


    [1] T. Abdeljawad, Different type kernel $h$–fractional differences and their fractional $h$–sums, Chaos Solit. Fract., 116 (2018), 146–156. https://doi.org/10.1016/j.chaos.2018.09.022 doi: 10.1016/j.chaos.2018.09.022
    [2] T. Abdeljawad, F. Jarad, A. Atangana, P. O. Mohammed, On a new type of fractional difference operators on h-step isolated time scales, J. Frac. Calc. Nonlinear Sys., 1 (2021), 46–74.
    [3] T. Abdeljawad, On delta and nabla caputo fractional differences and dual identities, Discrete Dyn. Nat. Soc., 2013 (2013), 406910. https://doi.org/10.1155/2013/406910 doi: 10.1155/2013/406910
    [4] T. Abdeljawad, D. Baleanu, Monotonicity analysis of a nabla discrete fractional operator with discrete Mittag-Leffler kernel, Chaos Solit. Fract., 102 (2017), 106–110. https://doi.org/10.1016/j.chaos.2017.04.006 doi: 10.1016/j.chaos.2017.04.006
    [5] T. Abdeljawad, F. Madjidi, Lyapunov-type inequalities for fractional difference operators with discrete Mittag–Leffler kernel of order $2 < \alpha < 5/2$, Eur. Phys. J. Spec. Top., 226 (2017), 3355–3368. https://doi.org/10.1140/epjst/e2018-00004-2 doi: 10.1140/epjst/e2018-00004-2
    [6] T. Abdeljawad, Q. M. Al-Mdallal, M. A. Hajji, Arbitrary order fractional difference operators with discrete exponential kernels and applications, Discrete Dyn. Nat. Soc., 2017 (2017), 4149320. https://doi.org/10.1155/2017/4149320 doi: 10.1155/2017/4149320
    [7] F. M. Atici, M. Atici, M. Belcher, D. Marshall, A new approach for modeling with discrete fractional equations, Fund. Inform., 151 (2017), 313–324. https://doi.org/10.3233/FI-2017-1494 doi: 10.3233/FI-2017-1494
    [8] F. M. Atici, M. Atici, N. Nguyen, T. Zhoroev, G. Koch, A study on discrete and discrete fractional pharmacokinetics-pharmacodynamics models for tumor growth and anti-cancer effects, Comput. Math. Biophys., 7 (2019), 10–24. https://doi.org/10.1515/cmb-2019-0002 doi: 10.1515/cmb-2019-0002
    [9] F. M. Atici, P. W. Eloe, A transform method in discrete fractional calculus, Int. J. Differ. Equ., 2 (2007), 165–176.
    [10] F. M. Atici, P. W. Eloe, Discrete fractional calculus with the nabla operator, Electron. J. Qual. Theory Differ. Equ., 2009.
    [11] F. M. Atici, P. W. Eloe, Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc., 137 (2009), 981–989.
    [12] J. Bravo, C. Lizama, S. Rueda, Second and third order forward difference operator: what is in between? RACSAM, 115 (2021), 86. https://doi.org/10.1007/s13398-021-01015-5
    [13] R. Dahal, C. S. Goodrich, A monotonicity result for discrete fractional difference operators, Arch. Math., 102 (2014), 293–299. https://doi.org/10.1007/s00013-014-0620-x doi: 10.1007/s00013-014-0620-x
    [14] R. Dahal, C. S. Goodrich, Theoretical and numerical analysis of monotonicity results for fractional difference operators, Appl. Math. Lett., 117 (2021), 107104. https://doi.org/10.1016/j.aml.2021.107104 doi: 10.1016/j.aml.2021.107104
    [15] F. F. Du, B. Jia, L. Erbe, A. Peterson, Monotonicity and convexity for nabla fractional $q$-differences, Dynam. Syst. Appl., 22 (2016), 1224–1243. https://doi.org/10.1080/10236198.2016.1188089 doi: 10.1080/10236198.2016.1188089
    [16] C. S. Goodrich, J. M. Jonnalagadda, An analysis of polynomial sequences and their application to discrete fractional operators, J. Differ. Equ. Appl., 27 (2021), 1081–1102. https://doi.org/10.1080/10236198.2021.1965132 doi: 10.1080/10236198.2021.1965132
    [17] C. S. Goodrich, J. M. Jonnalagadda, B. Lyons, Convexity, monotonicity and positivity results for sequential fractional nabla difference operators with discrete exponential kernels, Math. Method. Appl. Sci., 44 (2021), 7099–7120. https://doi.org/10.1002/mma.7247 doi: 10.1002/mma.7247
    [18] C. S. Goodrich, C. Lizama, A transference principle for nonlocal operators using a convolutional approach: Fractional monotonicity and convexity, Israel J. Math., 236 (2020), 533–589. https://doi.org/10.1007/s11856-020-1991-2 doi: 10.1007/s11856-020-1991-2
    [19] C. S. Goodrich, C. Lizama, Positivity, monotonicity, and convexity for convolution operators, Discrete Contin. Dyn. Syst., 40 (2020), 4961–4983. https://doi.org/10.3934/dcds.2020207 doi: 10.3934/dcds.2020207
    [20] C. S. Goodrich, B. Lyons, M. T. Velcsov, Analytical and numerical monotonicity results for discrete fractional sequential differences with negative lower bound, Commun. Pur. Appl. Anal., 20 (2021), 339–358. https://doi.org/10.3934/cpaa.2020269 doi: 10.3934/cpaa.2020269
    [21] C. S. Goodrich, B. Lyons, A. Scapellato, M. T. Velcsov, Analytical and numerical convexity results for discrete fractional sequential differences with negative lower bound, J. Differ. Equ. Appl., 27 (2021), 317–341. https://doi.org/10.1080/10236198.2021.1894142 doi: 10.1080/10236198.2021.1894142
    [22] C. S. Goodrich, M. Muellner, An analysis of the sharpness of monotonicity results via homotopy for sequential fractional operators, Appl. Math. Lett., 98 (2019), 446–452. https://doi.org/10.1016/j.aml.2019.07.003 doi: 10.1016/j.aml.2019.07.003
    [23] C. Goodrich, A. C. Peterson, Discrete fractional calculus, New York: Springer, 2015.
    [24] B. Jia, L. Erbe, A. Peterson, Two monotonicity results for nabla and delta fractional differences, Arch. Math., 104 (2015), 589–597.
    [25] C. Lizama, The Poisson distribution, abstract fractional difference equations, and stability, Proc. Amer. Math. Soc., 145 (2017), 3809–3827.
    [26] P. O. Mohammed, T. Abdeljawad, F. K. Hamasalh, On Riemann-Liouville and Caputo fractional forward difference monotonicity analysis, Mathematics, 9 (2021), 1303. https://doi.org/10.3390/math9111303 doi: 10.3390/math9111303
    [27] P. O. Mohammed, T. Abdeljawad, Discrete generalized fractional operators defined using h-discrete Mittag-Leffler kernels and applications to AB fractional difference systems, Math. Meth. Appl. Sci., 2020, 1–26. https://doi.org/10.1002/mma.7083
    [28] M. Yavuz, T. A. Sulaiman, A. Yusuf, T. Abdeljawad, The Schrödinger-KdV equation of fractional order with Mittag-Leffler nonsingular kernel, Alex. Eng. J., 60 (2021), 2715–2724. https://doi.org/10.1016/j.aej.2021.01.009 doi: 10.1016/j.aej.2021.01.009
    [29] K. Zhao, Existence, stability and simulation of a class of nonlinear fractional Langevin equations involving nonsingular Mittag-Leffler kernel, Fractal Fract, 6 (2021), 469. https://doi.org/10.3390/fractalfract6090469 doi: 10.3390/fractalfract6090469
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1282) PDF downloads(100) Cited by(8)

Article outline

Figures and Tables

Figures(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog