Loading [MathJax]/jax/element/mml/optable/Arrows.js
Research article

On elliptic valued b-metric spaces and some new fixed point results with an application

  • Received: 10 March 2024 Revised: 19 April 2024 Accepted: 24 April 2024 Published: 17 May 2024
  • MSC : 47H09, 47H10, 54H25

  • In this paper, we introduce the concept of elliptic-valued b-metric spaces, extending the notions of elliptic-valued metric spaces and complex-valued metric spaces. We present several fixed-point results that involve rational and product terms within this novel space framework. To support our main findings, we offer numerical examples. Additionally, we demonstrate an application of Urysohn integral equations.

    Citation: Sudipta Kumar Ghosh, Ozgur Ege, Junaid Ahmad, Ahmad Aloqaily, Nabil Mlaiki. On elliptic valued b-metric spaces and some new fixed point results with an application[J]. AIMS Mathematics, 2024, 9(7): 17184-17204. doi: 10.3934/math.2024835

    Related Papers:

    [1] Afrah Ahmad Noman Abdou . Chatterjea type theorems for complex valued extended b-metric spaces with applications. AIMS Mathematics, 2023, 8(8): 19142-19160. doi: 10.3934/math.2023977
    [2] Khaled Berrah, Abdelkrim Aliouche, Taki eddine Oussaeif . Applications and theorem on common fixed point in complex valued b-metric space. AIMS Mathematics, 2019, 4(3): 1019-1033. doi: 10.3934/math.2019.3.1019
    [3] Amer Hassan Albargi . Common fixed point theorems on complex valued extended b-metric spaces for rational contractions with application. AIMS Mathematics, 2023, 8(1): 1360-1374. doi: 10.3934/math.2023068
    [4] Mustafa Mudhesh, Hasanen A. Hammad, Eskandar Ameer, Muhammad Arshad, Fahd Jarad . Novel results on fixed-point methodologies for hybrid contraction mappings in Mb-metric spaces with an application. AIMS Mathematics, 2023, 8(1): 1530-1549. doi: 10.3934/math.2023077
    [5] Haitham Qawaqneh, Mohd Salmi Md Noorani, Hassen Aydi . Some new characterizations and results for fuzzy contractions in fuzzy b-metric spaces and applications. AIMS Mathematics, 2023, 8(3): 6682-6696. doi: 10.3934/math.2023338
    [6] Fatima M. Azmi . New fixed point results in double controlled metric type spaces with applications. AIMS Mathematics, 2023, 8(1): 1592-1609. doi: 10.3934/math.2023080
    [7] Abdullah Shoaib, Tahair Rasham, Giuseppe Marino, Jung Rye Lee, Choonkil Park . Fixed point results for dominated mappings in rectangular b-metric spaces with applications. AIMS Mathematics, 2020, 5(5): 5221-5229. doi: 10.3934/math.2020335
    [8] Afrah A. N. Abdou, Maryam F. S. Alasmari . Fixed point theorems for generalized α-ψ-contractive mappings in extended b-metric spaces with applications. AIMS Mathematics, 2021, 6(6): 5465-5478. doi: 10.3934/math.2021323
    [9] Jamshaid Ahmad, Abdullah Eqal Al-Mazrooei, Hassen Aydi, Manuel De La Sen . Rational contractions on complex-valued extended b-metric spaces and an application. AIMS Mathematics, 2023, 8(2): 3338-3352. doi: 10.3934/math.2023172
    [10] Hongyan Guan, Jinze Gou, Yan Hao . On some weak contractive mappings of integral type and fixed point results in b-metric spaces. AIMS Mathematics, 2024, 9(2): 4729-4748. doi: 10.3934/math.2024228
  • In this paper, we introduce the concept of elliptic-valued b-metric spaces, extending the notions of elliptic-valued metric spaces and complex-valued metric spaces. We present several fixed-point results that involve rational and product terms within this novel space framework. To support our main findings, we offer numerical examples. Additionally, we demonstrate an application of Urysohn integral equations.



    The study of fixed-point theory constitutes a crucial branch of pure mathematics because of its vast applications in engineering, computer science, economics, etc. Recently, many interesting fixed-point results have been established (see, for example, [1,2]). In 2011, Azam et al. [3] introduced the notion of complex-valued metric spaces (CVMSs) for complex numbers (where i2=1) and studied some fixed-point results. Many researchers have focused their attention on generalized metric space and CVMS and established different types of fixed-point results (see, for example, [4,5,6,7,8,9,10]). Later, in 2021, Öztürk et al. [11] introduced the notion of elliptic valued metric spaces (EVMSs) for the set of all elliptic numbers. Basically, complex-valued metric space is a particular type of cone metric space which was introduced in [12]. But, fixed-point results involving rational and product terms were not introduced in the setting of cone metric spaces since this space is based on Banach space, which is not a division ring. Due to this reason, it is important to study fixed-point results in the context of cone metric space (or EVMS) involving rational and product terms. On the other hand, the notion of b-metric spaces were presented by Bakhtin [13] and later explained by Czerwik [14] for our known structure. For this paper, our intention is to introduce the notion of elliptic-valued b-metric spaces (b-EVMSs) by combining the ideas of EVMS and b-metric space. Now, we give a brief background about integral equations. In the literature on integral equations, there are two types of famous integral equations that are available depending on the limits of the integration, i.e., Fredholm integral equations (here, the limits are constant) and Volterra integral equations (here, at least one of the limits is a variable). Based on the form of the unknown function, the above-mentioned types of integral equations are either linear or nonlinear. Both the Fredholm and Volterra integral equations are divided into three categories, first kind, second kind, and third kind. A particular type of nonlinear Fredholm integral equations of the second kind is given by

    u(t)=σ(t)+dcΘ(t,r,u(t),u(r))dr,t[c,d],

    where σ,Θ are given functions and u(t) is an unknown function. The above integral equation has two special subclasses, i.e., Hammerstein integral equations and Urysohn integral equations. In the application section, we will discuss the solution of an Urysohn integral equation by using our new findings. Next, we move to the preliminary section, where we mention some relevant definitions and important results, which will be required for the proof of our main results.

    Let Ep be the collection of all elliptic numbers given by

    Ep={η=η1+iη2:η1,η2R,i2=p<0},

    where η1 is the real part and η2 is the imaginary part of the elliptic number η1+iη2. For the definitions of the summation of two elliptic numbers, multiplication of an elliptic-valued number by a scalar, multiplication of two elliptic numbers, and conjugate and norm of an elliptic number, we refer the reader to [11]. From now, we write θ to denote the zero element of the elliptic number system. The inverse of an elliptic number η=η1+iη2(θ) is given by η1=η1iη2η21pη22. We now define a partial ordering "≾" on Ep as follows:

    ηξiffRe(η)Re(ξ)andIm(η)Im(ξ).

    Therefore, if ηξ, then the following relations hold:

    i.Re(η)<Re(ξ)andIm(η)<Im(ξ);
    ii.Re(η)<Re(ξ)andIm(η)=Im(ξ);
    iii.Re(η)=Re(ξ)andIm(η)<Im(ξ);
    iv.Re(η)=Re(ξ)andIm(η)=Im(ξ).

    The partial ordering "≾" defined on Ep satisfies the following properties:

    P1:Ifθηξ, thenη∥<∥ξ;
    P2:Ifηξandξζ, thenηζ;
    P3:ηξηξθ;
    P4:θηandθξ
    P_{5}: \; \eta \precsim \xi \; \text{with}\; \tau \in \mathbb{R}^{+} \Rightarrow \tau \eta \precsim \tau \xi.

    Next, we introduce the definition of a b-EVMS as follows.

    Definition 2.1. Let \Omega be a non-empty set and s \in [1, \infty) . A function \varrho : \Omega \times \Omega \rightarrow \mathbb{E}_{p} is called a b-EVMS on \Omega if the following assertions hold:

    \begin{align*} \begin{split} &A_{1}.\; \theta \precsim \varrho(\gamma, \delta),\; \; \forall \gamma, \delta \in \Omega; \\ &A_{2}.\; \varrho(\gamma, \delta) = \theta \Leftrightarrow \gamma = \delta;\\ & A_{3}.\; \varrho(\gamma, \delta) = \varrho(\delta, \gamma), \; \forall \gamma, \delta \in \Omega;\\ & A_{4}.\; \varrho(\gamma, \delta) \precsim s(\varrho(\gamma, \kappa) + \varrho(\kappa, \delta)),\; \forall \gamma, \kappa, \delta \in \Omega. \end{split} \end{align*}

    Here, we call the pair (\Omega, \varrho) a b-EVMS.

    Example 2.1 Let \Omega = \mathbb{E}_{p} . Define a mapping \varrho : \mathbb{E}_{p}\times \mathbb{E}_{p} \rightarrow \mathbb{E}_{p} by

    \varrho(\eta_{1}, \eta_{2}) = | \xi_{1} - \xi_{2} |^{2} + i |\zeta_{1} - \zeta_{2}|^{2},

    where \eta_{1} = \xi_{1} + i\zeta_{1} \; \text{and}\; \eta_{2} = \xi_{2} + i\zeta_{2} . Then, (\mathbb{E}_{p}, \varrho) is a b-EVMS.

    Example 2.2. Let \Omega = \mathbb{E}_{p}^{\ast} , where \mathbb{E}_{p}^{\ast} denotes the collection of all elliptic numbers with the same argument \nabla_{p} . Define a mapping \varrho : \mathbb{E}_{p}^{\ast}\times \mathbb{E}_{p}^{\ast} \rightarrow \mathbb{E}_{p} by

    \varrho(\eta_{1}, \eta_{2}) = \parallel \eta_{1} - \eta_{2}\parallel^{2}e^{i\nabla_{p}}, \; \nabla_{p} \in\Big[ 0, \frac{\pi(p-1)}{8p} \Big],

    where \nabla_{p} is the argument of \eta_{1} and \eta_{2} with p < 0 and p \in \mathbb{R} . Then, (\mathbb{E}_{p}^{\ast}, \varrho) is a b-EVMS.

    All of the topological structures for the b-EVMS (\Omega, \varrho) , like the \varrho -interior point, \varrho -limit point, \varrho -closed, \varrho -convergence, \varrho -Cauchy sequence and \varrho -complete are of similar types as those for an EVMS (see [11]). Due to the length of the paper, we are not providing the details here. Like Lemmas 3.1 and 3.2 of [11], one can establish the same type of results in the setting of a b-EVMS. Let (\Omega, \varrho) be a b-EVMS. Then, (\Omega, \varrho) is called \varrho -continuous if the corresponding elliptic-valued b-metric \varrho from \Omega \times \Omega to \mathbb{E}_{p} is continuous, i.e., if \{u_{n}\}, \{v_{n}\} are two sequences in \Omega with u_{n} \rightarrow u^{\ast} and v_{n} \rightarrow v^{\ast} as n \rightarrow \infty , then \varrho(u_{n}, v_{n}) \rightarrow \varrho(u^{\ast}, v^{\ast}) as n \rightarrow \infty . Clearly, if (\Omega, \varrho) is \varrho -continuous, then every convergent sequence has a unique limit. Now, we write \mathbb{L} and \mathbb{L}^{\mathrm{o}} to denote the following subsets of \mathbb{E}_{p} :

    \mathbb{L} = \{\eta\in \mathbb{E}_{p} : \eta \succsim \theta \} = \{ \eta = \xi + i\zeta \in \mathbb{E}_{b}:\xi \geq 0; \zeta \geq 0 \},

    and

    \mathbb{L}^{\mathrm{o}} = \{\eta\in \mathbb{E}_{p} : \eta \succ \theta \} = \{ \eta = \xi + i\zeta \in \mathbb{E}_{b}:\xi > 0; \zeta > 0 \}.

    Definition 2.2. Let f : \mathbb{L}^{\mathrm{o}} \rightarrow \mathbb{L}^{\mathrm{o}} be a function. Then,

    \begin{align*} \begin{split} & (i)\; f \; \text{is monotonically increasing if for any}\; \gamma, \delta \in \mathbb{L}^{\mathrm{o}}\; \text{with}\; \gamma \precsim \delta \Rightarrow f(\gamma) \precsim f(\delta).\\ & (ii)\; f\; \text{is said to be}\; \varrho\text{-continuous at}\; \gamma_{0}\in \mathbb{L}\; \text{if for any sequence}\; \{\gamma_{n}\}_{n = 1}^{\infty}\in \mathbb{L}\; \text{with}\\& \gamma_{n} \rightarrow \gamma_{0} \Rightarrow f(\gamma_{n}) \rightarrow f(\gamma_{0}). \end{split} \end{align*}

    Öztürk et al. [11] defined the notion of a C -class function in the setting of an EVMS, which is also valid in a b-EVMS. Motivated by [15,16], next, we introduce the definition of a revised C_{\mathcal{F}} -simulation function in the context of a b-EVMS.

    Definition 2.3. A mapping \mathcal{F} : \mathbb{L}^{\mathrm{o}} \times \mathbb{L}^{\mathrm{o}} \rightarrow \mathbb{E}_{p} has the property C_\mathcal{F} if \exists a C_{\mathcal{F}} \succsim \theta such that

    \begin{align*} \begin{split} & C_{1}.\; \mathcal{F}(\eta_{1}, \eta_{2}) \succ C_{\mathcal{F}} \Rightarrow \eta_{1} \succ \eta_{2}, \; \text{or}\; \parallel \mathcal{F}(\eta_{1}, \eta_{2})\parallel > \parallel C_{\mathcal{F}}\parallel \Rightarrow \parallel\eta_{1}\parallel > \parallel\eta_{2}\parallel.\\ & C_{2}.\; \mathcal{F}(\eta_{1}, \eta_{2}) \precsim C_{\mathcal{F}} \; \text{or}\; \parallel\mathcal{F}(\eta_{1}, \eta_{2})\parallel \leq \parallel C_{\mathcal{F}}\parallel, \; \forall \eta_{1}, \eta_{2} \in \mathbb{L}. \end{split} \end{align*}

    Definition 2.4. A revised C_{\mathcal{F}} -simulation function is a function \lambda : \mathbb{L} \times \mathbb{L} \rightarrow \mathbb{E}_{p} that satisfies the following assertions:

    \begin{align*} \begin{split} & \lambda_{1}.\; \lambda(\gamma, \delta) \prec \mathcal{F}(\delta, \gamma)\; \text{or}\; \parallel\lambda(\gamma, \delta)\parallel < \parallel\mathcal{F}(\delta, \gamma)\parallel,\; \forall \gamma, \delta \succ \theta,\; \text{where}\; \mathcal{F}\; \text{is a C-class function} \\ &\text{with the property}\; C_{\mathcal{F}};\\ &\lambda_{2}.\; \text{let}\; \{\gamma_{n}\}, \{\delta_{n}\} \; \text{be two sequences in}\; \mathbb{L}^{\mathrm{o}}\; \text{such that either statement is true:}\; \\ & \lambda_{2a}.\; \; \theta \prec \lim\limits_{n\rightarrow \infty}\gamma_{n} \precsim \liminf\limits_{n \rightarrow \infty}\delta_{n} \precsim \limsup\limits_{n \rightarrow \infty}\delta_{n} \precsim s\lim\limits_{n \rightarrow \infty}\gamma_{n} \prec \infty\; \text{implies}\; \limsup\limits_{n \rightarrow \infty}\lambda(s\gamma_{n}, \delta_{n}) \prec C_{\mathcal{F}},\\& \; \; \; \; \; \; \; \text{or}\\ & \lambda_{2b}.\; \; 0 < \lim\limits_{n\rightarrow \infty}\parallel\gamma_{n}\parallel \leq \liminf\limits_{n \rightarrow \infty}\parallel\delta_{n}\parallel \leq \limsup\limits_{n \rightarrow \infty}\parallel\delta_{n}\parallel \leq s\lim\limits_{n \rightarrow \infty}\parallel\gamma_{n}\parallel < \infty\; \text{implies}\\ &\; \; \; \; \; \; \limsup\limits_{n \rightarrow \infty}\parallel\lambda(s\gamma_{n}, \delta_{n})\parallel < \parallel C_{\mathcal{F}}\parallel. \end{split} \end{align*}

    Now, we shall give examples.

    Example 2.3. Let \lambda : \mathbb{L} \times \mathbb{L} \rightarrow \mathbb{E}_{p} be a function given by \lambda(\eta_{1}, \eta_{2}) = \frac{a}{b}\eta_{2} - \eta_{1} , where \eta_{1}, \eta_{2} \in \mathbb{L} with a, b \in \mathbb{R}^{+}, b > a, and \mathcal{F}(\eta_{1}, \eta_{2}) = \eta_{1} - \eta_{2} with C_{\mathcal{F}} = (s+1)(\rho_{1} + i\rho_{2}) , where \rho_{1} + i\rho_{2} \in \mathbb{E}_{p} . Clearly, \lambda_{1} holds. Let us take two sequences \{\gamma_{n}\}, \{\delta_{n}\} from Int \mathbb{L} such that

    \theta \prec \lim\limits_{n\rightarrow \infty}\gamma_{n} \precsim \liminf\limits_{n \rightarrow \infty}\delta_{n} \precsim \limsup\limits_{n \rightarrow \infty}\delta_{n} \precsim s\lim\limits_{n \rightarrow \infty}\gamma_{n} \prec \rho_{1} + i\rho_{2},

    or

    0 < \lim\limits_{n\rightarrow \infty}\parallel\gamma_{n}\parallel \leq \liminf\limits_{n \rightarrow \infty}\parallel\delta_{n}\parallel \leq \limsup\limits_{n \rightarrow \infty}\parallel\delta_{n}\parallel \leq s\lim\limits_{n \rightarrow \infty}\parallel\gamma_{n}\parallel < \rho,

    where \rho = \parallel \rho_{1} + i \rho_{2} \parallel . Then,

    \begin{align*} \begin{split} & \limsup\limits_{n\rightarrow \infty}\lambda(s\gamma_{n}, \delta_{n}) \\ & = \limsup\limits_{n \rightarrow \infty}\big[\frac{a}{b}\delta_{n}-s\gamma_{n} \big] \\ & = \limsup\limits_{n \rightarrow \infty}\frac{a}{b}\delta_{n} - \liminf\limits_{n \rightarrow \infty}s\gamma_{n} \\ & = \frac{a}{b}\limsup\limits_{n \rightarrow \infty}\delta_{n} - \liminf\limits_{n \rightarrow \infty}s\gamma_{n} \\ & \precsim \limsup\limits_{n \rightarrow \infty}\delta_{n} - \liminf\limits_{n \rightarrow \infty}s\gamma_{n} \precsim \theta \precsim C_{\mathcal{F}}. \end{split} \end{align*}

    Furthermore, it can be easily checked that \limsup\limits_{n \rightarrow \infty}\parallel\lambda(s\gamma_{n}, \delta_{n})\parallel < \parallel C_{\mathcal{F}}\parallel .

    Example 2.4. Let \lambda : \mathbb{L} \times \mathbb{L} \rightarrow \mathbb{E}_{b} be a function defined by

    \lambda(\eta_{1}, \eta_{2}) = \begin{cases} {1-\frac{\eta_{1}}{2} , }&{\text{if }\eta_{2} = \theta, }\\ { \frac{k\eta_{2}}{1+\eta_{1}} ,} &{\text{if }\eta_{2} \succsim \theta ,}\\ \end{cases}

    where k is a real number such that k \in [0, 1) , \mathcal{F}(\eta_{1}, \eta_{2}) = \frac{\eta_{1}}{1+\eta_{2}} , and C_{\mathcal{F}} = 1+ i . Clearly, \lambda_{1} holds. To check \lambda_{2} , let us take two sequences \{\gamma_{n}\}, \{\delta_{n}\} from Int \mathbb{L} such that

    \theta \prec \lim\limits_{n\rightarrow \infty}\gamma_{n} \precsim \liminf\limits_{n \rightarrow \infty}\delta_{n} \precsim \limsup\limits_{n \rightarrow \infty}\delta_{n} \precsim s\lim\limits_{n \rightarrow \infty}\gamma_{n},

    or

    0 < \lim\limits_{n\rightarrow \infty}\parallel\gamma_{n}\parallel \leq \liminf\limits_{n \rightarrow \infty}\parallel\delta_{n}\parallel \leq \limsup\limits_{n \rightarrow \infty}\parallel\delta_{n}\parallel \leq s\lim\limits_{n \rightarrow \infty}\parallel\gamma_{n}\parallel.

    Here, we suppose that \lim\limits_{n \rightarrow \infty}\gamma_{n} = \rho_{1} + i\rho_{2} with \rho = \parallel \rho_{1} + i\rho_{2} \parallel . Then,

    \begin{align*} \begin{split} & \limsup\limits_{n \rightarrow \infty}\parallel \lambda(s\gamma_{n}, \delta_{n}) \parallel \\ & = \limsup\limits_{n \rightarrow \infty} \parallel \frac{k\delta_{n}}{1 + s\gamma_{n}} \parallel \\ & \leq \limsup\limits_{n \rightarrow \infty}\parallel \frac{\delta_{n}}{1 + s\gamma_{n}}\parallel \\ & \leq \limsup\limits_{n \rightarrow \infty} \big[\parallel \delta_{n} \parallel \parallel(1 + s\gamma_{n})^{-1}\parallel\big] \\ & \leq \limsup\limits_{n \rightarrow \infty}\parallel \delta_{n} \parallel \limsup\limits_{n \rightarrow \infty}\parallel (1 + s\gamma_{n})^{-1}\parallel \\ & \leq s\lim\limits_{n \rightarrow \infty}\parallel \gamma_{n}\parallel\limsup\limits_{n \rightarrow \infty}\parallel (1 + s\gamma_{n})^{-1} \parallel \\ & \leq \frac{s\rho}{s\rho} \leq \parallel 1 + i \parallel. \end{split} \end{align*}

    Moreover, it can be easily shown that \limsup_{n \rightarrow \infty}\lambda(s\gamma_{n}, \delta_{n}) \prec C_{\mathcal{F}} .

    Example 2.5. Every simulation function is a revised C_{\mathcal{F}} -simulation function with \mathcal{F}(\eta_{1}, \eta_{2}) = \eta_{1} - \eta_{2} and C_{\mathcal{F}} = \theta .

    Now, we shall state two important lemmas.

    Lemma 2.1. For every sequence \{\gamma_{n}\} from a b-EVMS (\Omega, \varrho) , the following inequality holds:

    \varrho(\gamma_{0}, \gamma_{k}) \precsim s^{n}\sum\limits_{j = 0}^{k-1}\varrho(\gamma_{j}, \gamma_{j+1})

    for each n \in \mathbb{N} and each k \in \{1, 2, 3, \cdots, 2^{n-1}, 2^{n}\} .

    Our next lemma is as follows.

    Lemma 2.2. Every sequence \{\gamma_{n}\} from a b-EVMS (\Omega, \varrho) with a constant s such that \varrho(\gamma_{n}, \gamma_{n+1}) \precsim a \varrho(\gamma_{n-1}, \gamma_{n}), \forall n\in \mathbb{N} is a Cauchy sequence where a \in [0, 1) . Further, the following inequality holds:

    \varrho(\gamma_{t}, \gamma_{t+k}) \precsim \frac{a^{n}A}{1-a}\varrho(\gamma_{0}, \gamma_{1}),

    where A = \sum_{j = 1}^{\infty}a^{2j\ln_{a}s + 2^{j-1}} .

    Remark 2.1. The proof of the above two lemmas is similar to the proof given by Miculescu and Mihail [17] in the setting of a b-metric space.

    Remark 2.2. If we have that \parallel\varrho(\gamma_{n}, \gamma_{n+1})\parallel \leq a \parallel\varrho(\gamma_{n-1}, \gamma_{n})\parallel in place of \varrho(\gamma_{n}, \gamma_{n+1}) \precsim a \varrho(\gamma_{n-1}, \gamma_{n}) in Lemma 2.2, then \{\gamma_{n}\} is also a Cauchy sequence.

    Next, we shall state some important definitions of \alpha -admissible mapping.

    Definition 2.5. ([18]) Let \mathcal{J} : \Omega \rightarrow \Omega and \alpha : \Omega \times \Omega \rightarrow \mathbb{R}^{+} be two given mappings. Then, \mathcal{J} is said to be an \alpha -orbital admissible mapping if the following holds:

    \alpha(u, \mathcal{J}u) \geq 1 \Rightarrow \alpha(\mathcal{J} u, \mathcal{J}^{2}u) \geq 1, \; \forall u \in \Omega.

    Definition 2.6. ([18]) Let \mathcal{J} : \Omega \rightarrow \Omega and \alpha: \Omega \times \Omega \rightarrow \mathbb{R}^{+} be two given mappings. Then, \mathcal{J} is said to be a triangular \alpha -orbital admissible mapping if \mathcal{J} satisfies

    \begin{align*} \begin{split} & (i)\; \alpha(u, \mathcal{J}u) \geq 1 \Rightarrow \alpha(\mathcal{J} u, \mathcal{J}^{2}u) \geq 1, \\ &(ii)\; \alpha(u, v) \geq 1,\; {and}\; \alpha(v, \mathcal{J}v) \geq 1 \Rightarrow \alpha(u, \mathcal{J}v) \geq 1,\; \forall u, v \in \Omega. \end{split} \end{align*}

    Definition 2.7. ([19]) A sequence \{u_{n}\} is said to be \alpha -regular if \alpha(u_{n}, u_{n+1}) \geq 1 and u_{n} \rightarrow u^{\ast} (\in \Omega) as n \rightarrow \infty ; then, there exists a subsequence \{u_{n_{k}}\} of \{u_{n}\} such that \alpha(u_{n_{k}}, u^{\ast}) \geq 1 for every k \in \mathbb{N} .

    Note: In the proof of our main results, we will use Definition 2.7 with an additional condition, i.e., u_{n_{k}} \neq \mathcal{J}u^{\ast}, \forall \; k \in \mathbb{N} , where \mathcal{J} is a mapping from \Omega to \Omega , and we still say that it is a \alpha -regularity condition.

    Next, we move to the main section of our paper.

    In this section, first, we introduce the following definition.

    Definition 3.1. Let (\Omega, \varrho) be a b-EVMS with \mathcal{J} : \Omega \rightarrow \Omega and \alpha : \Omega \times \Omega \rightarrow \mathbb{R}^{+} be two mappings. Suppose that, for all u, v \in \Omega with \alpha(u, v) \geq 1 , one has

    \begin{equation} \lambda(s\varrho(\mathcal{J}u, \mathcal{J}v), \Delta_{\mathcal{J}}(u, v)) \succsim C_{\mathcal{F}}, \end{equation} (3.1)

    where \Delta_{\mathcal{J}}(u, v) = \max\big\{ \varrho(u, v), \varrho(u, \mathcal{J}u), \frac{[1 + \varrho(u, \mathcal{J}u)]\varrho(v, \mathcal{J}v)}{1 + \varrho(u, v)}, \frac{\varrho(v, \mathcal{J}u)\varrho(v, \mathcal{J}v)}{1 + \varrho(u, v)}, \frac{\varrho(v, \mathcal{J}u)\varrho(u, \mathcal{J}v)}{1 + \varrho(u, v)} \big\} and each term inside "max" is comparable with respect to the partial order " \precsim " . Then, \mathcal{J} is said to satisfy the condition of a generalized \alpha -orbital admissible revised C_{\mathcal{F}} -simulation contraction associated with rational terms.

    Theorem 1. Let (\Omega, \varrho) be a \varrho -complete and \varrho -continuous b-EVMS with a constant s \geq 1 . Let \alpha : \Omega \times \Omega \rightarrow \mathbb{R}^{+} and \mathcal{J} : \Omega \rightarrow \Omega be two mappings such that the following assertions hold:

    \begin{align*} \begin{split} & (i)\; \mathcal{J}\; \text{is a triangular}\; \alpha\text{-admissible mapping};\\ & (ii)\; \mathcal{J}\; \text{satisfies the conditions of an}\; \alpha\text{-orbital admissible revised}\; C_{\mathcal{F}}\; \text{simulation contraction};\\ & (iii)\; \text{there exists a point}\; u_{0} \in \Omega\; \text{such that}\; \alpha(u_{0}, \mathcal{J}u_{0}) \geq 1; \\ &\text{either}\\ & (iv_{a})\; \mathcal{J}\; \text{is}\; \varrho \text{-continuous}; \\ &\text{or}\\ & (iv_{b})\; \text{if}\; \{u_{n}\}\; \text{is a sequence in}\; \Omega,\; \text{then it satisfies the}\; \alpha\text{-regularity condition}. \end{split} \end{align*}

    Then, \mathcal{J} has a fixed point in \Omega .

    Proof. From our assumption (ⅲ), there exists a point u_{0} \in \Omega such that \alpha(u_{0}, \mathcal{J}u_{0}) \geq 1 . Clearly, starting from this initial point, one can construct a sequence \{u_{n}\} by u_{n+1} = \mathcal{J}u_{n}, \; \forall n \in \mathbb{N} . For the remainder of the proof, we will assume that u_{n+1} \neq u_{n}, \; \forall n\in \mathbb{N} , i.e., \varrho(u_{n}, u_{n+1}) \succ \theta . Otherwise, we can find a point, say, u_{n_{0}} , for which we have that u_{n_{0}+1} = u_{n_{0}} \Rightarrow u_{n_{0}} = \mathcal{J}u_{n_{0}} . Clearly, we obtain a fixed point of \mathcal{J} and the proof becomes less interesting. Now, since \mathcal{J} is a triangular \alpha -admissible mapping, one can easily get that \alpha(u_{n}, u_{n+1}) \geq 1 , and, furthermore, \alpha(u_{n}, u_{m}) \geq 1, \; \forall n, m\in \mathbb{N} with m > n . Now, we shall divide the proof into two cases.

    Case-Ⅰ: Here, we consider that s = 1 . Since we have assumed that \varrho(u_{n}, u_{n+1}) \succ\theta, \; \forall n \in \mathbb{N} , we have

    \begin{align*} \begin{split} & \Delta_{\mathcal{J}}(u_{n-1}, u_{n})\\ & = \max\Big\{ \varrho(u_{n-1}, u_{n}), \varrho(u_{n-1}, u_{n}), \frac{[1 + \varrho(u_{n-1}, u_{n})]\varrho(u_{n}, u_{n+1})}{1 + \varrho(u_{n-1}, u_{n})}, \frac{\varrho(u_{n}, u_{n})\varrho(u_{n}, u_{n+1})}{1 + \varrho(u_{n-1}, u_{n})}, \frac{\varrho(u_{n}, u_{n})\varrho(u_{n-1}, u_{n+1})}{1 + \varrho(u_{n-1}, u_{n})} \Big\}\\ & = \max\{ \varrho(u_{n-1}, u_{n}), \varrho(u_{n}, u_{n+1}) \}. \end{split} \end{align*}

    Now, it can be easily checked that \Delta_{\mathcal{J}}(u_{n-1}, u_{n}) \succ \theta, \; \forall n \in \mathbb{N} . Since \mathcal{J} is an \alpha -orbital admissible revised C_{\mathcal{F}} simulation contraction, i.e., we have

    \lambda(\varrho(u_{n}, u_{n+1}), \Delta_{\mathcal{J}}(u_{n-1}, u_{n})) \succsim C_{\mathcal{F}}.

    Since \varrho(u_{n}, u_{n+1}) \succ \theta and \Delta_{\mathcal{J}}(u_{n-1}, u_{n})) \succ \theta, \; \forall n \in \mathbb{N} , i.e., by using property \lambda_{1} , we have

    \begin{align*} \begin{split} & C_{\mathcal{F}} \precsim \lambda(\varrho(u_{n}, u_{n+1}), \Delta_{\mathcal{J}}(u_{n-1}, u_{n})) \prec \mathcal{F}(\Delta_{\mathcal{J}}(u_{n-1}, u_{n}), \varrho(u_{n}, u_{n+1})) \\ & \Rightarrow C_{\mathcal{F}} \prec \mathcal{F}(\Delta_{\mathcal{J}}(u_{n-1}, u_{n}), \varrho(u_{n}, u_{n+1})). \end{split} \end{align*}

    Now, by C_{1} , we get that \varrho(u_{n}, u_{n+1}) \prec \Delta_{\mathcal{J}}(u_{n-1}, u_{n}) . Clearly, we arrive at a contradiction if we consider \max\{ \varrho(u_{n-1}, u_{n}), \varrho(u_{n}, u_{n+1}) \} = \varrho(u_{n}, u_{n+1}) . Thus, we have that \varrho(u_{n}, u_{n+1}) \prec \varrho(u_{n-1}, u_{n}), \; \forall n\in \mathbb{N} with

    \begin{equation} C_{\mathcal{F}} \precsim \lambda(\varrho(u_{n}, u_{n+1}), \varrho(u_{n-1}, u_{n})). \end{equation} (3.2)

    Consequently, the sequence \{ \varrho(u_{n-1}, u_{n}) \} is monotonically decreasing and bounded below by \theta . Hence, there exists \eta \in \mathbb{L} such that \lim\limits_{n \rightarrow \infty}\varrho(u_{n-1}, u_{n}) = \eta \succsim \theta . We consider \eta \in \mathbb{L}^{\mathrm{o}} . Utilizing the property \lambda_{2a} with \gamma_{n} = \varrho(u_{n}, u_{n+1}) and \delta_{n} = \varrho(u_{n-1}, u_{n}), we have

    \limsup\limits_{n \rightarrow \infty}\lambda(\varrho(u_{n}, u_{n+1}), \varrho(u_{n-1}, u_{n})) \prec C_{\mathcal{F}},

    which contradicts (3.2). Thus, our assumption, i.e., that \eta \in \mathbb{L}^{\mathrm{o}} , is wrong. Hence, \eta = \theta , i.e.,

    \begin{equation} \lim\limits_{n \rightarrow \infty}\varrho(u_{n}, u_{n+1}) = \theta. \end{equation} (3.3)

    Our next intention is to show that \{u_{n}\} is bounded, i.e., \{ \parallel \varrho(u_{m}, u_{n}) \parallel\; : m, n\in \mathbb{N}\; \text{with}\; m > n \} is bounded. We now show this by using the method of contradiction. Suppose that \{ u_{n}\} is not bounded. Then, there exists a subsequence \{u_{n_{l}}\} of \{u_{n}\} such that n_{1} = 1 ; also, for every l \in \mathbb{N} , n_{l+1} is the minimum positive integer such that

    \begin{equation} \begin{split} & \parallel \varrho(u_{n_{l+1}}, u_{n_{l}}) \parallel > 1,\; \text{and} \\ & \parallel \varrho(u_{q}, u_{n_{l}}) \parallel \leq 1,\; \forall q\in \mathbb{N} \; \text{with}\; n_{l} \leq q \leq n_{l+1} -1. \end{split} \end{equation} (3.4)

    Now, applying the triangular inequality property of b-EVMS and (3.4), we obtain

    \begin{align*} \begin{split} 1 & \leq \parallel \varrho(u_{n_{l+1}}, u_{n_{l}}) \parallel \\ & \leq \parallel \varrho(u_{n_{l+1}}, u_{n_{l+1}-1}) + \varrho(u_{n_{l+1}-1}, u_{n_{l}}) \parallel \\ & \leq \parallel \varrho(u_{n_{l+1}}, u_{n_{l+1}-1}) \parallel + \parallel \varrho(u_{n_{l+1}-1}, u_{n_{l}}) \parallel \\ & \leq \parallel \varrho(u_{n_{l+1}}, u_{n_{l+1}-1}) \parallel +1. \end{split} \end{align*}

    Now, by applying (3.3), we obtain that \lim\limits_{l \rightarrow \infty}\parallel \varrho(u_{n_{l+1}}, u_{n_{l}}) \parallel = 1 . \lim\limits_{l \rightarrow \infty}\parallel \varrho(u_{n_{l+1}}, u_{n_{l}}) \parallel = 1 implies that \varrho(u_{n_{l+1}}, u_{n_{l}}) \rightarrow \eta_{1} as l \rightarrow \infty with \parallel \eta_{1}\parallel = 1 . Now, since \mathcal{J} is an \alpha -orbital admissible revised C_{\mathcal{F}} -simulation contraction, considering that u = u_{n_{l+1}-1} and v = u_{n_{l}-1} in (3.1), we have

    C_{\mathcal{F}} \precsim \lambda(\varrho(u_{n_{l+1}}, u_{n_{l}}), \Delta_{\mathcal{J}}(u_{n_{l+1}-1}, u_{n_{l}-1})).

    Observe that \Delta_{\mathcal{J}}(u_{n_{l+1}-1}, u_{n_{l}-1}) \succ \theta since each term of \Delta_{\mathcal{J}}(u_{n_{l+1}-1}, u_{n_{l}-1}) is comparable and there is a term \varrho(u_{n_{l+1}-1}, u_{n_{l+1}}) \succ \theta . Also, \varrho(u_{n_{l+1}}, u_{n_{l}}) \succsim \theta with \parallel \varrho(u_{n_{l+1}}, u_{n_{l}}) \parallel \geq 1 (from (3.4)) implies that \varrho(u_{n_{l+1}}, u_{n_{l}}) \succ \theta . Thus, by property \lambda_{1} , we get

    \begin{align*} \begin{split} C_{\mathcal{F}} & \precsim \lambda(\varrho(u_{n_{l+1}}, u_{n_{l}}), \Delta_{\mathcal{J}}(u_{n_{l+1}-1}, u_{n_{l}-1})) \\ & \prec \mathcal{F}(\Delta_{\mathcal{J}}(u_{n_{l+1}-1}, u_{n_{l}-1}), \varrho(u_{n_{l+1}}, u_{n_{l}})) \end{split} \end{align*}
    \begin{equation} \Rightarrow \varrho(u_{n_{l+1}}, u_{n_{l}}) \prec \Delta_{\mathcal{J}}(u_{n_{l+1}-1}, u_{n_{l}-1}). \end{equation} (3.5)

    Again, we know that \theta \precsim \eta_{1} \precnsim \eta_{2} \Rightarrow \parallel \eta_{1} \parallel < \parallel \eta_{2} \parallel . Thus, from (3.5), we have

    \parallel \varrho(u_{n_{l+1}}, u_{n_{l}}) \parallel < \parallel \Delta_{\mathcal{J}}(u_{n_{l+1}-1}, u_{n_{l}-1}) \parallel.

    Now,

    \begin{equation} \begin{split} & \parallel \Delta_{\mathcal{J}}(u_{n_{l+1}-1}, u_{n_{l}-1}) \parallel \\ & = \max \Big\{ \parallel \varrho(u_{n_{l+1}-1}, u_{n_{l}-1})\parallel, \parallel\varrho(u_{n_{l+1}-1}, u_{n_{l+1}}) \parallel, \parallel \frac{[1 + \varrho(u_{n_{l+1}}, u_{n_{l+1}-1})]\varrho(u_{n_{l}}, u_{n_{l}-1})}{1 + \varrho(u_{n_{l+1}-1}, u_{n_{l}-1})} \parallel,\\ & \parallel \frac{\varrho(u_{n_{l+1}}, u_{n_{l}-1})\varrho(u_{n_{l}}, u_{n_{l}-1})}{1 + \varrho(u_{n_{l+1}-1}, u_{n_{l}-1})} \parallel, \parallel \frac{\varrho(u_{n_{l+1}}, u_{n_{l}-1})\varrho(u_{n_{l}}, u_{n_{l+1}-1})}{1 + \varrho(u_{n_{l+1}-1}, u_{n_{l}-1})} \parallel \Big\} \\ & \leq \max \Big \{ \parallel \varrho(u_{n_{l+1}-1}, u_{n_{l}}) \parallel + \parallel \varrho(u_{n_{l}}, u_{n_{l}-1}) \parallel, \parallel \varrho(u_{n_{l+1}-1}, u_{n_{l+1}}) \parallel, \frac{[1 + \parallel \varrho(u_{n_{l+1}}, u_{n_{l+1}-1}) \parallel]\parallel\varrho(u_{n_{l}}, u_{n_{l}-1})\parallel}{\parallel 1 + \varrho(u_{n_{l+1}-1}, u_{n_{l}-1}) \parallel}, \\ & \frac{[\parallel \varrho(u_{n_{l+1}}, u_{n_{l}}) \parallel + \parallel \varrho(u_{n_{l}}, u_{n_{l}-1}) \parallel]\parallel\varrho(u_{n_{l}}, u_{n_{l}-1})\parallel}{\parallel 1 + \varrho(u_{n_{l+1}-1}, u_{n_{l}-1}) \parallel}, \frac{[\parallel \varrho(u_{n_{l+1}}, u_{n_{l}}) \parallel + \parallel \varrho(u_{n_{l}}, u_{n_{l}-1}) \parallel]\parallel\varrho(u_{n_{l}}, u_{n_{l+1}-1})\parallel}{\parallel 1 + \varrho(u_{n_{l+1}-1}, u_{n_{l}-1}) \parallel}\\ & \leq \max \Big \{ \parallel \varrho(u_{n_{l+1}-1}, u_{n_{l}}) \parallel + \parallel \varrho(u_{n_{l}}, u_{n_{l}-1}) \parallel, \parallel \varrho(u_{n_{l+1}-1}, u_{n_{l+1}}) \parallel, \frac{[1 + \parallel \varrho(u_{n_{l+1}}, u_{n_{l+1}-1}) \parallel]\parallel\varrho(u_{n_{l}}, u_{n_{l}-1})\parallel}{\parallel 1 + \varrho(u_{n_{l+1}-1}, u_{n_{l}-1}) \parallel},\\ & \frac{[\parallel \varrho(u_{n_{l+1}}, u_{n_{l}}) \parallel + \parallel \varrho(u_{n_{l}}, u_{n_{l}-1}) \parallel]\parallel\varrho(u_{n_{l}}, u_{n_{l}-1})\parallel}{\parallel 1 + \varrho(u_{n_{l+1}-1}, u_{n_{l}-1}) \parallel},\\ & \frac{[\parallel \varrho(u_{n_{l+1}}, u_{n_{l+1}-1}) \parallel + \parallel \varrho(u_{n_{l+1}-1}, u_{n_{l}}) \parallel + \parallel \varrho(u_{n_{l}}, u_{n_{l}-1}) \parallel]\parallel\varrho(u_{n_{l}}, u_{n_{l+1}-1})\parallel}{\parallel 1 + \varrho(u_{n_{l+1}-1}, u_{n_{l}-1}) \parallel} \Big\}. \end{split} \end{equation} (3.6)

    Now, we observe that \parallel \varrho(u_{n_{l+1}-1}, u_{n_{l}}) \parallel \leq 1 and \parallel \varrho(u_{n}, u_{n+1}) \parallel \rightarrow 0 as n \rightarrow \infty . Further, observe that \varrho(\gamma, \delta) \succsim \theta \Rightarrow \parallel 1 + \varrho(\gamma, \delta) \parallel \geq 1 . Next, considering the \limsup as l \rightarrow \infty in (3.6), we obtain

    \begin{equation} \limsup\limits_{l \rightarrow \infty}\parallel \Delta_{\mathcal{J}}(u_{n_{l+1}-1}, u_{n_{l}-1}) \parallel \leq 1. \end{equation} (3.7)

    Again, from (3.5), we have that \parallel \varrho(u_{n_{l+1}}, u_{n_{l}}) \parallel < \parallel \Delta_{\mathcal{J}}(u_{n_{l+1}-1}, u_{n_{l}-1}) \parallel implies that

    \begin{equation} 1 < \parallel \Delta_{\mathcal{J}}(u_{n_{l+1}-1}, u_{n_{l}-1}) \parallel. \end{equation} (3.8)

    Consequently, taking the \liminf as n \rightarrow \infty in (3.8), we get

    \begin{equation} 1 \leq \liminf\limits_{l \rightarrow \infty}\parallel\Delta_{\mathcal{J}}(u_{n_{l+1}-1}, u_{n_{l}-1})\parallel . \end{equation} (3.9)

    Hence, from (3.7) and (3.9), we have

    \lim\limits_{l \rightarrow \infty}\parallel \Delta_{\mathcal{J}}(u_{n_{l+1}-1}, u_{n_{l}-1}) \parallel = 1,

    which is equivalent to \Delta_{\mathcal{J}}(u_{n_{l+1}-1}, u_{n_{l}-1}) \rightarrow \eta_{2} as l \rightarrow \infty with \parallel \eta_{2} \parallel = 1 . Now, take \gamma_{n} = \varrho(u_{n_{l+1}}, u_{n_{l}}) and \delta_{n} = \Delta_{\mathcal{J}}\varrho(u_{n_{l+1}-1}, u_{n_{l}-1}) . Here if \eta_{1} = \eta_{2} , then, by applying \lambda_{2a} and (3.5), we get

    C_{\mathcal{F}} \precsim \limsup\limits_{l \rightarrow \infty}\lambda(\varrho(u_{n_{l+1}}, u_{n_{l}}), \Delta_{\mathcal{J}}(u_{n_{l+1}-1}, u_{n_{l}-1})) \prec C_{\mathcal{F}},

    which is a contradiction. On the other hand, for \parallel \eta_{1} \parallel = \parallel \eta_{2} \parallel , we apply \lambda_{2b} and (3.5) to get

    \parallel C_{\mathcal{F}} \parallel \leq \limsup\limits_{l \rightarrow \infty}\parallel\lambda(\varrho(u_{n_{l+1}}, u_{n_{l}}), \Delta_{\mathcal{J}}(u_{n_{l+1}-1}, u_{n_{l}-1}))\parallel < C_{\mathcal{F}},

    which is a contradiction. Thus, from any case, we can conclude that \{u_{n}\} is bounded. Our next goal is to show that \{u_{n}\} is a Cauchy sequence. Let us consider that M_{n} = \sup \{\parallel \varrho(u_{r}, u_{s}) \parallel : r, s > n\}, \; n\in \mathbb{N} . Since we have already shown that \{u_{n}\} is a bounded sequence, M_{n} < \infty, \; \forall n \in \mathbb{N} . Now, observe that \{M_{n}\} is a positive decreasing sequence; consequently, there exists an M \geq 0 such that \lim\limits_{n \rightarrow \infty}M_{n} = M . Let us assume that M > 0 . Now, applying the definition of M_{n} , for each l \in \mathbb{N} , there exist r_{l}, t_{l} \in \mathbb{N} such that t_{l} \geq r_{l} \geq l and

    \begin{equation} M_{l} - \frac{1}{l} < \parallel \varrho(u_{r_{l}}, u_{t_{l}}) \parallel \leq M_{l}. \end{equation} (3.10)

    Ensuring that l \rightarrow \infty in (3.10), we get

    \begin{equation} \lim\limits_{l \rightarrow \infty}\parallel \varrho(u_{r_{l}}, u_{t_{l}}) \parallel = M, \end{equation} (3.11)

    and

    \begin{equation} \lim\limits_{l \rightarrow \infty}\parallel \varrho(u_{r_{l}-1}, u_{t_{l}-1}) \parallel = M. \end{equation} (3.12)

    Now, we set u = u_{r_{l}-1} and v = u_{t_{l}-1} in (3.1). Consequently, we have

    \begin{equation} C_{\mathcal{F}} \precsim \lambda (\varrho(u_{r_{l}}, u_{t_{l}}), \Delta_{\mathcal{J}}(u_{r_{l}-1}, u_{t_{l}-1})),\; \text{where} \end{equation} (3.13)
    \begin{align*} \begin{split} \Delta_{\mathcal{J}}(u_{r_{l}-1}, u_{t_{l}-1}) = \max & \Big\{ \varrho(u_{r_{l}-1}, u_{t_{l}-1}), \varrho(u_{r_{l}-1}, u_{r_{l}}), \frac{[1 + \varrho(u_{r_{l}-1}, u_{r_{l}})]\varrho(u_{t_{l}-1}, u_{t_{l}})}{1 + \varrho(u_{r_{l}-1}, u_{t_{l}-1})}, \frac{\varrho(u_{r_{l}}, u_{t_{l}-1})\varrho(u_{t_{l}}, u_{t_{l}-1})}{1 + \varrho(u_{r_{l}-1}, u_{t_{l}-1})},\\ & \frac{\varrho(u_{r_{l}}, u_{t_{l}-1})\varrho(u_{r_{l}-1}, u_{t_{l}})}{1 + \varrho(u_{r_{l}-1}, u_{t_{l}-1})} \Big\}. \end{split} \end{align*}

    It can be easily checked that \varrho(u_{r_{l}}, u_{t_{l}}) \succ \theta and \Delta_{\mathcal{J}}(u_{r_{l}-1}, u_{t_{l}-1}) \succ \theta . Therefore, we get

    \lambda(\varrho(u_{r_{l}}, u_{t_{l}}), \Delta_{\mathcal{J}}(u_{r_{l}-1}, u_{t_{l}-1})) \precsim \mathcal{F}(\Delta_{\mathcal{J}}(u_{r_{l}-1}, u_{t_{l}-1}), \varrho(u_{r_{l}}, u_{t_{l}})),

    or

    \parallel \lambda(\varrho(u_{r_{l}}, u_{t_{l}}), \Delta_{\mathcal{J}}(u_{r_{l}-1}, u_{t_{l}-1})) \parallel \; \leq\; \parallel \mathcal{F}(\Delta_{\mathcal{J}}(u_{r_{l}-1}, u_{t_{l}-1}), \varrho(u_{r_{l}}, u_{t_{l}}))\parallel.

    Hence, from any situation, we have

    \parallel \varrho(u_{r_{l}}, u_{t_{l}}) \parallel < \parallel \Delta_{\mathcal{J}}(u_{r_{l}-1}, u_{t_{l}-1}) \parallel.

    Now,

    \begin{align*} \begin{split} \Delta_{\mathcal{J}}(u_{r_{l}-1}, u_{t_{l}-1}) & = \max \Big\{ \parallel \varrho(u_{r_{l}-1}, u_{t_{l}-1})\parallel, \parallel\varrho(u_{r_{l}-1}, u_{r_{l}})\parallel, \frac{\parallel 1 + \varrho(u_{r_{l}-1}, u_{r_{l}}) \parallel \parallel\varrho(u_{t_{l}-1}, u_{t_{l}})\parallel}{\parallel 1 + \varrho(u_{r_{l}-1}, u_{t_{l}-1})\parallel},\\ & \frac{\parallel \varrho(u_{r_{l}}, u_{t_{l}-1})\parallel \parallel\varrho(u_{t_{l}}, u_{t_{l}-1})\parallel}{\parallel 1 + \varrho(u_{r_{l}-1}, u_{t_{l}-1})\parallel}, \frac{\parallel \varrho(u_{r_{l}}, u_{t_{l}-1})\parallel \parallel \varrho(u_{r_{l}-1}, u_{t_{l}})\parallel}{\parallel 1 + \varrho(u_{r_{l}-1}, u_{t_{l}-1})\parallel} \Big\} \\ & \leq \max \Big\{ \parallel \varrho(u_{r_{l}-1}, u_{t_{l}-1})\parallel, \parallel\varrho(u_{r_{l}-1}, u_{r_{l}})\parallel, \frac{ 1 + \parallel \varrho(u_{r_{l}-1}, u_{r_{l}}) \parallel \parallel\varrho(u_{t_{l}-1}, u_{t_{l}})\parallel}{\parallel 1 + \varrho(u_{r_{l}-1}, u_{t_{l}-1})\parallel},\\ & \frac{(\parallel \varrho(u_{r_{l}}, u_{r_{l}-1}) \parallel + \parallel \varrho(u_{r_{l}-1}, u_{t_{l}-1}) \parallel)\parallel \varrho(u_{t_{l}-1}, u_{t_{l}}) \parallel}{\parallel 1 + \varrho(u_{r_{l}-1}, u_{t_{l}-1}) \parallel},\\ & \frac{(\parallel \varrho(u_{r_{l}}, u_{t_{l}}) \parallel + \parallel \varrho(u_{t_{l}}, u_{t_{l}-1}) \parallel)(\parallel \varrho(u_{r_{l}-1}, u_{t_{l}-1}) \parallel + \parallel \varrho(u_{t_{l}-1}, u_{t_{l}}) \parallel)}{\parallel 1 + \varrho(u_{r_{l}-1}, u_{t_{l}-1}) \parallel} \Big\}. \end{split} \end{align*}

    Keeping in mind that \parallel \varrho(u_{r_{l}-1}, u_{t_{l}-1}) \parallel < \parallel 1 + \varrho(u_{r_{l}-1}, u_{t_{l}-1}) \parallel , and using (3.3), (3.11), and (3.12), we have that \lim\limits_{l \rightarrow \infty}\parallel \Delta_{\mathcal{J}}(u_{r_{l}-1}, u_{t_{l}-1})\parallel = M . Now, \lim\limits_{l \rightarrow \infty}\parallel \varrho(u_{r_{l}}, u_{t_{l}})\parallel = M \Rightarrow \varrho(u_{r_{l}}, u_{t_{l}}) \rightarrow \eta_{1} as l \rightarrow \infty with \parallel \eta_{1} \parallel = M , and \lim\limits_{l \rightarrow \infty}\parallel \Delta_{\mathcal{J}}(u_{r_{l}-1}, u_{t_{l}-1})\parallel = M \Rightarrow \Delta_{\mathcal{J}}(u_{r_{l}-1}, u_{t_{l}-1}) \rightarrow \eta_{2} with \parallel \eta_{2} \parallel = M . If \eta_{1} = \eta_{2} , then we apply \lambda_{2a} with \gamma_{l} = \varrho(u_{r_{l}}, u_{t_{l}}) and \delta_{l} = \Delta_{\mathcal{J}}(u_{r_{l}-1}, u_{t_{l}-1}) to show

    \limsup\limits_{l \rightarrow \infty}\lambda(\varrho(u_{r_{l}}, u_{t_{l}}), \Delta_{\mathcal{J}}(u_{r_{l}-1}, u_{t_{l}-1})) \prec C_{\mathcal{F}},

    which contradicts (3.13). Otherwise, we have that \parallel \eta_{1} \parallel = \parallel \eta_{2} \parallel . In this case, we apply \lambda_{2b} with the same \gamma_{l} and, \delta_{l} and, consequently, we have

    \parallel C_{\mathcal{F}} \parallel \leq \limsup\limits_{l \rightarrow \infty}\parallel \lambda(\varrho(u_{r_{l}}, u_{t_{l}}), \Delta_{\mathcal{J}}(u_{r_{l}-1}, u_{t_{l}-1})) \parallel < \parallel C_{\mathcal{F}} \parallel,

    which is a contradiction. Thus, our assumption that M > 0 is not correct, i.e., M = 0 . Hence, \{u_{n}\} is a Cauchy sequence.

    Case -Ⅱ: In this case, we assume that s > 1 . Here, (3.2) takes the following form:

    C_{\mathcal{F}} \precsim \lambda(s\varrho(u_{n}, u_{n+1}), \varrho(u_{n-1}, u_{n})).

    From this, one can easily derive that \varrho(u_{n}, u_{n+1}) \precsim \frac{1}{s} \varrho(u_{n-1}, u_{n}), \; \forall n \in \mathbb{N} . Now, by applying Lemma 2.2, we conclude that \{u_{n}\} is a Cauchy sequence. Since (\Omega, \varrho) is \varrho -complete, there exists a u^{\ast} \in \Omega such that u_{n} \rightarrow u^{\ast} as n \rightarrow \infty . Suppose that \mathcal{J} is \varrho -continuous. So, we have

    \mathcal{J}u^{\ast} = \mathcal{J}(\lim\limits_{n \rightarrow \infty}u_{n}) = \lim\limits_{n \rightarrow \infty}\mathcal{J}u_{n} = \lim\limits_{n \rightarrow \infty}u_{n+1} = u^{\ast}.

    Next, we suppose that \varrho(u^{\ast}, \mathcal{J}u^{\ast}) \succ \theta and there exists a subsequence \{u_{n_{l}}\} of \{u_{n}\} such that \alpha(u_{n_{l}}, u^{\ast}) \geq 1 and u_{n_{l}} \neq u^{\ast}, \; \forall l\in\mathbb{N}. Now, setting u = u_{n{l}-1}, v = u^{\ast} in (3.1), we obtain

    C_{\mathcal{F}} \precsim \lambda(s\varrho(u_{n_{l}}, \mathcal{J}u^{\ast}), \Delta_{\mathcal{J}}(u_{n_{l}-1}, u^{\ast})).

    One can easily check that \varrho(u_{n_{l}}, \mathcal{J}u^{\ast}) \succ \theta and \Delta_{\mathcal{J}}(u_{n_{l}-1}, u^{\ast}) \succ \theta . Hence, we have

    \lambda(s\varrho(u_{n_{l}}, \mathcal{J}u^{\ast}), \Delta_{\mathcal{J}}(u_{n_{l}-1}, u^{\ast})) \precsim \mathcal{F}(\Delta_{\mathcal{J}}(u_{n_{l}-1}, u^{\ast}), s\varrho(u_{n_{l}}, \mathcal{J}u^{\ast})),\; \text{or}
    \parallel\lambda(s\varrho(u_{n_{l}}, \mathcal{J}u^{\ast}), \Delta_{\mathcal{J}}(u_{n_{l}-1}, u^{\ast}))\parallel \; \leq\; \parallel\mathcal{F}(\Delta_{\mathcal{J}}(u_{n_{l}-1}, u^{\ast}), s\varrho(u_{n_{l}}, \mathcal{J}u^{\ast}))\parallel.

    Consequently, from any situation, we get

    \begin{equation} \begin{split} & \parallel s\varrho(u_{n_{l}}, \mathcal{J}u^{\ast}) \parallel\; < \; \parallel \Delta_{\mathcal{J}}(u_{n_{l}-1}, u^{\ast}) \parallel \\ & \Rightarrow \parallel \varrho(u_{n_{l}}, \mathcal{J}u^{\ast}) \parallel\; < \; \frac{1}{s}\parallel \Delta_{\mathcal{J}}(u_{n_{l}-1}, u^{\ast}) \parallel. \end{split} \end{equation} (3.14)

    Now,

    \begin{equation} \begin{split} & \varrho(u^{\ast}, \mathcal{J}u^{\ast}) \precsim s[ \varrho(u^{\ast}, u_{n_{l}}) + \varrho(u_{n_{l}}, \mathcal{J}u^{\ast}) ] \\ & \Rightarrow \parallel \varrho(u^{\ast}, \mathcal{J}u^{\ast}) \parallel \; \leq \; s\Big[ \parallel \varrho(u^{\ast}, u_{n_{l}})\parallel + \parallel\varrho(u_{n_{l}}, \mathcal{J}u^{\ast})\parallel \Big]. \end{split} \end{equation} (3.15)

    Taking the limit as l \rightarrow \infty in (3.15), we get

    \begin{equation} \frac{\parallel \varrho(u^{\ast}, \mathcal{J}u^{\ast}) \parallel}{s} \leq \lim\limits_{l \rightarrow \infty}\parallel \varrho(u_{n_{l}}, \mathcal{J}u^{\ast}) \parallel. \end{equation} (3.16)

    Again,

    \begin{equation} \begin{split} & \parallel \Delta_{\mathcal{J}}(u_{n_{l}-1}, u^{\ast}) \parallel \\ & = \max\big\{ \parallel \varrho(u_{n_{l}-1}, u^{\ast}) \parallel, \parallel \varrho(u_{n_{l}-1}, u_{n_{l}}) \parallel, \frac{\parallel 1 + \varrho(u_{n_{l}-1}, u_{n_{l}}) \parallel \parallel \varrho(u^{\ast}, \mathcal{J}u^{\ast}) \parallel}{\parallel 1 + \varrho(u_{n_{l}-1}, u^{\ast}) \parallel},\\ & \frac{\parallel \varrho(u_{n_{l}}, u^{\ast}) \parallel \parallel \varrho(u^{\ast}, \mathcal{J}u^{\ast}) \parallel}{\parallel 1 + \varrho(u_{n_{l}-1}, u^{\ast}) \parallel}, \frac{\parallel \varrho(u_{n_{l}}, u^{\ast}) \parallel \parallel \varrho(\mathcal{J}u^{\ast}, u_{n_{l}-1}) \parallel}{\parallel 1 + \varrho(u_{n_{l}-1}, u^{\ast}) \parallel} \big\}. \end{split} \end{equation} (3.17)

    Taking the limit as l \rightarrow \infty in (3.17), we have

    \begin{equation} \lim\limits_{l \rightarrow \infty}\parallel \Delta_{\mathcal{J}}(u_{n_{l}-1}, u^{\ast}) \parallel\; \leq \; \parallel \varrho(u^{\ast}, \mathcal{J}u^{\ast}) \parallel. \end{equation} (3.18)

    Combining (3.14), (3.16), and (3.18), we obtain

    \lim\limits_{l \rightarrow \infty}\parallel s\varrho(u_{n_{l}}, \mathcal{J}u^{\ast}) \parallel = \lim\limits_{l \rightarrow \infty}\parallel \Delta_{\mathcal{J}}(u_{n_{l}-1}, u^{\ast}) \parallel = \parallel \varrho(u^{\ast}, \mathcal{J}u^{\ast}) \parallel.

    By using (\lambda_{2a}), \; \text{or}\; (\lambda_{2b}) with \gamma_{l} = s\varrho(u_{n_{l}}, \mathcal{J}u^{\ast}), \; \text{and}\; \delta_{l} = \Delta_{\mathcal{J}}(u_{n_{l}-1}, u^{\ast}) as before, one can easily show that

    \begin{align*} \begin{split} & C_{\mathcal{F}} \precsim \limsup\limits_{l \rightarrow \infty}\lambda(s\varrho(u_{n_{l}}, \mathcal{J}u^{\ast}), \Delta_{\mathcal{J}}(u_{n_{l}-1}, u^{\ast})) \prec C_{\mathcal{F}}\\ & \text{or}\; \parallel C_{\mathcal{F}} \parallel \; \leq\; \parallel \limsup\limits_{l \rightarrow \infty}\lambda(s\varrho(u_{n_{l}}, \mathcal{J}u^{\ast}), \Delta_{\mathcal{J}}(u_{n_{l}-1}, u^{\ast})) \parallel \; < \; \parallel C_{\mathcal{F}} \parallel, \end{split} \end{align*}

    which is a contradiction. Thus, we have that \varrho(u^{\ast}, \mathcal{J}u^{\ast}) = \theta \Rightarrow u^{\ast} = \mathcal{J}u^{\ast}.

    Theorem 2. In addition to the hypotheses of Theorem 1, we further assume that \alpha(u^{\ast}_{1}, u^{\ast}_{2}) \geq 1 for all u^{\ast}_{i}\in \; \mathit{\text{Fix}}(\mathcal{J}), \; \mathit{\text{where}}\; i = 1, 2. Then, \mathcal{J} has a unique fixed point.

    Proof. Since \alpha(u^{\ast}_{1}, u^{\ast}_{2}) \geq 1 , we have

    \begin{align*} \lambda(s\varrho(\mathcal{J}u^{\ast}_{1}, \mathcal{J}u^{\ast}_{2}), \Delta_{\mathcal{J}}(u^{\ast}_{1}, u^{\ast}_{2})) \succsim C_{\mathcal{F}}. \end{align*}

    Since u^{\ast}_{1} \neq u^{\ast}_{2} , \varrho(u^{\ast}_{1}, u^{\ast}_{2}) \succ \theta and, hence, \varrho(\mathcal{J}u^{\ast}_{1}, \mathcal{J}u^{\ast}_{2}) and \Delta_{\mathcal{J}}(u^{\ast}_{1}, u^{\ast}_{2}) \succ \theta . By using \lambda_{1} and C_{1} , one can easily show that

    \begin{equation} \parallel s\varrho(u^{\ast}_{1}, u^{\ast}_{2})) \parallel\; < \; \parallel \Delta_{\mathcal{J}}(u^{\ast}_{1}, u^{\ast}_{2})) \parallel. \end{equation} (3.19)

    Now,

    \begin{equation} \begin{split} & \parallel \Delta_{\mathcal{J}}(u^{\ast}_{1}, u^{\ast}_{2}) \parallel \\ & = \max\big\{ \parallel \varrho(u^{\ast}_{1}, u^{\ast}_{2}) \parallel, \parallel \varrho(u^{\ast}_{1}, u^{\ast}_{1}) \parallel, \frac{\parallel 1 + \varrho(u^{\ast}_{1}, \mathcal{J}u^{\ast}_{1}) \parallel \parallel \varrho(u^{\ast}_{2}, \mathcal{J}u^{\ast}_{2}) \parallel}{\parallel 1 + \varrho(u^{\ast}_{1}, u^{\ast}_{2}) \parallel},\\ & \frac{\parallel \varrho(\mathcal{J}u^{\ast}_{1}, u^{\ast}_{2}) \parallel \parallel \varrho(u^{\ast}_{2}, u^{\ast}_{2}) \parallel}{\parallel 1 + \varrho(u^{\ast}_{1}, u^{\ast}_{2}) \parallel}, \frac{\parallel \varrho(\mathcal{J}u^{\ast}_{1}, u^{\ast}_{2}) \parallel \parallel \varrho(\mathcal{J}u^{\ast}_{2}, u^{\ast}_{1}) \parallel}{\parallel 1 + \varrho(u^{\ast}_{1}, u^{\ast}_{2}) \parallel} \big\} \\ & = \parallel \varrho(u^{\ast}_{1}, u^{\ast}_{2}) \parallel. \end{split} \end{equation} (3.20)

    Clearly, from (3.20), we arrive at a contradiction since we have assumed that \varrho(u^{\ast}_{1}, u^{\ast}_{2}) \succ \theta , i.e., \parallel \varrho(u^{\ast}_{1}, u^{\ast}_{2}) \parallel > 0 . Thus, we obtain that u^{\ast}_{1} = u^{\ast}_{2} .

    Next, we shall state and prove a result as a corollary of our main result.

    Corollary 3.1. Let (\Omega, \varrho) be a \varrho -complete and \varrho -continuous b-EVMS with the constant s \geq 1 . Let \alpha : \Omega \times \Omega \rightarrow \mathbb{R}^{+} and \mathcal{J} : \Omega \rightarrow \Omega be two mappings. Suppose that there exists an m \in \mathbb{N} for which the following assertions hold:

    \begin{align*} \begin{split} & (i)\; \mathcal{J}^{m}\; \text{is a triangular}\; \alpha\text{-admissible mapping};\\ & (ii)\; \mathcal{J}^{m}\; \text{satisfies the conditions of an}\; \alpha\text{-orbital admissible revised}\; C_{\mathcal{F}}\; \text{simulation contraction};\\ & (iii)\; \text{there exists a point}\; u_{0} \in \Omega\; \text{such that}\; \alpha(u_{0}, \mathcal{J}^{m}u_{0}) \geq 1; \\ &\text{either}\\ & (iv_{a})\; \mathcal{J}^{m}\; \text{is}\; \varrho \text{-continuous}; \\ &\text{or}\\ & (iv_{b})\; \text{if}\; \{u_{n}\}\; \text{is a sequence in}\; \Omega,\; \text{then it satisfies the}\; \alpha\text{-regularity condition}. \end{split} \end{align*}

    Then, \mathcal{J}^{m} has a fixed point (say, \vartheta ) in \Omega . Furthermore, \vartheta is also a fixed point of \mathcal{J} , provided that \alpha(\vartheta, \mathcal{J}\vartheta) \geq 1.

    Proof. Clearly, by using Theorem 1, we can obtain a fixed point of \mathcal{J}^{m} . Let \vartheta \in \Omega be the fixed point of \mathcal{J}^{m} with \alpha(\vartheta, \mathcal{J}\vartheta) \geq 1 . We assume that \mathcal{J}\vartheta \neq \vartheta . Since \vartheta is a fixed point of \mathcal{J}^{m} , \mathcal{J}^{m}\vartheta = \vartheta . Now, for \alpha(\vartheta, \mathcal{J}\vartheta) \geq 1 , we have

    \begin{align*} \lambda(s\varrho(\mathcal{J}^{m}\vartheta, \mathcal{J}^{m}\mathcal{J}\vartheta), \Delta_{\mathcal{J}^{m}}(\vartheta, \mathcal{J}\vartheta)) \succsim C_{\mathcal{F}}, \end{align*}

    where

    \begin{align*} \begin{split} & \Delta_{\mathcal{J}^{m}}(\vartheta, \mathcal{J}\vartheta) \\ & = \max\big\{ \varrho(\vartheta, \mathcal{J}\vartheta), \varrho(\vartheta, \mathcal{J}^{m}\vartheta), \frac{[1 + \varrho(\vartheta, \mathcal{J}^{m}\vartheta)]\varrho(\mathcal{J}\vartheta, \mathcal{J}^{m}\mathcal{J}\vartheta)}{1 + \varrho(\vartheta, \mathcal{J}\vartheta)},\\ & \frac{\varrho(\mathcal{J}^{m}\vartheta, \mathcal{J}\vartheta)\varrho(\mathcal{J}^{m}\mathcal{J}\vartheta, \mathcal{J}\vartheta)}{1 + \varrho(\vartheta, \mathcal{J}\vartheta)}, \frac{\varrho(\mathcal{J}^{m}\vartheta, \mathcal{J}\vartheta)\varrho(\mathcal{J}^{m}\mathcal{J}\vartheta, \vartheta)}{1 + \varrho(\vartheta, \mathcal{J}\vartheta)} \big\}. \end{split} \end{align*}

    Observe that \varrho(\mathcal{J}^{m}\vartheta, \mathcal{J}^{m}\mathcal{J}\vartheta) = \varrho(\vartheta, \mathcal{J}\vartheta) \succ \theta . By using \lambda_{1} and C_{1} , one can show that

    \begin{equation} \parallel s\varrho(\mathcal{J}^{m}\vartheta, \mathcal{J}^{m}\mathcal{J}\vartheta) \parallel \; < \; \parallel \Delta_{\mathcal{J}^{m}}(\vartheta, \mathcal{J}\vartheta) \parallel. \end{equation} (3.21)

    Clearly, \parallel \Delta_{\mathcal{J}^{m}}(\vartheta, \mathcal{J}\vartheta) \parallel = \parallel \varrho(\vartheta, \mathcal{J}\vartheta) \parallel. Thus, from (3.21), we have

    s\parallel \varrho(\vartheta, \mathcal{J}\vartheta) \parallel = s\parallel \varrho(\mathcal{J}^{m}\vartheta, \mathcal{J}^{m}\mathcal{J}\vartheta) \parallel < \parallel \varrho(\vartheta, \mathcal{J}\vartheta) \parallel,

    which is a contradiction since we have assumed that \vartheta \neq \mathcal{J}\vartheta . Therefore, we have that \vartheta = \mathcal{J}\vartheta .

    Example 3.1 Let \Omega = \mathbb{E}_{p} be the set of all elliptic-valued numbers with i^{2} = -2 . Define a mapping \varrho : \Omega \times \Omega \rightarrow \Omega by

    \varrho(\eta_{1}, \eta_{2}) = \parallel \xi_{1} - \xi_{2} \parallel^{2} + i\parallel \zeta_{1} - \zeta_{2} \parallel^{2},

    where \eta_{1} = \xi_{1} + i \zeta_{1} and \eta_{2} = \xi_{2} + i \zeta_{2} . Let \alpha : \Omega \times \Omega \rightarrow \mathbb{R}^{+} by \alpha(\eta_{1}, \eta_{2}) = 1, \; \forall\; \eta_{1}, \eta_{2}\in \Omega . Clearly, (\Omega, \varrho) is a \varrho -continuous and \varrho -complete b-EVMS with s = 2 . Let us define a mapping \mathcal{J} : \Omega \rightarrow \Omega by

    \mathcal{J}(\eta) = \mathcal{J}(\xi+i \zeta) = \begin{cases}0, & \text { if } \xi, \zeta \in \Xi ; \\ 3+3 i, & \text { if } \xi, \zeta \in \widetilde{\Xi} ;\\ 3, & \text { if } \xi \in \widetilde{\Xi}, \zeta \in \Xi ;\\ 3 i, & \text { if } \xi \in \Xi, \zeta \in \widetilde{\Xi} .\end{cases}

    where \Xi, \; \widetilde{\Xi} denote the sets of all rational and irrational numbers, respectively. Take u = \frac{1}{\sqrt{5}}\; \text{and} \; v = 1 in (3.1), and we calculate the following:

    \varrho(\mathcal{J}\frac{1}{\sqrt{5}}, \mathcal{J}1) = \varrho(3, 0) = 9,
    \varrho(\frac{1}{\sqrt{5}}, 1) = (1 - \frac{1}{\sqrt{5}})^{2}, \varrho(\frac{1}{\sqrt{5}}, 3) = (3 - \frac{1}{\sqrt{5}})^{2} \approx 6.516,
    \frac{(1 + \varrho(\frac{1}{\sqrt{5}}, \mathcal{J}\frac{1}{\sqrt{5}}))\varrho(1, \mathcal{J}1)}{1 + \varrho(\frac{1}{\sqrt{5}}, 1)} = \frac{(1 + \varrho(\frac{1}{\sqrt{5}}, 3))\varrho(1, 0)}{1 + (1 - \frac{1}{\sqrt{5}})^{2}} = \frac{(1 +(3 - \frac{1}{\sqrt{5}})^{2})}{1 + (1 - \frac{1}{\sqrt{5}})^{2}} \approx 4.17,
    \frac{\varrho(\mathcal{J}\frac{1}{\sqrt{5}}, 1)\varrho(1, \mathcal{J}1)}{1 + \varrho(\frac{1}{\sqrt{5}}, 1)} = \frac{\varrho(3, 1)}{1 + (1 - \frac{1}{\sqrt{5}})^{2}} = \frac{4}{1 + (1 - \frac{1}{\sqrt{5}})^{2}},
    \frac{\varrho(\mathcal{J}\frac{1}{\sqrt{5}}, 1)\varrho(\mathcal{J}1, \frac{1}{\sqrt{5}})}{1 + \varrho(\frac{1}{\sqrt{5}}, 1)} = \frac{\varrho(3, 1)\varrho(0, \frac{1}{\sqrt{5}})}{1 + (1-\frac{1}{\sqrt{5}})^{2}} = \frac{\frac{4}{5}}{1 + (1 - \frac{1}{\sqrt{5}})^{2}}.

    Clearly, \mathcal{J}^{m}(\eta) = 0, \; \forall \; m \in \mathbb{N}\setminus \{1\} . Then, it can be easily checked that, for u = \frac{1}{\sqrt{5}}\; \text{and}\; v = 1 , the inequality

    s\varrho(\mathcal{J}u, \mathcal{J}v) \precsim h\Delta_{\mathcal{J}}(u, v)

    is not satisfied, whereas the following holds:

    s\varrho(\mathcal{J}^{m}u, \mathcal{J}^{m}v) \precsim h\Delta_{\mathcal{J}^{m}}(u, v),\; \forall\; u, v\in \Omega,

    where

    m > 1,\; \lambda(\eta_{1}, \eta_{2}) = h\eta_{2} - \eta_{1}\; \text{with}\; 0 < h < 1,\; \mathcal{F}(\eta_{1}, \eta_{2}) = \eta_{1} - \eta_{2},\; \text{and}\; C_{\mathcal{F}} = \theta.

    Observe that the function \mathcal{J} is not \varrho -continuous. To verify this, take \gamma_{n} = (2 - \frac{1}{\sqrt{2n}}) + i (2 + \frac{1}{\sqrt{2n}}) and \gamma_{0} = 2 + 2i . Then, (\gamma_{n} - \gamma_{0}) = -\frac{1}{\sqrt{2n}} + i \frac{1}{\sqrt{2n}} . Clearly,

    \parallel \varrho(\gamma_{n}, \gamma_{0}) \parallel = \parallel (\gamma_{n} - \gamma_{0}) \parallel = \sqrt{\frac{1}{2n} + \frac{2}{2n}} = \sqrt{\frac{3}{2n}} \rightarrow 0\; \text{as}\; n\rightarrow \infty,

    i.e., \gamma_{n} \rightarrow \gamma_{0} , but \mathcal{J}(\gamma_{n}) \nrightarrow \mathcal{J}(\gamma_{0}) . Furthermore, one can check that \mathcal{J}^{m} is a \varrho -continuous function for m > 1 . Here, all conditions of Corollary 3.1 are satisfied and \theta is a fixed point of \mathcal{J} .

    Next, we propose a new type of contraction involving orbital admissible mapping and rational terms in the setting of a b-EVMS, and it was inspired by the famous Caristi-type contraction (see [20]).

    Definition 3.2. Let \mathcal{J} be a mapping from \Omega to \Omega on a b-EVMS (\Omega, \varrho) . Suppose that \mathcal{X} is a mapping from \Omega to \mathbb{R}^{+} with \mathcal{X}(\mathcal{J}u)\; \leq\; \mathcal{X}(u)\; \; \text{for all}\; u \in \Omega . Also, suppose that \alpha : \Omega \times \Omega \rightarrow \mathbb{R}^{+} is a mapping such that \alpha(u, v) \geq 1 with \varrho(u, \mathcal{J}u) \succ \theta implies that

    \begin{equation} \varrho(\mathcal{J}u, \mathcal{J}v) \precsim (\mathcal{X}(u) - \mathcal{X}(\mathcal{J}u))\Delta_{\mathcal{J}}(u, v), \end{equation} (3.22)

    where \Delta_{\mathcal{J}}(u, v) is defined in (3.1). Then, \mathcal{J} is said to be an \alpha -orbital admissible revised Caristi-type contraction involving rational terms.

    Theorem 3. Let (\Omega, \varrho) be a \varrho -complete and \varrho -continuous b-EVMS with the constant s \geq 1 . Let \alpha : \Omega \times \Omega \rightarrow \mathbb{R}^{+} and \mathcal{J} : \Omega \rightarrow \Omega be two mappings such that the following assertions hold:

    \begin{align*} \begin{split} & (i)\; \mathcal{J}\; \text{is a triangular}\; \alpha\text{-admissible mapping};\\ & (ii)\; \mathcal{J}\; \text{satisfies the conditions of an}\; \alpha\text{-orbital admissible revised Caristi-type contraction involving rational terms};\\ & (iii)\; \text{there exists a point}\; u_{0} \in \Omega\; \text{such that}\; \alpha(u_{0}, \mathcal{J}u_{0}) \geq 1; \\ &\text{either}\\ & (iv_{a})\; \mathcal{J}\; \text{is}\; \varrho \text{-continuous}; \\ &\text{or}\\ & (iv_{b})\; \text{if}\; \{u_{n}\}\; \text{is a sequence in}\; \Omega,\; \text{then it satisfies the}\; \alpha\text{-regularity condition}. \end{split} \end{align*}

    Then, \mathcal{J} has a fixed point in \Omega .

    Proof. From our assumption (iii) , there exists a point u_{0} \in \Omega such that \alpha(u_{0}, \mathcal{J}u_{0}) \geq 1 . Clearly, starting from this initial point, one can construct a sequence \{u_{n}\} by using u_{n+1} = \mathcal{J}u_{n}, \; \forall n \in \mathbb{N} . For the remainder of the proof, we will assume that u_{n+1} \neq u_{n}, \; \forall n\in \mathbb{N} , i.e., \varrho(u_{n}, u_{n+1}) \succ \theta . Otherwise, we can find a point, say, u_{n_{0}} , for which we have that u_{n_{0}+1} = u_{n_{0}} \Rightarrow u_{n_{0}} = \mathcal{J}u_{n_{0}} . Clearly, we obtain a fixed point of \mathcal{J} and the proof becomes less interesting. Now, since \mathcal{J} is a triangular \alpha -admissible mapping, one can easily get that \alpha(u_{n}, u_{n+1}) \geq 1 , and, furthermore, \alpha(u_{n}, u_{m}) \geq 1, \; \forall n, m\in \mathbb{N} with m > n . Since \alpha(u_{n-1}, u_{n}) \geq 1 , \varrho(u_{n-1}, \mathcal{J}u_{n-1}) = \varrho(u_{n-1}, u_{n}) \succ \theta, and \mathcal{J} satisfies condition (ii) , we have

    \varrho(\mathcal{J}u_{n-1}, \mathcal{J}u_{n}) \precsim (\mathcal{X}(u_{n-1}) - \mathcal{X}(\mathcal{J}u_{n-1}))\Delta_{\mathcal{J}}(u_{n-1}, u_{n}).

    Taking the norm on both sides of the above inequality, we obtain

    \parallel \varrho(\mathcal{J}u_{n-1}, \mathcal{J}u_{n}) \parallel \; \leq\; \mid(\mathcal{X}(u_{n-1}) - \mathcal{X}(\mathcal{J}u_{n-1}))\mid \parallel \Delta_{\mathcal{J}}(u_{n-1}, u_{n})\parallel.

    Since \mathcal{X}(\mathcal{J}u) \leq \mathcal{X}(u) , we have

    \begin{equation} \parallel \varrho(\mathcal{J}u_{n-1}, \mathcal{J}u_{n}) \parallel \; \leq\; (\mathcal{X}(u_{n-1}) - \mathcal{X}(\mathcal{J}u_{n-1})) \parallel \Delta_{\mathcal{J}}(u_{n-1}, u_{n})\parallel, \end{equation} (3.23)

    where

    \begin{align*} \begin{split} & \parallel \Delta_{\mathcal{J}}(u_{n-1}, u_{n}) \parallel\\ & = \max\Big\{ \parallel \varrho(u_{n-1}, u_{n}) \parallel, \parallel\varrho(u_{n-1}, u_{n})\parallel, \frac{\parallel 1 + \varrho(u_{n-1}, u_{n})\parallel \parallel\varrho(u_{n}, u_{n+1})\parallel}{\parallel 1 + \varrho(u_{n-1}, u_{n})\parallel}, \\& \frac{\parallel\varrho(u_{n}, u_{n})\parallel \parallel\varrho(u_{n}, u_{n+1})\parallel}{\parallel 1 + \varrho(u_{n-1}, u_{n})\parallel}, \frac{\parallel \varrho(u_{n}, u_{n}) \parallel \parallel\varrho(u_{n-1}, u_{n+1})\parallel}{\parallel 1 + \varrho(u_{n-1}, u_{n})\parallel} \Big\}\\ & = \max\{ \parallel \varrho(u_{n-1}, u_{n})\parallel, \parallel\varrho(u_{n}, u_{n+1})\parallel \}. \end{split} \end{align*}

    Thus, from (3.23), we have

    \begin{equation} \parallel \varrho(u_{n}, u_{n+1}) \parallel \; \leq\; (\mathcal{X}(u_{n-1}) - \mathcal{X}(u_{n})) \max\{ \parallel \varrho(u_{n-1}, u_{n})\parallel, \parallel\varrho(u_{n}, u_{n+1})\parallel \}. \end{equation} (3.24)

    Suppose that \max\{ \parallel \varrho(u_{n-1}, u_{n})\parallel, \parallel\varrho(u_{n}, u_{n+1})\parallel \} = \parallel \varrho(u_{n-1}, u_{n})\parallel. Then, from (3.24), we have

    \parallel \varrho(u_{n}, u_{n+1}) \parallel \; \leq\; (\mathcal{X}(u_{n-1}) - \mathcal{X}(u_{n})) \parallel \varrho(u_{n-1}, u_{n})\parallel
    \begin{equation} \Rightarrow \; 0 < \frac{\parallel \varrho(u_{n}, u_{n+1})\parallel}{\parallel \varrho(u_{n-1}, u_{n})\parallel} \leq (\mathcal{X}(u_{n-1}) - \mathcal{X}(u_{n})) \end{equation} (3.25)
    \begin{align*} \Rightarrow \mathcal{X}(u_{n}) < \mathcal{X}(u_{n-1}). \end{align*}

    Thus, \{\mathcal{X}(u_{n})\}_{n = 1}^{\infty} is monotonically decreasing and bounded below by 0. Let \mathcal{X}(u_{n}) \rightarrow c^{\ast} . Now, from (3.25), we have

    \begin{align*} \begin{split} \sum\limits_{t = 1}^{r}\frac{\parallel \varrho(u_{t}, u_{t+1})\parallel}{\parallel \varrho(u_{t-1}, u_{t})\parallel} & \leq \sum\limits_{t = 1}^{r}(\mathcal{X}(u_{t-1}) - \mathcal{X}(u_{t})) \\ & = \mathcal{X}(u_{0}) - \mathcal{X}(u_{r}) \rightarrow \mathcal{X}(u_{0}) - c^{\ast}\; \text{as}\; r \rightarrow \infty, \end{split} \end{align*}

    which shows that \sum_{t = 1}^{r}\frac{\parallel \varrho(u_{t}, u_{t+1})\parallel}{\parallel \varrho(u_{t-1}, u_{t})\parallel} < \infty . Consequently, \parallel \varrho(u_{t}, u_{t+1})\parallel \; \leq \; \omega \parallel \varrho(u_{t-1}, u_{t})\parallel, \; \forall t\geq t_{0}\in \mathbb{N}, \; \text{where}\; \omega\in [0, 1) . Then, if we consider \max\{ \parallel \varrho(u_{n-1}, u_{n})\parallel, \parallel\varrho(u_{n}, u_{n+1})\parallel \} = \parallel \varrho(u_{n}, u_{n+1})\parallel, then, from (3.23), we have

    \begin{align*} \begin{split} & \parallel \varrho(u_{n}, u_{n+1}) \parallel \; \leq\; (\mathcal{X}(u_{n-1}) - \mathcal{X}(u_{n})) \parallel \varrho(u_{n}, u_{n+1})\parallel \\ & \Rightarrow 1 \; \leq\; \mathcal{X}(u_{n-1}) - \mathcal{X}(u_{n}). \end{split} \end{align*}

    Similarly, we can show that \{\mathcal{X}(u_{n})\} is a monotonically decreasing sequence, and, if we consider the limit as n \rightarrow \infty in the above inequality, then we get that 1 \; \leq \; 0 , which is a contradiction. Thus, we must have

    \parallel \varrho(u_{t}, u_{t+1})\parallel \; \leq \; \omega \parallel \varrho(u_{t-1}, u_{t})\parallel,\; \forall t\in \mathbb{N},\; \text{where}\; \omega\in [0, 1).

    Applying Remark 2.2, one can show that \{u_{t}\}_{t = 1}^{\infty} is a Cauchy sequence. Since (\Omega, \varrho) is \varrho -complete, there exists a u^{\ast} \in \Omega such that u_{t} \rightarrow u^{\ast} as t \rightarrow \infty . Suppose that \mathcal{J} is \varrho -continuous. So,

    \mathcal{J}u^{\ast} = \mathcal{J}(\lim\limits_{n \rightarrow \infty}u_{n}) = \lim\limits_{n \rightarrow \infty}\mathcal{J}u_{n} = \lim\limits_{n \rightarrow \infty}u_{n+1} = u^{\ast}.

    Otherwise, suppose that (iv_{b}) holds and \varrho(u^{\ast}, \mathcal{J}u^{\ast}) \succ \theta . Consequently, we obtain a subsequence \{u_{n_{l}}\} of \{u_{n}\} such that \alpha(u_{n_{l}}, u^{\ast}) \geq 1 . Also, \varrho(u_{n_{l}}, \mathcal{J}u_{n_{l}}) \succ \theta . Now,

    \begin{equation} \begin{split} & \varrho(u^{\ast}, \mathcal{J}u^{\ast}) \\ & \precsim s\big[ \varrho(u^{\ast}, u_{n_{l}+1}) + \varrho(u_{n_{l}+1}, \mathcal{J}u^{\ast}) \big] \\ & = s\big[ \varrho(u^{\ast}, u_{n_{l}+1}) + \varrho(\mathcal{J}u_{n_{l}}, \mathcal{J}u^{\ast}) \big]\\ & \precsim s \varrho(u^{\ast}, u_{n_{l}+1}) + s (\mathcal{X}(u_{n_{l}}) - \mathcal{X}(u_{n_{l}+1}))\Delta_{\mathcal{J}}(u_{n_{l}}, u^{\ast}), \end{split} \end{equation} (3.26)

    where

    \begin{align*} \begin{split} &\Delta_{\mathcal{J}}(u_{n_{l}}, u^{\ast})\\ & = \max\big \{ \varrho(u_{n_{l}}, u^{\ast}), \varrho(u_{n_{l}}, u_{n_{l}+1}), \frac{[1 + \varrho(u_{n_{l}}, u_{n_{l}+1})\varrho(u^{\ast}, \mathcal{J}u^{\ast})]}{1 + \varrho(u_{n_{l}}, u^{\ast})},\\& \frac{\varrho(u_{n_{l}+1}, u^{\ast})\varrho(u^{\ast}, \mathcal{J}u^{\ast})}{1 + \varrho(u_{n_{l}}, u^{\ast})}, \frac{\varrho(u_{n_{l}+1}, u^{\ast})\varrho(u_{n_{l}}, \mathcal{J}u^{\ast})}{1 + \varrho(u_{n_{l}}, u^{\ast})} \big\}. \end{split} \end{align*}

    Clearly, the right-hand side of (3.26) tends to \theta since \varrho(u^{\ast}, u_{n_{l}+1}) \rightarrow \theta and \mathcal{X}(u_{n}) \rightarrow c^{\ast} as l \rightarrow \infty . Thus, we have that \varrho(u^{\ast}, \mathcal{J}u^{\ast}) = \theta \Rightarrow u^{\ast} = \mathcal{J}u^{\ast} .

    In this section, we apply our theoretical result to find a solution of a Urysohn integral equation. Let \Omega = \mathcal{C}([c, d], \mathbb{R}^{n}), \; c > 0 , and \varrho : \Omega \times \Omega \rightarrow \mathbb{E}_{p} be a mapping defined by

    \varrho(u, v) = \max\limits_{r \in [c, d]}\parallel u(r) - v(r) \parallel^{2}_{\infty}\sqrt{1 + \rho^{2}}e^{i\arctan \rho},

    where u, v \in \Omega, \; \rho > 0, \; \text{and}\; i^{2} = p < 0 . Clearly, (\Omega, \varrho) is a \varrho -complete and \varrho -continuous b-EVMS with s = 2 . Consider the following nonlinear Urysohn integral equation:

    \begin{equation} u(t) = \sigma(t) + \int_{c}^{d}\Theta(t, r, u(r))dr, \end{equation} (4.1)

    where t \in [c, d] , u, \sigma \in \Omega , and \Theta : [c, d]^{2}\times\mathbb{R}^{n} \rightarrow \mathbb{R}^{n} . Let \mathcal{J}: \Omega \rightarrow \Omega be a mapping defined by

    \begin{equation} \mathcal{J}{u}(t) = \sigma(t) + \int_{c}^{d}\Theta(t, r, u(r))dr. \end{equation} (4.2)

    It is clear that u^{\ast} is a solution of (4.1) if and only if it is a fixed point of the operator \mathcal{J} . Here, \Theta is a mapping such that \mathcal{J}{u} \in \Omega .

    Theorem 4. Suppose that the following conditions hold:

    \begin{align*} \begin{split} & A_{1}.\; \text{The mapping}\; \Theta\; \text{is a continuous function};\\ & A_{2}.\; \text{There exists a function}\; \mu : \mathbb{R}^{n} \times \mathbb{R}^{n} \rightarrow \mathbb{R}\; \text{such that, for each}\; \delta\in [c, d]\; \text{and}\; u, v\in\Omega, \; \text{the following statements hold:} \\ & A_{2a}.\; \mu(u(\delta), \mathcal{J}u(\delta)) \geq 0\; \text{implies that}\; \mu(\mathcal{J}u(\delta), \mathcal{J}^{2}u(\delta)) \geq 0,\\ & A_{2b}.\; \mu(u(\delta), v(\delta)) \geq 0\; \text{and}\; \mu(v(\delta), \mathcal{J}v(\delta)) \geq 0\; \text{implies that}\; \mu(u(\delta), \mathcal{J}v(\delta)) \geq 0, \\ & A_{2c}.\; \text{there exists a point}\; u_{0}\in \Omega\; \text{ for all}\; \delta\in [c, d]\; \mu(u_{0}(\delta), \sigma(\delta) + \int_{c}^{d}\Theta(\delta, r, u_{0}(r))dr) \geq 0;\\ & A_{3}.\; \text{Suppose for}\; u,v \in \Omega\; \text{with}\; \mu(u(\delta), v(\delta)) \geq 0\; \text{and}\; \delta, \rho \in [c, d], \; \text{that we have the following:} \\ & 2\parallel \mathcal{J}{u}(\delta) - \mathcal{J}{v}(\delta) \parallel^{2}_{\infty}\sqrt{1 + \rho^{2}} e^{i\arctan \rho}\\ & \precsim h \max\big\{ \parallel u(\delta) - v(\delta) \parallel^{2}_{\infty}\sqrt{1 + \rho^{2}}e^{i\arctan \rho}, \parallel u(\delta) - \mathcal{J}{u}(\delta) \parallel^{2}_{\infty}\sqrt{1 + \rho^{2}} e^{i\arctan \rho} \\ & \frac{\big[ 1 + \parallel u(\delta) - \mathcal{J}{u}(\delta) \parallel^{2}_{\infty}\sqrt{1 + \rho^{2}} e^{i\arctan \rho} \big]\parallel v(\delta) - \mathcal{J}{v}(\delta) \parallel^{2}_{\infty}\sqrt{1 + \rho^{2}} e^{i\arctan \rho}}{1 + \varrho(u, v)},\\ & \frac{\parallel \mathcal{J}{u}(\delta) - v(\delta)\parallel^{2}_{\infty} \parallel \mathcal{J}{v}(\delta) - v(\delta) \parallel^{2}_{\infty}(1 + \rho^{2}) e^{2i\arctan \rho} }{1 + \varrho(u, v)}, \frac{\parallel \mathcal{J}{u}(\delta) - v(\delta)\parallel^{2}_{\infty} \parallel \mathcal{J}{v}(\delta) - u(\delta) \parallel^{2}_{\infty}(1 + \rho^{2}) e^{2i\arctan \rho} }{1 + \varrho(u, v)} \big\} \end{split} \end{align*}

    Then, \mathcal{J} has a fixed point, i.e., the Urysohn integral equation (4.1) has a solution in \Omega .

    Proof. Let us define a mapping \alpha : \Omega \times \Omega \rightarrow \mathbb{R}^{+} by

    \alpha(u, v) = \begin{cases} { 1 ,} &\quad\text{if }\mu(u(\delta), v(\delta)) \geq 0,\; \forall \delta \in [c, d] ;\\ { b ,} &\quad\text{otherwise},\\ \end{cases}

    where u, v \in \Omega and b \in (0, 1) . Clearly, \alpha(u, \mathcal{J}u) \geq 1 \Rightarrow \mu(u(\delta), \mathcal{J}u(\delta)) \geq 0 \Rightarrow \mu(\mathcal{J}u(\delta), \mathcal{J}^{2}u(\delta)) \geq 0 \Rightarrow \alpha(\mathcal{J}u, \mathcal{J}^{2}u) \geq 1 . Also, \alpha(u, v) \geq 1 \Rightarrow \mu(u(\delta), v(\delta)) \geq 0 and \alpha(v, \mathcal{J}v) \geq 1 \Rightarrow \mu(v(\delta), \mathcal{J}v(\delta)) \geq 0 . By (A_{2b}) , \mu(u(\delta), v(\delta)) \geq 0 and \mu(v(\delta), \; \mathcal{J}v(\delta)) \geq 0 gives \mu(u(\delta), \; \mathcal{J}v(\delta)) \geq 0 \Rightarrow \alpha(u, \mathcal{J}v) \geq 1 . Since the mapping \Theta and \sigma are both continuous, \mathcal{J} is also continuous, i.e., \mathcal{J}\; \text{is}\; \varrho \text{-continuous} . One can easily check that

    \begin{align*} \begin{split} & \varrho(u, v) = \parallel u(\delta) - v(\delta) \parallel^{2}_{\infty}\sqrt{1 + \rho^{2}} e^{i\arctan \rho}, \\ & \varrho(\mathcal{J}u, \mathcal{J}v) = \parallel \mathcal{J}{u}(\delta) - \mathcal{J}{v}(\delta) \parallel^{2}_{\infty}\sqrt{1 + \rho^{2}} e^{i\arctan \rho},\\ & \varrho(u, \mathcal{J}u) = \parallel u(\delta) - \mathcal{J}{u}(\delta) \parallel^{2}_{\infty}\sqrt{1 + \rho^{2}} e^{i\arctan \rho}, \\ & \varrho(v, \mathcal{J}v) = \parallel v(\delta) - \mathcal{J}{v}(\delta) \parallel^{2}_{\infty}\sqrt{1 + \rho^{2}} e^{i\arctan \rho}, \\ & \varrho(\mathcal{J}u, v) = \parallel \mathcal{J}{u}(\delta) - v(\delta) \parallel^{2}_{\infty}\sqrt{1 + \rho^{2}} e^{i\arctan \rho}, \\ & \varrho(v, \mathcal{J}u) = \parallel v(\delta) - \mathcal{J}{u}(\delta) \parallel^{2}_{\infty}\sqrt{1 + \rho^{2}} e^{i\arctan \rho}. \end{split} \end{align*}

    Hence, from A_{3} , for \mu(u(\delta), v(\delta)) \geq 0 , i.e., \alpha(u, v) \geq 1 , we have

    \begin{align*} \begin{split} & 2\varrho(\mathcal{J}u, \mathcal{J}v)\\ & \precsim h \max\big\{ \max\big\{ \varrho(u, v), \varrho(u, \mathcal{J}u), \frac{[1 + \varrho(u, \mathcal{J}u)]\varrho(v, \mathcal{J}v)}{1 + \varrho(u, v)}, \frac{\varrho(v, \mathcal{J}u)\varrho(v, \mathcal{J}v)}{1 + \varrho(u, v)}, \frac{\varrho(v, \mathcal{J}u)\varrho(u, \mathcal{J}v)}{1 + \varrho(u, v)} \big\} . \end{split} \end{align*}

    Now, taking \lambda(\eta_{1}, \eta_{2}) = h\eta_{2} - \eta_{1} and \mathcal{F}(\eta_{1}, \eta_{2}) = \eta_{1} - \eta_{2} with 0 < h < 1 and C_{\mathcal{F}} = \theta , we can apply Theorem 1 to guarantee the existence of a fixed point of the operator \mathcal{J} . Thus, (4.1) has a solution.

    In this paper, we have introduced the notion of b-EVMSs and studied some fixed-point results involving rational and product terms. We have given examples to support our findings. We have given an application to a Urysohn integral equation.

    1) In the first line of Theorem 1, we have assumed that (\Omega, \varrho) is \varrho -continuous to ensure that the limit of a convergent sequence is unique. Our open problem is identifying whether one can remove or replace (by any other suitable condition) the " \varrho -continuity" condition of (\Omega, \varrho) from Theorem 1.

    2) Since b-EVMS is newly introduced, one can study different types of fixed-point results involving rational and product terms, such as those for the interpolative contraction (see [21]).

    Sudipta Kumar Ghosh: conceptualization, methodology, investigation, visualization, writing-original draft, writing-review and editing; Ozgur Ege: conceptualization, investigation, visualization, writing-review and editing; Junaid Ahmad: methodology, investigation, visualization, writing-review and editing; Ahmad Aloqaily: investigation, visualization, writing-review and editing; Nabil Mlaiki: investigation, visualization, writing-review and editing.

    All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    The authors, A. Aloqaily and N. Mlaiki, would like to thank Prince Sultan University for paying the APC, and for the support through the TAS research lab.

    The first author (SKG) is very grateful to his Ph.D. supervisor Professor C. Nahak for his excellent guidance. Also, the first author would like to thank his mother, Mrs. Reba Ghosh, for her continuous encouragement during the preparation of the manuscript. Finally, the authors are very grateful to the editor and the anonymous reviewers for their valuable comments and several useful suggestions, which have improved the presentation of the paper.

    The authors declare that they have no conflict of interest.



    [1] S. G. Georgiev, K. Zennir, Classical solutions for a class of IVP for nonlinear two-dimensional wave equations via new fixed point approach, Partial Differential Equations in Applied Mathematics, 2 (2020), 100014. https://doi.org/10.1016/j.padiff.2020.100014 doi: 10.1016/j.padiff.2020.100014
    [2] S. G. Georgiev, K. Zennir, Multiple fixed-point theorems and applications in the theory of ODEs, FDEs and PDEs, New York: Chapman and Hall/CRC, 2020. https://doi.org/10.1201/9781003028727
    [3] A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Func. Anal. Opt., 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046
    [4] W. Shatanawi, T. A. M. Shatnawi, New fixed point results in controlled metric type spaces based 213 on new contractive conditions, AIMS Mathematics, 8 (2023), 9314–9330. https://doi.org/10.3934/math.2023468 doi: 10.3934/math.2023468
    [5] M. Joshi, A. Tomar, T. Abdeljawad, On fixed points, their geometry and application to satellite web coupling problem in S-metric spaces, AIMS Mathematics, 8 (2023), 4407–4441. https://doi.org/10.3934/math.2023220 doi: 10.3934/math.2023220
    [6] A. Z. Rezazgui, A. A. Tallafha, W. Shatanawi, Common fixed point results via Aν-\alpha-contractions with a pair and two pairs of self-mappings in the frame of an extended 216 quasi b-metric space, AIMS Mathematics, 8 (2023), 7225–7241. https://doi.org/10.3934/math.2023363 doi: 10.3934/math.2023363
    [7] A. A. Mukheimer, Some common fixed point theorems in complex valued b-metric spaces, Sci. World J., 2014 (2014), 587825. https://doi.org/10.1155/2014/587825 doi: 10.1155/2014/587825
    [8] W. Sintunavarat, Y. J. Cho, P. Kumam, Urysohn integral equations approach by common fixed points in complex-valued metric spaces, Adv. Differ. Equ., 2013 (2013), 49. https://doi.org/10.1186/1687-1847-2013-49 doi: 10.1186/1687-1847-2013-49
    [9] K. Sitthikul, S. Saejung, Some fixed point theorems in complex valued metric spaces, Fixed Point Theory Appl., 2012 (2012), 189. https://doi.org/10.1186/1687-1812-2012-189 doi: 10.1186/1687-1812-2012-189
    [10] R. K. Verma, H. K. Pathak, Common fixed point theorems using property (E.A) in complex-valued metric spaces, Thai J. Math., 11 (2013), 347–355.
    [11] M. Öztürk, I. A. Kösal, H. H. Kösal, Coincidence and common fixed point theorems via \varrho-class functions in elliptic valued metric spaces, An. Sti. U. Ovid. Con. Mat., 29 (2021), 165–182. https://doi.org/10.2478/auom-2021-0011 doi: 10.2478/auom-2021-0011
    [12] L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087
    [13] I. A. Bakhtin, The contraction mapping principle in almost metric spaces, J. Funct. Anal., 30 (1989), 26–37.
    [14] S. Czerwik, Contraction mappings in b-metric spaces, Acta Math. Inform. Univ. Ostrav., 1 (1993), 5–11.
    [15] M. Demma, R. Saadati, P. Vetro, Fixed point results on b-metric space via Picard sequences and b-simulation functions, Iran. J. Math. Sci. Info., 11 (2016), 123–136. https://doi.org/10.7508/ijmsi.2016.01.011 doi: 10.7508/ijmsi.2016.01.011
    [16] X. L. Liu, A. H. Ansari, S. Chandok, S. N. Radenovic, On some results in metric spaces using auxiliary simulation functions via new functions, J. Comput. Anal. Appl., 24 (2018), 1103–1114.
    [17] R. Miculescu, A. Mihail, New fixed point theorems for set-valued contractions in b-metric spaces, J. Fixed Point Theory Appl., 19 (2017), 2153–2163. https://doi.org/10.1007/s11784-016-0400-2 doi: 10.1007/s11784-016-0400-2
    [18] O. Popescu, Some new fixed point theorems for \alpha-Geraghty contraction type maps in metric spaces, Fixed Point Theory Appl., 2014 (2014), 190. https://doi.org/10.1186/1687-1812-2014-190 doi: 10.1186/1687-1812-2014-190
    [19] E. Karapınar, V. M. L. H. Bindu, Discussions on the almost \mathcal{Z}-contraction, Open Math., 18 (2020), 448–457. https://doi.org/10.1515/math-2020-0174 doi: 10.1515/math-2020-0174
    [20] J. Caristi, Fixed point theorems for mappings satisfying inwardness conditions, Trans. Amer. Math. Soc., 215 (1976), 241–251. https://doi.org/10.1090/S0002-9947-1976-0394329-4 doi: 10.1090/S0002-9947-1976-0394329-4
    [21] A. Fulga, On interpolative contractions that involve rational forms, Adv. Differ. Equ., 2021 (2021), 448. https://doi.org/10.1186/s13662-021-03605-4 doi: 10.1186/s13662-021-03605-4
  • This article has been cited by:

    1. Badriah Alamri, Fixed-Point Results in Elliptic-Valued Metric Spaces with Applications, 2025, 14, 2075-1680, 46, 10.3390/axioms14010046
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1083) PDF downloads(74) Cited by(1)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog