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1. Introduction

Define the sets Na and Nb
a, for any a, b ∈ R with b − a a nonnegative integer, to be Na :=

{a, a + 1, a + 2, . . . } and Nb
a := {a, a + 1, a + 2, . . . , b}, respectively. It worth recalling that the nabla (or
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backward) difference of a function g : Na → R can be expressed as follows

(∇g)(t) B g(t) − g(t − 1), for t ∈ Na+1.

As is known, there is a strong correlation between the sign of the nabla operator and whether g is
either monotone increasing or monotone decreasing. For example, if (∇g)(t) ≥ 0, then g is increasing
function on Na.

In recent years a nonlocal version of the discrete calculus has been proposed. This nonlocal version
is known as the “discrete fractional calculus”, a research area popularized by the seminal papers of Atici
and Eloe [9–11] in the late 2000s and then further extended by the subsequent work of Lizama [25].
One of the reasons for the interest in the discrete fractional calculus is its emerging applications in
biological mathematics – see, for example, the recent work of Atici, et al. [7, 8], in which the authors
apply discrete fractional calculus to the modeling of tumors.

To understand the nonlocal nature of the fractional calculus, consider a commonly utilized version
of the discrete fractional difference – namely, for ν > 0 the ν-th order Riemann-Liouville difference,
which for a function g : Na → R is denoted by RL

a∆
νg and defined pointwise by

( RL
a∆
νg

)
(t) :=

t+ν∑
s=a

Γ(t − s)
Γ(−ν)Γ(t − s + ν + 1)

g(s), t ∈ Na+N−ν, (1.1)

where a positive integer N satisfying N − 1 < ν ≤ N. The key fact about (1.1) is that it is nonlocal,
very much unlike the integer-order difference mentioned in the first paragraph of this section.
Consequently, the relationships between the sign of

( RL
a∆
νg

)
(t) and the monotone behavior of g are

quite muddled and complex. This question was initially investigated by Dahal and Goodrich [13]
in 2014, and then subsequently investigated by many authors including Abdeljawad and Baleanu [1],
Bravo, Lizama, and Rueda [12], Goodrich and Jonnalagadda [16], Goodrich and Lizama [18, 19],
Goodrich and Muellner [22], and Jia, Erbe, and Peterson [15, 24].

Very recently Goodrich, Lyons, and Velcsov [20] together with Jonnalagadda [17] and
Scapellato [21] demonstrated that a function can increase (under certain conditions) even if its
fractional difference is negative. This is something that plainly cannot happen in the integer-order
case. And this phenomenon provides further evidence of the highly complicating nature of the
nonlocal structure of fractional-order difference operators. It also has serious implications for the use
of fractional calculus in modeling since one of the most important uses of calculus in modeling is to
identify where functions are increasing or decreasing.

So, all in all, there is a large body of evidence that nonlocal discrete operators behave in ways
that are very complicated, particularly as concerns their ability to detect the qualitative behaviors of
the functions on which they operate. At the same time, there are a variety of definitions for discrete
fractional differences and sums. Therefore, it is relevant to determine whether these aberrant behaviors
are exhibited by all such nonlocal difference operators – or only some of them.

Consequently, in this brief note, we propose to continue investigating these questions in the
specific context of the fractional difference with exponential-type kernels (see Definitions 2.1
and 2.2). In particular, we demonstrate that, as with other definitions of the fractional difference, the
type of difference studied here can be negative even though the function on which it acts is increasing,
and this observation confirms that fractional differences with Mittag-Leffler kernels exhibit the same
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sort of aberrant behavior as other nonlocal difference operators. This complements not only the
already mentioned reference [17] but also builds upon earlier work by Abdeljawad, Al-Mdallal, and
Hajji [6]. And it continues to demonstrate some of the surprising properties of this class of discrete
nonlocal operators. To see the development of fractional calculus with Mittag-Leffler kernels we
advise the readers to see the recently published articles [28, 29].

2. Essential tools and main results

In this section, we begin with recalling the necessary fundamental discrete operators for our main
results briefly. The interest reader may visit the monograph [23] by Goodrich and Peterson and recently
published articles [1–3, 26] for additional information and mathematical background regarding the
discrete fractional calculus.

The first and well-known definition in this article is the discrete Mittag-Leffler functions. We then
provide the definition of the discrete fractional difference defined using the Mittag-Leffler kernel on
the set Na. The discrete Mittag-Leffler function of 2−parameters is given by (see [27]):

Eν,β(λ, t) :=
∞∑

k=0

λk tkν+β−1

Γ(kν + β)
,

for λ ∈ R such that 1 > |λ|, and ν, β, t ∈ C such that Re(ν) > 0. It is essential to see that tν is the rising
function and given as follows

tν :=
Γ (t + ν)
Γ (t)

,

for ν ∈ R and t ∈ R apart from the elements {. . . ,−2,−1, 0}. As a special case of the above definition,
the discrete Mittag-Leffler function of 1−parameter is given as follows

Eν(λ, t) :=
∞∑

k=0

λk tkν

Γ(kν + 1)
(
for |λ| < 1

)
.

Remark 2.1. Considering Remark 1 in [4], we can obtain the following for λ1 = −
ν − 1
2 − ν

and 1 <

ν <
3
2

:

• Eν−1(λ1, 0) = 1,
• Eν−1(λ1, 1) = 2 − ν,
• Eν−1(λ1, 2) = ν (2 − ν)2,

• Eν−1(λ1, 3) =
2 − ν

2

[
(ν − 1)3(2ν − 3) − 3(ν − 1)2 + 2

]
,

• 0 < Eν−1(λ1, t) < 1 for each 1 < ν <
3
2

and t = 1, 2, 3, · · · . At the same time, we have that

Eν−1(λ1, t) is monotonically decreasing for each 1 < ν <
3
2

and t = 0, 1, 2, · · · .

Definition 2.1. (see [1, Definition 2.24]) Let 0 < ν < 1
2 and λ0 = −

ν
1−ν . Then, the discrete fractional

difference operators with Mittag-Leffler kernels of order ν denoted by ABC
a∇
νg and ABR

a∇
νg, respectively,
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defined by (
ABC

a∇
νg

)
(t) B

H(ν)
1 − ν

∇t

t∑
r=a+1

g(r)Eν(λ0, t − r + 1),

and (
ABR

a∇
νg

)
(t) B

H(ν)
1 − ν

t∑
r=a+1

(
∇rg

)
(r)Eν(λ0, t − r + 1),

for each t ∈ Na+1. Here the function ν 7→ H(ν) is a normalization constant satisfying 0 < H(ν).

Definition 2.2. (see [5]) For g : Na−ℵ → R with ℵ < ν ≤ ℵ +
1
2

and ℵ ∈ N0, Then, the discrete
fractional difference operators with Mittag-Leffler kernels of order ν, respectively, are defined by(

ABC
a∇
νg

)
(t) =

(
ABC

a∇
ν−ℵ∇ℵg

)
(t) B

H(ν − ℵ)
ℵ + 1 − ν

∇t

t∑
r=a+1

(
∇ℵr g

)
(r)Eν−ℵ(λℵ, t − r + 1),

and (
ABR

a∇
νg

)
(t) =

(
ABR

a∇
ν−ℵ∇ℵg

)
(t) B

H(ν − ℵ)
ℵ + 1 − ν

t∑
r=a+1

(
∇ℵ+1

r g
)
(r)Eν−ℵ(λℵ, t − r + 1),

for t ∈ Na+1. Here λℵ = − ν−ℵ
ℵ+1−ν .

The following is the essential lemma which brings us to the main results.

Lemma 2.1. Let the function g be defined on Na and 1 < ν <
3
2

. Then we have that

(
ABR

a∇
νg

)
(t) = H(ν − 1)

{(
∇g

)
(t) +

1
2 − ν

[
Eν−1(λ1, t − a) − Eν−1(λ1, t − a − 1)

](
∇g

)
(a + 1)

+
1

2 − ν

t−1∑
r=a+2

[
Eν−1(λ1, t − r + 1) − Eν−1(λ1, t − r)

](
∇rg

)
(r)

}
,

for each t ∈ Na+3.

Proof. From Definitions 2.1 and 2.2, the following can be deduced for 1 < ν <
3
2

:

(
ABR

a∇
νg

)
(t) =

H(ν − 1)
2 − ν

{ t∑
r=a+1

Eν−1(λ1, t − r + 1)
(
∇rg

)
(r) −

t−1∑
r=a+1

Eν−1(λ1, t − r)
(
∇rg

)
(r)

}

=
H(ν − 1)

2 − ν

{
(2 − ν)

(
∇g

)
(t) +

t−1∑
r=a+1

[
Eν−1(λ1, t − r + 1) − Eν−1(λ1, t − r)

](
∇rg

)
(r)

}
= H(ν − 1)

{(
∇g

)
(t) +

1
2 − ν

[
Eν−1(λ1, t − a) − Eν−1(λ1, t − a − 1)

](
∇g

)
(a + 1)

+
1

2 − ν

t−1∑
r=a+2

[
Eν−1(λ1, t − r + 1) − Eν−1(λ1, t − r)

](
∇rg

)
(r)

}
,

for each t ∈ Na+3, and hence the proof is complete. □
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The first main result we present, Theorem 2.1, demonstrates that
(

ABR
a∇
νg

)
(a + 3) can be negative

even though (∇g)(a + 3) > 0 – cf., [14, Theorem 3.1].

Theorem 2.1. Let the function g be defined on Na, and let 1 < ν < 1.5 and ε > 0. Assume that(
ABR

a∇
νg

)
(a + 3) > −ε

(
∇g

)
(a + 1) H(ν − 1). (2.1)

If
(
∇g

)
(a + 1) ≥ 0,

(
∇g

)
(a + 2) ≥ 0, and

1
2

(ν − 1)2(2ν2 − 5ν + 2
)
< −ε, then

(
∇g

)
(a + 3) ≥ 0.

Proof. Due to Lemma 2.1 and the condition (2.1) we get

(
∇g

)
(t) ≥ −

(
∇g

)
(a + 1)

{ 1
2 − ν

[
Eν−1(λ1, t − a) − Eν−1(λ1, t − a − 1)

]
+ ε

}
−

1
2 − ν

t−1∑
r=a+2

[
Eν−1(λ1, t − r + 1) − Eν−1(λ1, t − r)

](
∇rg

)
(r), (2.2)

for each t ∈ Na+3. Setting t = a + 3 in (2.2), yields

(
∇g

)
(a + 3) ≥ −

(
∇g

)
(a + 1)

{ 1
2 − ν

[
Eν−1(λ1, 3) − Eν−1(λ1, 2)

]
+ ε

}
−

1
2 − ν

a+2∑
r=a+2

[
Eν−1(λ1, a + 4 − r) − Eν−1(λ1, a + 3 − r)

](
∇rg

)
(r).

Since
(
∇g

)
(a + 2) ≥ 0 by assumption, it follows that

−
1

2 − ν

a+2∑
r=a+2

[
Eν−1(λ1, a + 4 − r) − Eν−1(λ1, a + 3 − r)

](
∇rg

)
(r)

= −
1

2 − ν︸︷︷︸
>0

[
−(2 − ν)(ν − 1)2]︸                ︷︷                ︸

<0

(∇g)(a + 2)︸       ︷︷       ︸
≥0

≥ 0. (2.3)

Also, we know that
(
∇g

)
(a + 1) ≥ 0. So, we can use the inequalities (2.2) and (2.3) to deduce that(

∇g
)

(a + 3) ≥ 0, using especially that

1
2 − ν

[
Eν−1(λ1, 3) − Eν−1(λ1, 2)

]
+ ε =

1
2

(ν − 1)2(2ν2 − 5ν + 2
)
+ ε < 0

by the assumption given in the statement of the theorem, and this ends the proof. □

Remark 2.2. Figure 1 shows the graph of ν 7→ −
1
2

(ν − 1)2(2ν2 − 5ν + 2
)

for ν ∈
(
1,

3
2

)
. Observe that

in order for Theorem 2.1 to be applied it must hold that ε ∈
(
0,−

1
2

(ν − 1)2(2ν2 − 5ν + 2
))

for a fixed

ν ∈

(
1,

3
2

)
. This admissible region for ε is shown by the light grey region in the figure.
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5ν
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ν

ε

Figure 1. Graph of −ν 7→
1
2

(ν − 1)2(2ν2 − 5ν + 2
)

for ν ∈
[
1,

3
2

]
. The admissible range of ε

for ν fixed is shaded in light grey.

Now, define the set Fk,ε ⊆

(
1,

3
2

)
as follows:

Fk,ε :=
{
ν ∈

(
1,

3
2

)
:

1
2 − ν

[
Eν−1(λ1, k − a) − Eν−1(λ1, k − a − 1)

]
< −ε

}
⊆ (1, 1.5) , ∀ k ∈ Na+3.

Lemma 2.2 proves that the nested collection
{
Fk,ε

}∞
k=a+1 is decreasing (whenever ε > 0). This is a

phenomenon that has been observed in similar contexts (e.g., [14, Lemma 3.3], [20, Lemma 3.2], [21,
Lemma 3.2]).

Lemma 2.2. Let 1 < ν <
3
2

. Then for each ε > 0 and k ∈ Na+3 we have that Fk+1,ε ⊆ Fk,ε.

Proof. Let ε > 0 and ν ∈ Fk+1,ε be arbitrary for some fixed k ∈ Na+3. Then we have

1
2 − ν

[
Eν−1(λ1, k + 1 − a) − Eν−1(λ1, k − a)

]
=
λ1

2 − ν
Eν−1,ν−1(λ1, k + 1 − a) < −ε.

Since Eν−1,ν−1(λ1, k + 1 − a) is decreasing for each k ∈ Na+3 (see [4]), 1 < ν <
3
2

, and λ1 < 0, we have

λ1

2 − ν
Eν−1,ν−1(λ1, k − a) <

λ1

2 − ν
Eν−1,ν−1(λ1, k + 1 − a) < −ε.

This implies that ν ∈ Fk,ε, and, therefore, Fk+1,ε ⊆ Fk,ε. Thus, we have accomplished the result. □

Theorem 2.1 and Lemma 2.2 now lead to the following corollary, which is the principal analytical
result of this note – cf., [14, Corollary 3.4]. Corollary 2.1 asserts that the same pathological behavior
observed with other discrete fractional differences carries over to the Mittag-Leffler kernel setting.

Corollary 2.1. Let the assumptions of Theorem 2.1 be fulfilled together with(
ABR

a∇
νg

)
(t) > −εH(ν − 1)

(
∇g

)
(a + 1), (2.4)
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for each ν ∈
(
1,

3
2

)
, t ∈ Ns

a+3 and some fixed s ∈ Na+3. Now, if we assume that
(
∇g

)
(a + 1) ≥ 0,(

∇g
)
(a + 2) ≥ 0, and ν ∈ Fs,ε, then we have

(
∇g

)
(t) ≥ 0, for all t ∈ Ns

a+1.

Proof. Due to the assumption that ν ∈ Fs,ε and Lemma 2.2, we have

ν ∈ Fs,ε = Fs,ε ∩

s−1⋂
k=a+3

Fk,ε.

This leads to
1

2 − ν

[
Eν−1(λ1, k + 1 − a) − Eν−1(λ1, k − a)

]
< −ε, (2.5)

for each k ∈ Ns
a+3.

We now can proceed by induction to complete the proof as follows. At first, for t = a + 3 we can
obtain

(
∇g

)
(a+ 3) ≥ 0 immediately as in Theorem 2.1 with the help of inequalities (2.4) and (2.5) just

as in the proof of Theorem 2.1. Accordingly, we can continue and inductively iterate inequality (2.2)
to get

(
∇g

)
(t) ≥ 0, for all t ∈ Ns

a+2 as requested. Note that in this last step we are using the fact that
Eν−1(λ1, t − r + 1) − Eν−1(λ1, t − r) ≥ 0, for each (r, t) ∈ Nt−1

a+2 × N
s
a+3, which is true since the partial

function t 7→ Eν−1(λ1, t) is decreasing – see Remark 2.1. Thus, we have completed the proof. □

We next provide an example in order to demonstrate the application of the preceding ideas.

Example 2.1. Considering Lemma 2.1 with t B a + 3:(
ABR

a∇
νg

)
(a + 3) = H(ν − 1)

{(
∇g

)
(a + 3) +

1
2 − ν

[
Eν−1(λ1, 3) − Eν−1(λ1, 2)

](
∇g

)
(a + 1)

+
1

2 − ν

a+2∑
r=a+2

[
Eν−1(λ1, a + 4 − r) − Eν−1(λ1, a + 3 − r)

](
∇rg

)
(r)

}
.

For a = 0, it follows that(
ABR

0∇
νg

)
(3)

= H(ν − 1)
{(
∇g

)
(3) +

1
2

(ν − 1)2(2ν2 − 5ν + 2
)(
∇g

)
(1)

+
1

2 − ν

2∑
r=2

[
Eν−1(λ1, 4 − r) − Eν−1(λ1, 3 − r)

](
∇rg

)
(r)

}
= H(ν − 1)

{(
∇g

)
(3) +

1
2

(ν − 1)2(2ν2 − 5ν + 2
)(
∇g

)
(1) − (ν − 1)2(∇g

)
(2)

}
= H(ν − 1)

{
g(3) − g(2) +

1
2

(ν − 1)2(2ν2 − 5ν + 2
)[

g(1) − g(0)
]
− (ν − 1)2[g(2) − g(1)

]}
.

If we take ν = 1.99, g(0) = 0.01, g(1) = 1.01, g(2) = 1.001, g(3) = 1.005, and ϵ = 0.002, we have(
ABR

0∇
1.99g

)
(3) = −0.0018 H(0.99) > −0.002 H(0.99) = −ϵ H(0.99)

(
∇g

)
(1).

Note that
(

ABR
0∇

1.99g
)

(3) < 0. Yet, as Theorem 2.1 correctly predicts, it, nonetheless, holds that
(∇g)(1) > 0. Thus, the collection of functions to which Theorem 2.1 applies is non-void.
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We conclude this note by providing a brief numerical analysis of the set Fk,ε, which plays a key
role in Corollary 2.1; throughout we take a = 0 purely for convenience. Let us first consider Figure 2
above. This is a heat map, which identifies the cardinality of the set

{
k ∈ N : ν ∈ Fk,ε

}
. It is

worth mentioning that the warmer colors (i.e., oranges and reds) are associated to higher cardinality
values as indicated by the vertical sidebar in Figure 2. We see that there is a concentration of larger
cardinalities in a roughly triangular region as indicated in the figure. The largest cardinalities seem to
be concentrated for 1.07 ⪅ ν ⪅ 1.10 and ε > 0 close to zero; this implies that the analytical results
presented earlier (i.e., Corollary 2.1) should be valid for the greatest number of time steps t when ν and
ε are in this region of the (ν, ε)-parameter space.

On the other hand, Figures 3–6 plot the interval of k values such that Fk,ε , ∅ for different choices
of both ν and ε. Consistent with the heat map in Figure 2, we see that there is a relative maximum
when ν is away from the boundary values ν = 1 and ν = 1.5, though the precise value depends on the
value of ε. In particular, as ε → 0+, the maximum seems to approach about 1.07, just as indicated by
Figure 2. In addition, we see that the length of the intervals drops off sharply both as ν → 1+ and as
ν→ 1.5− – again, precisely as depicted in Figure 2.

Finally, the data contained in Figures 2–6 is not entirely dissimilar from the observations in [14,
Figures 1–4], which analyzed the Riemann-Liouville fractional nabla difference. In each of the Mittag-
Leffler kernel and the Riemann-Liouville settings the ν-values for which the respective monotonicity-
type theorems – i.e., Corollary 2.1 and [14, Corollary 3.4] – seem to be most applicable are apparently
concentrated for ν close to 1. A possible, albeit non-rigorous, explanation for this common observation
is that when ν ≈ 1 the fractional difference is “more like” the first-order difference, which is closely
connected to monotonicity. But we do not have a precise analytical explanation for this numerical
observation, and we hope that this sort of curiosity provides motivation to analyze further these types
of fractional difference operators in the future. Nonetheless, the results of this note show that this is a
common feature across multiple types of fractional difference operators
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Figure 6. Fk,0.0001.

.

3. Conclusions

In this brief note we have demonstrated that the fractional difference with Mittag-Leffler kernel
behaves in an aberrant manner, similar to that of other classes of nonlocal difference operators. In
particular, we have shown that such a difference acting on a function can be negative even if the
function on which it acts is increasing. This sort of unusual behavior is not possible when considering
a local difference operator, but it seems to be an almost defining feature of nonlocal discrete operators
as the results of this note demonstrate.
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