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equations and iterative procedures. The aim of this article is to obtain common fixed point results in a
bicomplex valued metric space for rational contractions involving control functions of two variables.
Our theorems generalize some famous results from literature. We supply an example to show the
originality of our main result. As an application, we develop common fixed point results for rational
contractions involving control functions of one variable in the context of bicomplex valued metric
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1. Introduction

Metric fixed-point theory has newly emerging applications to study the internet topology [1] and
modelling the cyberspace as a digital ecosystem [2]. Moreover, new researches in fixed-point theory
determine the significance to find the solution of real-world problems. A routing problem, for
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example, can be solved using functional equations and iterative procedures. The capacitated vehicle
routing problem (CVRP) [3] outlines a method for determining the best plan to meet the demand of a
globally dispersed network of clients while distributing cohesive products from a pickup point that
used a large number of (the same) automobiles with a specific adaptive capacity. Meanwhile, fixed
point theory is used as a problem-solving tool in communication engineering. Other real-world
applications include the solution of chemical equations, genetics, algorithm testing, and control
theory. Such results offer delightful circumstances in the study of mathematical analysis to
approximating the solutions of linear and nonlinear differential and integral equations [4]. Because
the theory of fixed-point is an odd synthesis of analysis [5, 6] and geometry [7–10]. Therefore, it has
emerged as a powerful and crucial instrument for the investigation of nonlinear problems [11–14].
More recently, Işık and collaborators have discussed such results by using rational [15] as well as
generalized Wardowski type contractive multi-valued mappings [16] and also investigated the
common solutions to integral and functional equations [17, 18]. The aim of this article is to obtain
common fixed point results in a bicomplex valued metric space. Therefore, we first define the basic
preliminaries involving bicomplex numbers and review further developments related to them in the
following paragraphs.

The emergence of complex numbers was established in the 17th century by Sir Carl Fredrich Gauss,
but his work was not on record. Later, in the year 1840 Augustin Louis Cauchy started doing analysis
of complex numbers, who is known to be an effective founder of complex analysis. The theory of
complex numbers has its source in the fact that the solution of the quadratic equation ax2 + bx + c = 0
was not worthwhile for b2 − 4ac < 0, in the set of real numbers. Under this background, Euler was the
first mathematician who presented the symbol i, for

√
−1 with the property, i2 = −1.

On the other hand, the beginning of bicomplex numbers was set up by Segre [19] which provides a
commutative substitute to the skew field of quaternions. These numbers generalize complex numbers
more precisely to quaternions. We refer readers to [20] for a more in-depth examination of bicomplex
numbers. In 2011, Azam et al. [21] gave the concept of a complex valued metric space (CVMS)
as a special case of cone metric space. Since the concept to introduce complex valued metric spaces
is designed to define rational expressions that cannot be defined in cone metric spaces and therefore
several results of fixed point theory cannot be proved to cone metric spaces, so complex valued metric
space form a special class of cone metric space. Actually, the definition of a cone metric space banks
on the underlying Banach space which is not a division ring. However, we can study generalizations of
many results of fixed point theory involving divisions in complex valued metric spaces. Moreover, this
idea is also used to define complex valued Banach spaces [22] which offer a lot of scope for further
investigation. In 2017, Choi et al. [23] combined the concepts of bicomplex numbers and CVMS and
introduced the notion of bicomplex valued metric spaces (bi CVMS) and established common fixed
point results for weakly compatible mappings. Later on, Jebril et al. [24], utilized this notion of newly
introduced space and obtained common fixed point results under rational contractions for a pair of
mappings in the background of bi CVMS. More specifically, CVMS [25, 26] and bi CVMS [27, 28]
has been remained a focus point of recent and past researches. By taking motivation from these facts,
we establish some common fixed point theorems in bi CVMS for rational contractions involving control
functions of two variables. As an application, we investigate the solutions of integral equations.
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2. Preliminaries

We represent C0, C1 and C2 as the set of real numbers, complex numbers and bicomplex numbers
respectively. Segre [19] defined the notion of bicomplex number as follows:

ϱ = a1 + a2i1 + a3i2 + a4i1i2

where a1, a2, a3, a4 ∈ C0, and the independent units i1, i2 are such that i2
1 = i2

2 = −1 and i1i2 = i2i1, and
C2 is defined as

C2 = {ϱ : ϱ = a1 + a2i1 + a3i2 + a4i1i2 : a1, a2, a3, a4 ∈ C0}

that is
C2 = {ϱ : ϱ = z1 + i2z2 : z1, z2 ∈ C1}

where z1 = a1 + a2i1 ∈ C1 and z2 = a3 + a4i1 ∈ C1. If ϱ = z1 + i2z2 and ℏ = ω1 + i2ω2, then the sum is

ϱ ± ℏ = (z1 + i2z2) ± (ω1 + i2ω2) = (z1 ± ω1) + i2 (z2 ± ω2)

and the product is

ϱ · ℏ = (z1 + i2z2) · (ω1 + i2ω2) = (z1ω1 − z2ω2) + i2 (z1ω2 + z2ω1) .

There are four idempotent members in C2, which are, 0, 1, e1 =
1+i1i2

2 and e2 =
1−i1i2

2 out of which e1

and e2 are nontrivial such that e1+ e2 = 1 and e1e2 = 0. Every bicomplex number z1+ i2z2 can uniquely
be demonstrated as the mixture of e1and e2, namely

ϱ = z1 + i2z2 = (z1 − i1z2) e1 + (z1 + i1z2) e2.

This characterization of ϱ is familiar as the idempotent characterization of ϱ and the complex
coefficients ϱ1 = (z1 − i1z2) and ϱ2 = (z1 + i1z2) are called as idempotent components of ϱ.

An element ϱ = z1 + i2z2 ∈ C2 is called invertible if there exists ℏ ∈ C2 such that ϱℏ = 1 and ℏ is
called the inverse (multiplicative) of ϱ. Therefore ϱ is called the inverse of ℏ.

An element ϱ = z1 + i2z2 ∈ C2 is nonsingular iff
∣∣∣z2

1 + z2
2

∣∣∣ , 0 and singular iff
∣∣∣z2

1 + z2
2

∣∣∣ = 0. The
inverse of ϱ is defined as

ϱ−1 = ℏ =
z1 − i2z2

z2
1 + z2

2

.

Zero is the at most member in C0 that does not possess a multiplicative inverse and in C1, 0 = 0 + i0
is the at most member that does not possess a multiplicative inverse. We represent the set of singular
members of C0 and C1 by ℵ0 and ℵ1 in this order. There are many members in C2 that do not have
multiplicative inverse. We represents this set by ℵ2 and evidently ℵ0 = ℵ1 ⊂ ℵ2.

A bicomplex number ϱ = a1 + a2i1 + a3i2 + a4i1i2 ∈ C2 is said to be degenerated if the matrix(
a1 a2

a3 a4

)
2×2

is degenerated. In this way ϱ−1 exists and it is degenerated too and ∥·∥ : C2 → C
+
0 is defined as
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∥ϱ∥ = ∥z1 + i2z2∥ =
{
|z1|

2 + |z2|
2
} 1

2

=

[
|(z1 − i1z2)|2 + |(z1 + i1z2)|2

2

] 1
2

=
(
a2

1 + a2
2 + a2

3 + a2
4

) 1
2
,

where ϱ = a1 + a2i1 + a3i2 + a4i1i2 = z1 + i2z2 ∈ C2.

The space C2 with respect to the norm given above is a Banach space. If ϱ, ℏ ∈ C2, then

∥ϱℏ∥ ≤
√

2 ∥ϱ∥ ∥ℏ∥

holds instead of
∥ϱℏ∥ ≤ ∥ϱ∥ ∥ℏ∥ .

Therefore, C2 is not a Banach algebra. Let ϱ = z1 + i2z2, ℏ = ω1 + i2ω2 ∈ C2, then we define

ϱ ⪯i2 ℏ⇔ Re (z1) ⪯ Re (ω1) and Im (z2) ⪯ Im (ω2) .

It implies
ϱ ⪯i2 ℏ,

if one of these assertions hold:

(i) (z1) = ω1, z2 ≺ ω2,

(ii) z1 ≺ ω1, z2 = ω2,

(iii) z1 ≺ ω1, z2 ≺ ω2,

(iv) z1 = ω1, z2 = ω2.

Specifically, ϱ ⋨i2 ℏ if ϱ ⪯i2 ℏ and ϱ , ℏ, that is, one of (i), (ii) and (iii) holds. Also ϱ ≺i2 ℏ if only
condition (iii) is satisfied. For ϱ, ℏ ∈ C2, we can prove the followings:

(i) ϱ ⪯i2 ℏ =⇒ ∥ϱ∥ ≤ ∥ℏ∥ ,

(ii) ∥ϱ + ℏ∥ ≤ ∥ϱ∥ + ∥ℏ∥ ,
(iii) ∥aϱ∥ ≤ a ∥ℏ∥ , where a is a non negative real number,
(iv) ∥ϱℏ∥ ≤

√
2 ∥ϱ∥ ∥ℏ∥ ,

(v)
∥∥∥ϱ−1

∥∥∥ = ∥ϱ∥−1 ,

(vi)
∥∥∥ ϱ
ℏ

∥∥∥ = ∥ϱ∥
∥ℏ∥
, if ℏ is a degenerated bicomplex number.

Azam et al. [21] gave the conception of CVMS in this way:

Definition 1. ([21]) Let L , ∅, ⪯ is a partial order on C and ς : L × L→ C1 be a mapping satisfying

(i) 0 ⪯ ς(ϱ, ℏ), for all ϱ, ℏ ∈ L and ς(ϱ, ℏ) = 0 if and only if ϱ = ℏ;
(ii) ς(ϱ, ℏ) = ς(ℏ, ϱ) for all ϱ, ℏ ∈ L;

(iii) ς(ϱ, ℏ) ⪯ ς(ϱ, ν) + ς(ν, ℏ), for all ϱ, ℏ, ν ∈ L,
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then (L, ς) is a CVMS.
Choi et al. [23] defined the bi CVMS as follows:

Definition 2. ([23]) Let L , ∅, ⪯i2 is a partial order on C2 and ς : L× L→ C2 be a mapping satisfying

(i) 0 ⪯i2 ς(ϱ, ℏ), for all ϱ, ℏ ∈ L and ς(ϱ, ℏ) = 0 if and only if ϱ = ℏ;
(ii) ς(ϱ, ℏ) = ς(ℏ, ϱ) for all ϱ, ℏ ∈ L;

(iii) ς(ϱ, ℏ) ⪯i2 ς(ϱ, ν) + ς(ν, ℏ), for all ϱ, ℏ, ν ∈ L,

then (L, ς) is a bi CVMS.

Example 1. ([29]) Let L = C2 and ϱ, ℏ ∈ L. Define ς : L × L→ C2 by

ς(ϱ, ℏ) = |z1 − ω1| + i2 |z2 − ω2|

where ϱ = z1 + i2z2 and ℏ = ω1 + i2ω2 ∈ C2. Then (L, ς) is a bi CVMS.

Lemma 1. ([29]) Let (L, ς) be a bi CVMS and let {ϱr} ⊆ L. Then {ϱr} converges to ϱ if and only if
∥ς(ϱr, ϱ)∥ → 0 as r → ∞.

Lemma 2. ([29]) Let (L, ς) be a bi CVMS and let {ϱr} ⊆ L. Then {ϱr} is a Cauchy sequence if and only
if ∥ς(ϱr, ϱr+m)∥ → 0 as r → ∞, where m ∈ N.

3. Main result

We state and prove the following proposition which is required in the sequel.

Proposition 1. Let (L, ς) be a bi CVMS and ℑ1,ℑ2 : (L, ς) → (L, ς). Let ϱ0 ∈ L. Define the sequence
{ϱr} by

ϱ2r+1 = ℑ1ϱ2r and ϱ2r+2 = ℑ2ϱ2r+1 (3.1)

for all r = 0, 1, 2, ...

Assume that there exist ρ : L × L→[0, 1) satisfying

ρ
(
ℑ2ℑ1ϱ, ℏ

)
≤ ρ (ϱ, ℏ) and ρ

(
ϱ,ℑ1ℑ2ℏ

)
≤ ρ (ϱ, ℏ)

for all ϱ, ℏ ∈ L. Then
ρ (ϱ2r, ℏ) ≤ ρ (ϱ0, ℏ) and ρ (ϱ, ϱ2r+1) ≤ ρ (ϱ, ϱ1)

for all ϱ, ℏ ∈ L and r = 0, 1, 2, ...

Proof. Let ϱ, ℏ ∈ L and r = 0, 1, 2, ... Then we have

ρ (ϱ2r, ℏ) = ρ
(
ℑ2ℑ1ϱ2r−2, ℏ

)
≤ ρ (ϱ2r−2, ℏ)

= ρ
(
ℑ2ℑ1ϱ2r−4, ℏ

)
≤ ρ (ϱ2r−4, ℏ)

≤ · · · ≤ ρ (ϱ0, ℏ) .
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Similarly, we have

ρ (ϱ, ϱ2r+1) = ρ
(
ϱ,ℑ1ℑ2ϱ2r−1

)
≤ ρ (ϱ, ϱ2r−1)

= ρ
(
ϱ,ℑ1ℑ2ϱ2r−3

)
≤ ρ (ϱ, ϱ2r−3)

≤ · · · ≤ ρ (ϱ, ϱ1) .

□

Lemma 3. Let ρ, κ : L × L→[0, 1) and ϱ, ℏ ∈ L. If ℑ1,ℑ2 : L→ L satisfy

ς
(
ℑ1ϱ,ℑ2ℑ1ϱ

)
⪯i2 ρ

(
ϱ,ℑ1ϱ

)
ς
(
ϱ,ℑ1ϱ

)
+ κ

(
ϱ,ℑ1ϱ

) ς (ϱ,ℑ1ϱ
)
ς
(
ℑ1ϱ,ℑ2ℑ1ϱ

)
1 + ς

(
ϱ,ℑ1ϱ

)
and

ς
(
ℑ1ℑ2ℏ,ℑ2ℏ

)
⪯i2 ρ

(
ℑ2ℏ, ℏ

)
ς
(
ℑ2ℏ, ℏ

)
+ κ

(
ℑ2ℏ, ℏ

) ς (ℑ2ℏ,ℑ1ℑ2ℏ
)
ς
(
ℏ,ℑ2ℏ

)
1 + ς

(
ℑ2ℏ, ℏ

)
then ∥∥∥ς (ℑ1ϱ,ℑ2ℑ1ϱ

)∥∥∥ ≤ ρ (ϱ,ℑ1ϱ
) ∥∥∥ς (ϱ,ℑ1ϱ

)∥∥∥ + √2κ
(
ϱ,ℑ1ϱ

) ∥∥∥ς (ℑ1ϱ,ℑ2ℑ1ϱ
)∥∥∥

and ∥∥∥ς (ℑ1ℑ2ℏ,ℑ2ℏ
)∥∥∥ ≤ ρ (ℑ2ℏ, ℏ

) ∥∥∥ς (ℑ2ℏ, ℏ
)∥∥∥ + √2κ

(
ℑ2ℏ, ℏ

) ∥∥∥ς (ℑ2ℏ,ℑ1ℑ2ℏ
)∥∥∥ .

Proof. We can write∥∥∥ς (ℑ1ϱ,ℑ2ℑ1ϱ
)∥∥∥ ≤ ∥∥∥∥∥∥ρ (ϱ,ℑ1ϱ

)
ς
(
ϱ,ℑ1ϱ

)
+ κ

(
ϱ,ℑ1ϱ

) ς (ϱ,ℑ1ϱ
)
ς
(
ℑ1ϱ,ℑ2ℑ1ϱ

)
1 + ς

(
ϱ,ℑ1ϱ

) ∥∥∥∥∥∥
≤ ρ

(
ϱ,ℑ1ϱ

) ∥∥∥ς (ϱ,ℑ1ϱ
)∥∥∥ + √2κ

(
ϱ,ℑ1ϱ

) ∥∥∥∥∥∥ ς
(
ϱ,ℑ1ϱ

)
1 + ς

(
ϱ,ℑ1ϱ

)∥∥∥∥∥∥ ∥∥∥ς (ℑ1ϱ,ℑ2ℑ1ϱ
)∥∥∥

≤ ρ
(
ϱ,ℑ1ϱ

) ∥∥∥ς (ϱ,ℑ1ϱ
)∥∥∥ + √2κ

(
ϱ,ℑ1ϱ

) ∥∥∥ς (ℑ1ϱ,ℑ2ℑ1ϱ
)∥∥∥ .

Similarly, we have∥∥∥ς (ℑ1ℑ2ℏ,ℑ2ℏ
)∥∥∥ ≤ ∥∥∥∥∥∥ρ (ℑ2ℏ, ℏ

)
ς
(
ℑ2ℏ, ℏ

)
+ κ

(
ℑ2ℏ, ℏ

) ς (ℑ2ℏ,ℑ1ℑ2ℏ
)
ς
(
ℏ,ℑ2ℏ

)
1 + ς

(
ℑ2ℏ, ℏ

) ∥∥∥∥∥∥
≤ ρ

(
ℑ2ℏ, ℏ

) ∥∥∥ς (ℑ2ℏ, ℏ
)∥∥∥ + √2κ

(
ℑ2ℏ, ℏ

) ∥∥∥∥∥∥ ς
(
ℏ,ℑ2ℏ

)
1 + ς

(
ℑ2ℏ, ℏ

)∥∥∥∥∥∥ ∥∥∥ς (ℑ2ℏ,ℑ1ℑ2ℏ
)∥∥∥

≤ ρ
(
ℑ2ℏ, ℏ

) ∥∥∥ς (ℑ2ℏ, ℏ
)∥∥∥ + √2κ

(
ℑ2ℏ, ℏ

) ∥∥∥ς (ℑ2ℏ,ℑ1ℑ2ℏ
)∥∥∥ .

□

Theorem 1. Let (L, ς) be a complete bi CVMS and ℑ1,ℑ2: L → L. If there exist mappings ρ, κ,ϖ :
L × L→[0, 1) such that for all ϱ, ℏ ∈ L,

(a) ρ
(
ℑ2ℑ1ϱ, ℏ

)
≤ ρ (ϱ, ℏ) and ρ

(
ϱ,ℑ1ℑ2ℏ

)
≤ ρ (ϱ, ℏ) ,

κ
(
ℑ2ℑ1ϱ, ℏ

)
≤ κ (ϱ, ℏ) and κ

(
ϱ,ℑ1ℑ2ℏ

)
≤ κ (ϱ, ℏ) ,

ϖ
(
ℑ2ℑ1ϱ, ℏ

)
≤ ϖ (ϱ, ℏ) and ϖ

(
ϱ,ℑ1ℑ2ℏ

)
≤ ϖ (ϱ, ℏ) ,

(b) ρ (ϱ, ℏ) +
√

2κ (ϱ, ℏ) +
√

2ϖ (ϱ, ℏ) < 1,
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(c)

ς
(
ℑ1ϱ,ℑ2ℏ

)
⪯i2 ρ (ϱ, ℏ) ς (ϱ, ℏ) + κ (ϱ, ℏ)

ς
(
ϱ,ℑ1ϱ

)
ς
(
ℏ,ℑ2ℏ

)
1 + ς (ϱ, ℏ)

+ϖ (ϱ, ℏ)
ς
(
ℏ,ℑ1ϱ

)
ς
(
ϱ,ℑ2ℏ

)
1 + ς (ϱ, ℏ)

, (3.2)

then ℑ1 and ℑ2 have a unique common fixed point.

Proof. Let ϱ, ℏ ∈ L. From (3.2), we have

ς
(
ℑ1ϱ,ℑ2ℑ1ϱ

)
⪯i2 ρ

(
ϱ,ℑ1ϱ

)
ς
(
ϱ,ℑ1ϱ

)
+ κ

(
ϱ,ℑ1ϱ

) ς (ϱ,ℑ1ϱ
)
ς
(
ℑ1ϱ,ℑ2ℑ1ϱ

)
1 + ς

(
ϱ,ℑ1ϱ

)
+ϖ

(
ϱ,ℑ1ϱ

) ς (ℑ1ϱ,ℑ1ϱ
)
ς
(
ϱ,ℑ2ℑ1ϱ

)
1 + ς

(
ϱ,ℑ1ϱ

) .

By Lemma (3), we get∥∥∥ς (ℑ1ϱ,ℑ2ℑ1ϱ
)∥∥∥ ≤ ρ (ϱ,ℑ1ϱ

) ∥∥∥ς (ϱ,ℑ1ϱ
)∥∥∥ + √2κ

(
ϱ,ℑ1ϱ

) ∥∥∥ς (ℑ1ϱ,ℑ2ℑ1ϱ
)∥∥∥ . (3.3)

Similarly, we have

ς
(
ℑ1ℑ2ℏ,ℑ2ℏ

)
⪯i2 ρ

(
ℑ2ℏ, ℏ

)
ς
(
ℑ2ℏ, ℏ

)
+ κ

(
ℑ2ℏ, ℏ

) ς (ℑ2ℏ,ℑ1ℑ2ℏ
)
ς
(
ℏ,ℑ2ℏ

)
1 + ς

(
ℑ2ℏ, ℏ

)
+ϖ (ϱ, ℏ)

ς
(
ℏ,ℑ1ℑ2ℏ

)
ς
(
ℑ2ℏ,ℑ2ℏ

)
1 + ς

(
ℑ2ℏ, ℏ

)
= ρ

(
ℑ2ℏ, ℏ

)
ς
(
ℑ2ℏ, ℏ

)
+ κ

(
ℑ2ℏ, ℏ

) ς (ℑ2ℏ,ℑ1ℑ2ℏ
)
ς
(
ℏ,ℑ2ℏ

)
1 + ς

(
ℑ2ℏ, ℏ

) .

By Lemma (3), we get∥∥∥ς (ℑ1ℑ2ℏ,ℑ2ℏ
)∥∥∥ ≤ ρ (ℑ2ℏ, ℏ

) ∥∥∥ς (ℑ2ℏ, ℏ
)∥∥∥ + √2κ

(
ℑ2ℏ, ℏ

) ∥∥∥ς (ℑ2ℏ,ℑ1ℑ2ℏ
)∥∥∥ . (3.4)

Let ϱ0 ∈ L and the sequence {ϱr} be defined by (3.1). From Proposition (1) and inequalities (3.3) and
(3.4), we have

∥ς (ϱ2r+1, ϱ2r)∥ =
∥∥∥ς (ℑ1ℑ2ϱ2r−1,ℑ2ϱ2r−1

)∥∥∥
≤ ρ

(
ℑ2ϱ2r−1, ϱ2r−1

) ∥∥∥ς (ℑ2ϱ2r−1, ϱ2r−1
)∥∥∥

+
√

2κ
(
ℑ2ϱ2r−1, ϱ2r−1

) ∥∥∥ς (ℑ2ϱ2r−1,ℑ1ℑ2ϱ2r−1
)∥∥∥

= ρ (ϱ2r, ϱ2r−1) ∥ς (ϱ2r, ϱ2r−1)∥ +
√

2κ (ϱ2r, ϱ2r−1) ∥ς (ϱ2r, ϱ2r+1)∥
≤ ρ (ϱ0, ϱ2r−1) ∥ς (ϱ2r, ϱ2r−1)∥ +

√
2κ (ϱ0, ϱ2r−1) ∥ς (ϱ2r, ϱ2r+1)∥

≤ ρ (ϱ0, ϱ1) ∥ς (ϱ2r, ϱ2r−1)∥ +
√

2κ (ϱ0, ϱ1) ∥ς (ϱ2r, ϱ2r+1)∥

for all r = 0, 1, 2, ... This implies that

∥ς (ϱ2r+1, ϱ2r)∥ ≤
ρ (ϱ0, ϱ1)

1 −
√

2κ (ϱ0, ϱ1)
∥ς (ϱ2r, ϱ2r−1)∥ . (3.5)
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Similarly, we have

∥ς (ϱ2r+2, ϱ2r+1)∥ =
∥∥∥ς (ℑ2ℑ1ϱ2r,ℑ1ϱ2r

)∥∥∥
≤ ρ

(
ϱ2r,ℑ1ϱ2r

) ∥∥∥ς (ϱ2r,ℑ1ϱ2r
)∥∥∥

+
√

2κ
(
ϱ2r,ℑ1ϱ2r

) ∥∥∥ς (ℑ1ϱ2r,ℑ2ℑ1ϱ2r
)∥∥∥

= ρ (ϱ2r, ϱ2r+1) ∥ς (ϱ2r, ϱ2r+1)∥ +
√

2κ (ϱ2r, ϱ2r+1) ∥ς (ϱ2r+1, ϱ2r+2)∥
≤ ρ (ϱ0, ϱ2r+1) ∥ς (ϱ2r, ϱ2r+1)∥ +

√
2κ (ϱ0, ϱ2r+1) ∥ς (ϱ2r+1, ϱ2r+2)∥

≤ ρ (ϱ0, ϱ1) ∥ς (ϱ2r, ϱ2r+1)∥ +
√

2κ (ϱ0, ϱ1) ∥ς (ϱ2r+1, ϱ2r+2)∥ ,

which implies that

∥ς (ϱ2r+2, ϱ2r+1)∥ ≤
ρ (ϱ0, ϱ1)

1 −
√

2κ (ϱ0, ϱ1)
∥ς (ϱ2r, ϱ2r+1)∥

=
ρ (ϱ0, ϱ1)

1 −
√

2κ (ϱ0, ϱ1)
∥ς (ϱ2r+1, ϱ2r)∥ . (3.6)

Let λ = ρ(ϱ0,ϱ1)
1−
√

2κ(ϱ0,ϱ1)
< 1. Then from (3.5) and (3.6), we have

∥ς (ϱr+1, ϱr)∥ ≤ λ ∥ς (ϱr, ϱr−1)∥

for all r ∈ N. Inductively, we can construct a sequence {ϱr} in L such that

|ς (ϱr+1, ϱr)| ≤ λ |ς (ϱr, ϱr−1)|
|ς (ϱr+1, ϱr)| ≤ λ2 |ς (ϱr−1, ϱr−2)|

·

·

·

|ς (ϱr+1, ϱr)| ≤ λr |ς (ϱ1, ϱ0)| = λr |ς (ϱ0, ϱ1)|

for all r ∈ N. Now for m > r, we get

∥ς (ϱr, ϱm)∥ ≤ λr ∥ς (ϱ0, ϱ1)∥
+λr+1 ∥ς (ϱ0, ϱ1)∥
+ · · · +

λm−1 ∥ς (ϱ0, ϱ1)∥

≤
λr

1 − λ
∥ς (ϱ0, ϱ1)∥ .

Now, by taking r,m→ ∞, we get
∥ς (ϱr, ϱm)∥ → 0.

By Lemma 2, {ϱr} is a Cauchy sequence. As L is complete, so there exists ϱ∗ ∈ L such that ϱr → ϱ
∗ as

r → ∞. □

Now, we show that ϱ∗ is a fixed point of ℑ1. From (3.2), we have
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ς
(
ϱ∗,ℑ1ϱ

∗) ⪯i2 ς
(
ϱ∗,ℑ2ϱ2r+1

)
+ ς

(
ℑ2ϱ2r+1,ℑ1ϱ

∗)
= ς

(
ϱ∗,ℑ2ϱ2r+1

)
+ ς

(
ℑ1ϱ

∗,ℑ2ϱ2r+1
)

⪯i2


ς (ϱ∗, ϱ2r+2) + ρ (ϱ∗, ϱ2r+1) ς (ϱ∗, ϱ2r+1)

+κ (ϱ∗, ϱ2r+1) ς(ϱ
∗,ℑ1ϱ

∗)ς(ϱ2r+1,ℑ2ϱ2r+1)
1+ς(ϱ∗,ϱ2r+1)

+ϖ (ϱ∗, ϱ2r+1) ς(ϱ2r+1,ℑ1ϱ
∗)ς(ϱ∗,ℑ2ϱ2r+1)

1+ς(ϱ∗,ϱ2r+1)


⪯i2


ς (ϱ∗, ϱ2r+2) + ρ (ϱ∗, ϱ2r+1) ς (ϱ∗, ϱ2r+1)

+κ (ϱ∗, ϱ2r+1) ς(ϱ
∗,ℑ1ϱ

∗)ς(ϱ2r+1,ϱ2r+2)
1+ς(ϱ∗,ϱ2r+1)

+ϖ (ϱ∗, ϱ2r+1) ς(ϱ2r+1,ℑ1ϱ
∗)ς(ϱ∗,ϱ2r+2)

1+ς(ϱ∗,ϱ2r+1)

 .
This implies that

∥∥∥ς (ϱ∗,ℑ1ϱ
∗)∥∥∥ ≤


∥ς (ϱ∗, ϱ2r+2)∥ + ρ (ϱ∗, ϱ2r+1) ∥ς (ϱ∗, ϱ2r+1)∥

+
√

2κ (ϱ∗, ϱ2r+1) ∥ς(ϱ
∗,ℑ1ϱ

∗)∥∥ς(ϱ2r+1,ϱ2r+2)∥
∥1+ς(ϱ∗,ϱ2r+1)∥

+
√

2ϖ (ϱ∗, ϱ2r+1) ∥ς(ϱ2r+1,ℑ1ϱ
∗)∥∥ς(ϱ∗,ϱ2r+2)∥

∥1+ς(ϱ∗,ϱ2r+1)∥

 .
Letting r → ∞, we have

∥∥∥ς (ϱ∗,ℑ1ϱ
∗
)∥∥∥ = 0. Thus ϱ∗ = ℑ1ϱ

∗. Now we prove that ϱ∗ is a fixed point of
ℑ2. By (3.2), we have

ς
(
ϱ∗,ℑ2ϱ

∗) ⪯i2
(
ς
(
ϱ∗,ℑ1ϱ2r

)
+ ς

(
ℑ1ϱ2r,ℑ2ϱ

∗))
⪯i2


ς
(
ϱ∗,ℑ1ϱ2r

)
+ ρ (ϱ2r, ϱ

∗) ς (ϱ2r, ϱ
∗)

+κ (ϱ2r, ϱ
∗) ς(ϱ2r ,ℑ1ϱ2r)ς(ϱ∗,ℑ2ϱ

∗)
1+ς(ϱ2r ,ϱ∗)

+ϖ (ϱ2r, ϱ
∗) ς(ϱ

∗,ℑ1ϱ2r)ς(ϱ2r ,ℑ2ϱ
∗)

1+ς(ϱ2r ,ϱ∗)


⪯i2


ς (ϱ∗, ϱ2r+1) + ρ (ϱ2r, ϱ

∗) ς (ϱ2r, ϱ
∗)

+κ (ϱ2r, ϱ
∗) ς(ϱ2r ,ϱ2r+1)ς(ϱ∗,ℑ2ϱ

∗)
1+ς(ϱ2r ,ϱ∗)

+ϖ (ϱ2r, ϱ
∗) ς(ϱ

∗,ϱ2r+1)ς(ϱ2r ,ℑ2ϱ
∗)

1+ς(ϱ2r ,ϱ∗)

 .
This implies that

∥∥∥ς (ϱ∗,ℑ2ϱ
∗)∥∥∥ ≤


∥ς (ϱ∗, ϱ2r+1)∥ + ρ (ϱ2r, ϱ

∗) ∥ς (ϱ2r, ϱ
∗)∥

+
√

2κ (ϱ2r, ϱ
∗) ∥ς(ϱ2r ,ϱ2r+1)∥∥ς(ϱ∗,ℑ2ϱ

∗)∥
∥1+ς(ϱ2r ,ϱ∗)∥

+
√

2ϖ (ϱ2r, ϱ
∗) ∥ς(ϱ

∗,ϱ2r+1)∥∥ς(ϱ2r ,ℑ2ϱ
∗)∥

∥1+ς(ϱ2r ,ϱ∗)∥

 .
Letting r → ∞, we have

∥∥∥ς (ϱ∗,ℑ2ϱ
∗
)∥∥∥ = 0. Thus ϱ∗ = ℑ2ϱ

∗. Thus ϱ∗ is a common fixed point of ℑ1

and ℑ2. Now we prove that ϱ∗ is unique. We suppose that

ϱ/ = ℑ1ϱ
/ = ℑ2ϱ

/,

but ϱ∗ , ϱ/. Now from (3.2), we have

AIMS Mathematics Volume 8, Issue 3, 5522–5539.



5531

ς
(
ϱ∗, ϱ/

)
= ς

(
ℑ1ϱ

∗,ℑ2ϱ
/
)

⪯i2 ρ
(
ϱ∗, ϱ/

)
ς
(
ϱ∗, ϱ/

)
+ κ

(
ϱ∗, ϱ/

) ς (ϱ∗,ℑϱ∗) ς (ϱ/,ℑ2ϱ
/
)

1 + ς
(
ϱ∗, ϱ/

)
+ϖ

(
ϱ∗, ϱ/

) ς (ϱ/,ℑ1ϱ
∗
)
ς
(
ϱ∗,ℑ2ϱ

/
)

1 + ς
(
ϱ∗, ϱ/

)
= ρ

(
ϱ∗, ϱ/

)
ς
(
ϱ∗, ϱ/

)
+ κ

(
ϱ∗, ϱ/

) ς (ϱ∗, ϱ∗) ς
(
ϱ/, ϱ/

)
1 + ς

(
ϱ∗, ϱ/

)
+ϖ

(
ϱ∗, ϱ/

) ς (ϱ/, ϱ∗) ς (ϱ∗, ϱ/)
1 + ς

(
ϱ∗, ϱ/

) .

This implies that ∥∥∥∥ς (ϱ∗, ϱ/)∥∥∥∥ ≤ ρ (ϱ∗, ϱ/) ∥∥∥∥ς (ϱ∗, ϱ/)∥∥∥∥
+
√

2ϖ
(
ϱ∗, ϱ/

) ∥∥∥∥ς (ϱ∗, ϱ/)∥∥∥∥
∥∥∥∥∥∥∥∥
ς
(
ϱ∗, ϱ/

)
1 + ς

(
ϱ∗, ϱ/

)
∥∥∥∥∥∥∥∥

≤ ρ
(
ϱ∗, ϱ/

) ∥∥∥∥ς (ϱ∗, ϱ/)∥∥∥∥ + √2ϖ
(
ϱ∗, ϱ/

) ∥∥∥∥ς (ϱ∗, ϱ/)∥∥∥∥
=

(
ρ
(
ϱ∗, ϱ/

)
+
√

2ϖ
(
ϱ∗, ϱ/

)) ∥∥∥∥ς (ϱ∗, ϱ/)∥∥∥∥ .
As ρ

(
ϱ∗, ϱ/

)
+
√

2ϖ
(
ϱ∗, ϱ/

)
< 1, we have ∥∥∥∥ς (ϱ∗, ϱ/)∥∥∥∥ = 0.

Thus ϱ∗ = ϱ/.

Corollary 1. Let (L, ς) be a complete bi CVMS and ℑ1,ℑ2 : L → L. If there exist mappings ρ, κ :
L × L→[0, 1) such that

(a) ρ
(
ℑ2ℑ1ϱ, ℏ

)
≤ ρ (ϱ, ℏ) and ρ

(
ϱ,ℑ1ℑ2ℏ

)
≤ ρ (ϱ, ℏ) ,

κ
(
ℑ2ℑ1ϱ, ℏ

)
≤ κ (ϱ, ℏ) and κ

(
ϱ,ℑ1ℑ2ℏ

)
≤ κ (ϱ, ℏ) ,

(b) ρ (ϱ, ℏ) + κ (ϱ, ℏ) < 1,

(c) ς
(
ℑ1ϱ,ℑ2ℏ

)
⪯i2 ρ (ϱ, ℏ) ς (ϱ, ℏ) + κ (ϱ, ℏ) ς(ϱ,ℑ1ϱ)ς(ℏ,ℑ2ℏ)

1+ς(ϱ,ℏ) ,

for all ϱ, ℏ ∈ L, then ℑ1 and ℑ2 have a unique common fixed point.

Proof. Setting ϖ : L × L→[0, 1) by ϖ (ϱ, ℏ) = 0 in Theorem 1. □

Corollary 2. Let (L, ς) be a complete bi CVMS and ℑ1,ℑ2 : L → L. If there exist mappings ρ,ϖ :
L × L→[0, 1) such that for all ϱ, ℏ ∈ L,
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(a) ρ
(
ℑ2ℑ1ϱ, ℏ

)
≤ ρ (ϱ, ℏ) and ρ

(
ϱ,ℑ1ℑ2ℏ

)
≤ ρ (ϱ, ℏ) ,

ϖ
(
ℑ2ℑ1ϱ, ℏ

)
≤ ϖ (ϱ, ℏ) and ϖ

(
ϱ,ℑ1ℑ2ℏ

)
≤ ϖ (ϱ, ℏ) ,

(b) ρ (ϱ, ℏ) +ϖ (ϱ, ℏ) < 1,
(c) ς

(
ℑ1ϱ,ℑ2ℏ

)
⪯i2 ρ (ϱ, ℏ) ς (ϱ, ℏ) +ϖ (ϱ, ℏ) ς(ℏ,ℑ1ϱ)ς(ϱ,ℑ2ℏ)

1+ς(ϱ,ℏ) ,
then ℑ1 and ℑ2 have a unique common fixed point.

Proof. Setting κ : L × L→[0, 1) by κ (ϱ, ℏ) = 0 in Theorem 1. □

Corollary 3. Let (L, ς) be a complete bi CVMS and ℑ1,ℑ2: L → L. If there exists mapping ρ :
L × L→[0, 1) such that

(a) ρ
(
ℑ2ℑ1ϱ, ℏ

)
≤ ρ (ϱ, ℏ) and ρ

(
ϱ,ℑ1ℑ2ℏ

)
≤ ρ (ϱ, ℏ) ,

(b) ς
(
ℑ1ϱ,ℑ2ℏ

)
⪯i2 ρ (ϱ, ℏ) ς (ϱ, ℏ) ,

for all ϱ, ℏ ∈ L, then ℑ1 and ℑ2 have a unique common fixed point.

Proof. Setting κ,ϖ : L × L→[0, 1) by κ (ϱ, ℏ) = ϖ (ϱ, ℏ) = 0 in Theorem 1. □

Corollary 4. Let (L, ς) be a complete bi CVMS and ℑ : L → L. If there exist mappings ρ, κ,ϖ :
L × L→[0, 1) such that

(a) ρ
(
ℑϱ, ℏ

)
≤ ρ (ϱ, ℏ) and ρ

(
ϱ,ℑℏ

)
≤ ρ (ϱ, ℏ) ,

κ
(
ℑϱ, ℏ

)
≤ κ (ϱ, ℏ) and κ

(
ϱ,ℑℏ

)
≤ κ (ϱ, ℏ) ,

ϖ
(
ℑϱ, ℏ

)
≤ ϖ (ϱ, ℏ) and ϖ

(
ϱ,ℑℏ

)
≤ ϖ (ϱ, ℏ) ,

(b) ρ (ϱ, ℏ) + κ (ϱ, ℏ) +ϖ (ϱ, ℏ) < 1,
(c) ς

(
ℑϱ,ℑℏ

)
⪯i2 ρ (ϱ, ℏ) ς (ϱ, ℏ) + κ (ϱ, ℏ) ς(ϱ,ℑϱ)ς(ℏ,ℑℏ)1+ς(ϱ,ℏ) +ϖ (ϱ, ℏ) ς(ℏ,ℑϱ)ς(ϱ,ℑℏ)1+ς(ϱ,ℏ) ,

for all ϱ, ℏ ∈ L, then ℑ has a unique fixed point.

Proof. Setting ℑ1 = ℑ2 = ℑ in Theorem 1. □

Example 2. Let L = [0, 1] and ς : L × L→ C defined by

ς(ϱ, ℏ) = |ϱ − ℏ| + i2 |ϱ − ℏ|

for all ϱ, ℏ ∈ L. Then (L, ς) is a complete bi CVMS. Define ℑ1,ℑ2 : L→ L by

ℑ1ϱ =
ϱ

5
and ℑ2ϱ =

ϱ

4
.

Consider
ρ,κ,ϖ : L × L→[0, 1)

by

ρ(ϱ, ℏ) =
ϱ

3
+
ℏ

4
and

κ(ϱ, ℏ) =
ϱ2ℏ2

30
and

ϖ(ϱ, ℏ) =
ϱ2

9
+
ℏ2

16
.
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Then evidently,
ρ (ϱ, ℏ) + κ (ϱ, ℏ) +ϖ (ϱ, ℏ) < 1.

Now

ρ
(
ℑ2ℑ1ϱ, ℏ

)
= ρ

(
ℑ2(
ϱ

5
), ℏ

)
= ρ

(
ϱ

20
, ℏ

)
=
ϱ

60
+
ℏ

4
≤
ϱ

3
+
ℏ

4
= ρ (ϱ, ℏ)

and

ρ
(
ϱ,ℑ1ℑ2ℏ

)
= ρ

(
ϱ,ℑ1(

ℏ

4
)
)
= ρ

(
ϱ,
ℏ

20

)
=
ϱ

3
+
ℏ

80
≤
ϱ

3
+
ℏ

4
= ρ (ϱ, ℏ) .

Also,

κ
(
ℑ2ℑ1ϱ, ℏ

)
= κ

(
ℑ2(
ϱ

5
), ℏ

)
= κ

(
ϱ

20
, ℏ

)
=
ϱ2ℏ2

12000
≤
ϱ2ℏ2

30
= κ (ϱ, ℏ)

and

κ
(
ϱ,ℑ1ℑ2ℏ

)
= κ

(
ϱ,ℑ1(

ℏ

4
)
)
= κ

(
ϱ,
ℏ

20

)
=
ϱ2ℏ2

12000
≤
ϱ2ℏ2

30
= κ (ϱ, ℏ)

and

ϖ
(
ℑ2ℑ1ϱ, ℏ

)
= ϖ

(
ℑ2(
ϱ

5
), ℏ

)
= ϖ

(
ϱ

20
, ℏ

)
=
ϱ2

3600
+
ℏ2

16
≤
ϱ2

9
+
ℏ2

16
= ϖ (ϱ, ℏ)

and

ϖ
(
ϱ,ℑ1ℑ2ℏ

)
= ϖ

(
ϱ,ℑ1(

ℏ

4
)
)
= ϖ

(
ϱ,
ℏ

20

)
=
ϱ2

9
+
ℏ2

6400
≤
ϱ2

9
+
ℏ2

16
= ϖ (ϱ, ℏ) .

Now

ς(ℑ1ϱ,ℑ2ℏ) = ς(
ϱ

5
,
ℏ

4
) =

∣∣∣∣∣ϱ5 − ℏ4
∣∣∣∣∣ + i2

∣∣∣∣∣ϱ5 − ℏ4
∣∣∣∣∣

=

∣∣∣∣∣4ϱ − 5ℏ
20

∣∣∣∣∣ + i2

∣∣∣∣∣4ϱ − 5ℏ
20

∣∣∣∣∣
⪯i2

∣∣∣∣∣4ϱ − 4ℏ
20

∣∣∣∣∣ + i2

∣∣∣∣∣4ϱ − 4ℏ
20

∣∣∣∣∣
=

1
5

(|ϱ − ℏ| + i2 |ϱ − ℏ|)

⪯i2
7

12
(|ϱ − ℏ| + i2 |ϱ − ℏ|)

⪯i2 ρ (ϱ, ℏ) ς (ϱ, ℏ) + κ (ϱ, ℏ)
ς
(
ϱ,ℑ1ϱ

)
ς
(
ℏ,ℑ2ℏ

)
1 + ς (ϱ, ℏ)

+ϖ (ϱ, ℏ)
ς
(
ℏ,ℑ1ϱ

)
ς
(
ϱ,ℑ2ℏ

)
1 + ς (ϱ, ℏ)

.

Then it is very simple to prove that all the conditions of Theorem 1 are satisfied and 0 is a common
fixed point of mappings ℑ1 and ℑ2.

Corollary 5. Let (L, ς) be a complete bi CVMS and let ℑ : L→ L. If there exist ρ, κ,ϖ : L × L→[0, 1)
such that
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(a) ρ
(
ℑϱ, ℏ

)
≤ ρ (ϱ, ℏ) and ρ

(
ϱ,ℑℏ

)
≤ ρ (ϱ, ℏ) ,

κ
(
ℑϱ, ℏ

)
≤ κ (ϱ, ℏ) and κ

(
ϱ,ℑℏ

)
≤ κ (ϱ, ℏ) ,

ϖ
(
ℑϱ, ℏ

)
≤ ϖ (ϱ, ℏ) and ϖ

(
ϱ,ℑℏ

)
≤ ϖ (ϱ, ℏ) ,

(b) ρ (ϱ, ℏ) + κ (ϱ, ℏ) +ϖ (ϱ, ℏ) < 1,

(c) ς
(
ℑnϱ,ℑnℏ

)
⪯i2 ρ (ϱ, ℏ) ς (ϱ, ℏ) + κ (ϱ, ℏ)

ς
(
ϱ,ℑnϱ

)
ς
(
ℏ,ℑnℏ

)
1 + ς (ϱ, ℏ)

+ϖ (ϱ, ℏ)
ς
(
ℏ,ℑnϱ

)
ς
(
ϱ,ℑnℏ

)
1 + ς (ϱ, ℏ)

,

(3.7)
for all ϱ, ℏ ∈ L, then ℑ has a unique fixed point.

Proof. From the Corollary (4), we have ϱ ∈ L such that ℑnϱ = ϱ. Now from

ς
(
ℑϱ, ϱ

)
= ς

(
ℑℑnϱ,ℑnϱ

)
= ς

(
ℑnℑϱ,ℑnϱ

)
⪯ ρ

(
ℑϱ, ϱ

)
ς
(
ℑϱ, ϱ

)
+ κ

(
ℑϱ, ϱ

) ς (ℑϱ,ℑnℑϱ
)
ς
(
ϱ,ℑnϱ

)
1 + ς

(
ℑϱ, ϱ

)
+ϖ

(
ℑϱ, ϱ

) ς (ϱ,ℑnℑϱ
)
ς
(
ℑϱ,ℑnϱ

)
1 + ς

(
ℑϱ, ϱ

)
⪯ i2ρ

(
ℑϱ, ϱ

)
ς
(
ℑϱ, ϱ

)
+ κ

(
ℑϱ, ϱ

) ς (ℑϱ,ℑϱ) ς (ϱ, ϱ)
1 + ς

(
ℑϱ, ϱ

) +ϖ
(
ℑϱ, ϱ

) ς (ϱ,ℑϱ) ς (ℑϱ, ϱ)
1 + ς

(
ℑϱ, ϱ

)
= ρ

(
ℑϱ, ϱ

)
ς
(
ℑϱ, ϱ

)
+ϖ

(
ℑϱ, ϱ

) ς (ϱ,ℑϱ) ς (ℑϱ, ϱ)
1 + ς

(
ℑϱ, ϱ

)
which implies that

∥∥∥ς (ℑϱ, ϱ)∥∥∥ ≤ ρ (ℑϱ, ϱ) ∥∥∥ς (ℑϱ, ϱ)∥∥∥ +ϖ (
ℑϱ, ϱ

) ∥∥∥ς (ϱ,ℑϱ)∥∥∥ ∥∥∥∥∥∥ ς
(
ℑϱ, ϱ

)
1 + ς

(
ℑϱ, ϱ

)∥∥∥∥∥∥
≤ ρ

(
ℑϱ, ϱ

) ∥∥∥ς (ℑϱ, ϱ)∥∥∥ +ϖ (
ℑϱ, ϱ

) ∥∥∥ς (ϱ,ℑϱ)∥∥∥
=

(
ρ
(
ℑϱ, ϱ

)
+ϖ

(
ℑϱ, ϱ

)) ∥∥∥ς (ϱ,ℑϱ)∥∥∥
which is possible only whenever

∣∣∣ς (ℑϱ, ϱ)∣∣∣ = 0. Thus ℑϱ = ϱ. □

4. Deduced results

Corollary 6. Let (L, ς) be a complete bi CVMS and letℑ1,ℑ2 : L→ L. If there exist ρ, κ,ϖ : L→[0, 1)
such that for all ϱ, ℏ ∈ L,

(a) ρ
(
ℑ2ℑ1ϱ

)
≤ ρ (ϱ) ,

κ
(
ℑ2ℑ1ϱ

)
≤ κ (ϱ) ,

ϖ
(
ℑ2ℑ1ϱ

)
≤ ϖ (ϱ) ,

(b) ρ (ϱ) + κ (ϱ) +ϖ (ϱ) < 1,

(c) ς
(
ℑ1ϱ,ℑ2ℏ

)
⪯i2 ρ (ϱ) ς (ϱ, ℏ) + κ (ϱ) ς(ϱ,ℑ1ϱ)ς(ℏ,ℑ2ℏ)

1+ς(ϱ,ℏ) +ϖ (ϱ) ς(ℏ,ℑ1ϱ)ς(ϱ,ℑ2ℏ)
1+ς(ϱ,ℏ) ,

Corollary 7. Let (L, ς) be a complete bi CVMS and letℑ1,ℑ2 : L→ L. If there exist ρ, κ,ϖ : L→[0, 1)
such that for all ϱ, ℏ ∈ L,
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(a) ρ
(
ℑ2ℑ1ϱ

)
≤ ρ (ϱ) ,

κ
(
ℑ2ℑ1ϱ

)
≤ κ (ϱ) ,

ϖ
(
ℑ2ℑ1ϱ

)
≤ ϖ (ϱ) ,

(b) ρ (ϱ) + κ (ϱ) +ϖ (ϱ) < 1,
(c) ς

(
ℑ1ϱ,ℑ2ℏ

)
⪯i2 ρ (ϱ) ς (ϱ, ℏ) + κ (ϱ) ς(ϱ,ℑ1ϱ)ς(ℏ,ℑ2ℏ)

1+ς(ϱ,ℏ) +ϖ (ϱ) ς(ℏ,ℑ1ϱ)ς(ϱ,ℑ2ℏ)
1+ς(ϱ,ℏ) ,

then ℑ1 and ℑ2 have a unique common fixed point.

Proof. Define ρ, κ,ϖ : L × L→[0, 1) by

ρ (ϱ, ℏ) = ρ (ϱ) , κ (ϱ, ℏ) = κ (ϱ) and ϖ (ϱ, ℏ) = ϖ (ϱ)

for all ϱ, ℏ ∈ L. Then for all ϱ, ℏ ∈ L, we have
(a) ρ

(
ℑ2ℑ1ϱ, ℏ

)
= ρ

(
ℑ2ℑ1ϱ

)
≤ ρ (ϱ) = ρ (ϱ, ℏ) andρ

(
ϱ,ℑ1ℑ2ℏ

)
= ρ (ϱ) = ρ (ϱ, ℏ),

κ
(
ℑ2ℑ1ϱ, ℏ

)
= κ

(
ℑ2ℑ1ϱ

)
≤ κ (ϱ) = κ (ϱ, ℏ) andκ

(
ϱ,ℑ1ℑ2ℏ

)
= κ (ϱ) = κ (ϱ, ℏ),

ϖ
(
ℑ2ℑ1ϱ, ℏ

)
= ϖ

(
ℑ2ℑ1ϱ

)
≤ ϖ (ϱ) = ϖ (ϱ, ℏ) and ϖ

(
ϱ,ℑ1ℑ2ℏ

)
= ϖ (ϱ) = ϖ (ϱ, ℏ),

(b) ρ (ϱ, ℏ) + κ (ϱ, ℏ) +ϖ (ϱ, ℏ) = ρ (ϱ) + κ (ϱ) +ϖ (ϱ) < 1,
(c) ς

(
ℑ1ϱ,ℑ2ℏ

)
⪯i2 ρ (ϱ) ς (ϱ, ℏ) + κ (ϱ) ς(ϱ,ℑ1ϱ)ς(ℏ,ℑ2ℏ)

1+ς(ϱ,ℏ) +ϖ (ϱ) ς(ℏ,ℑ1ϱ)ς(ϱ,ℑ2ℏ)
1+ς(ϱ,ℏ)

=ρ (ϱ, ℏ) ς (ϱ, ℏ) + κ (ϱ, ℏ) ς(ϱ,ℑ1ϱ)ς(ℏ,ℑ2ℏ)
1+ς(ϱ,ℏ) +ϖ (ϱ, ℏ) ς(ℏ,ℑ1ϱ)ς(ϱ,ℑ2ℏ)

1+ς(ϱ,ℏ) ,
(d) λ = ρ(ϱ0,ϱ1)

1−κ(ϱ0,ϱ1) =
ρ(ϱ0)

1−κ(ϱ0) < 1.
By Theorem 1, ℑ1 and ℑ2 have a unique common fixed point. □

Corollary 8. Let (L, ς) be a complete bi CVMS and let ℑ1,ℑ2 : L→ L. If there exist ρ, κ,ϖ ∈ [0, 1)
with ρ + κ +ϖ < 1 such that

ς
(
ℑ1ϱ,ℑ2ℏ

)
⪯i2 ρς (ϱ, ℏ) + κ

ς
(
ϱ,ℑ1ϱ

)
ς
(
ℏ,ℑ2ℏ

)
1 + ς (ϱ, ℏ)

+ϖ
ς
(
ℏ,ℑ1ϱ

)
ς
(
ϱ,ℑ2ℏ

)
1 + ς (ϱ, ℏ)

,

for all ϱ, ℏ ∈ L, then ℑ1 and ℑ2 have a unique common fixed point.

Proof. Taking ρ (·) = ρ, κ (·) = κ and ϖ (·) = ϖ in Corollary (7). □

Corollary 9. Let (L, ς) be a complete bi CVMS and let ℑ1,ℑ2 : L→ L. If there exist ρ, κ ∈ [0, 1) with
ρ + κ < 1 such that

ς
(
ℑ1ϱ,ℑ2ℏ

)
⪯i2 ρς (ϱ, ℏ) + κ

ς
(
ϱ,ℑ1ϱ

)
ς
(
ℏ,ℑ2ℏ

)
1 + ς (ϱ, ℏ)

for all ϱ, ℏ ∈ L, then ℑ1 and ℑ2 have a unique common fixed point.

5. Applications

Let L = C([a, b],R), (a > 0) where C[a, b] denotes the set of all real continuous functions defined
on the closed interval [a, b] and d : L × L→ C2 be defined in this way

d(ϱ, ℏ) = max
t∈[a,b]

(1 + i) (|ϱ (t) − ℏ (t)|)
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for all ϱ, ℏ ∈ L and t ∈ [a, b], where |·| is the usual real modulus. Then (L, d) is complete bi CVMS.
Consider the integral equations of Urysohn type

ϱ(t) =
∫ b

a
K1(t, s, ϱ(s))ds + g(t), (5.1)

ϱ(t) =
∫ b

a
K2(t, s, ϱ(s))ds + g(t), (5.2)

where g : [a, b]→ R and K1,K2 : [a, b]× [a, b]×R→ R are continuous for t ∈ [a, b]. We define partial
order ⪯i2 in C2 as follows ϱ (t) ⪯i2 ℏ (t) if and only if ϱ ≤ ℏ.

Theorem 2. Suppose the following condition

|K1(t, s, ϱ(s)) − K2(t, s, ℏ(s))| ≤ ρ (ϱ, ℏ) |ϱ(s) − ℏ(s)|

holds, for all ϱ, ℏ ∈ L with ϱ , ℏ and for some control function ρ : L × L→[0, 1), then the integral
operators defined by (5.1) and (5.2) have a unique common solution.

Proof. Define continuous mappings ℑ1,ℑ2: L→ L by

ℑ1ϱ(t) =
1

b − a

∫ b

a
K1(t, s, ϱ(s))ds + g(t),

ℑ2ϱ(t) =
1

b − a

∫ b

a
K2(t, s, ϱ(s))ds + g(t),

for all t ∈ [a, b]. Consider

d
(
ℑ1ϱ,ℑ2ℏ

)
= max

t∈[a,b]
(1 + i2)

∣∣∣ℑ1ϱ(t) − ℑ2h(t)
∣∣∣

= max
t∈[a,b]

(1 + i2)
(

1
b − a

∣∣∣∣∣∣
∫ b

a
K1(t, s, ϱ(s))ds −

∫ b

a
K2(t, s, h(s))ds

∣∣∣∣∣∣
)

⪯i2 max
t∈[a,b]

(1 + i2)
(

1
b − a

∫ b

a
|K1(t, s, ϱ(s)) − K2(t, s, h(s))| ds

)

⪯i2 max
t∈[a,b]

(1 + i2)
(
ρ (ϱ, ℏ)
b − a

∫ b

a
|ϱ(s) − ℏ(s)| ds

)
.

Thus
d
(
ℑ1ϱ,ℑ2ℏ

)
⪯i2 ρ (ϱ, ℏ) d(ϱ, ℏ).

Now with κ,ϖ : L × L→[0, 1) defined by

κ (ϱ, ℏ) = ϖ (ϱ, ℏ) = 0

for every ϱ, ℏ ∈ L, all the assumptions of Theorem (1) are satisfied and the integral equations (5.1) and
(5.2) have a unique common solution. □
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6. Conclusions

In this article, we have utilized the notion of bicomplex valued metric space (bi CVMS) and
obtained common fixed point results for rational contractions involving control functions of two
variables. We have derived common fixed points and fixed points of single valued mappings for
contractions involving control functions of one variable and constants. We anticipate that the obtained
theorems in this article will establish new relationships for those who use bi CVMS. Still there are
some open problems that can be addressed in future work. For example:
1) Can the notion of bi complex valued metric space be extended to hypercomplex valued metric
space?
2) Can the results proved in this article be extended to multivalued mappings and fuzzy set valued
mappings [30]?
3) Can differential and integral inclusions can be solved as applications of fixed point results for
multivalued mappings in the setting of bi complex valued metric space?
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