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1. Introduction

The theory of systems of simultaneous linear equations has a wide range of applications in all
branches of mathematics and in many other fields such as physics, transportation planning [25],
optimization [29], business, finance, management [8], current flow and control theory [10]. In many
applications, some of the systems have uncertainty in parameters and measurements that are
represented by fuzzy numbers rather than crisp numbers. Therefore, it is immensely important to
develop and improve the problem of solving fuzzy matrix equations.

A general method for solving the fuzzy linear system AX̃ = B̃, where A is a crisp-valued matrix
and B̃ is a fuzzy number-valued vector, was first proposed by Fridman et al. [3,14]. Various methods
emerged later to solve such fuzzy linear system [2,4,5,16,18,22].
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In recent years, the fuzzy linear systems in dual form are developing rapidly and it has a wide range
of applications in various branches of science such as economics, finance, engineering and physics
[21]. In 2000, Ma et al. [20] firstly proposed an embedding method for solving the dual fuzzy linear
system AX̃ = BX̃ + Ỹ , in which A and B are two crisp matrices and Ỹ is a fuzzy number vector. In
addition, they illustrated that the system AX̃ = BX̃ + Ỹ is not equivalent to the system (A − B)X̃ = Ỹ ,
since there does not exist an element ỹ such that x̃ + ỹ = 0 for an arbitrary fuzzy number x̃. Also,
Wang et al. [28] presented an iterative algorithms for solving dual fuzzy linear systems of the form
X̃ = AX̃ + Ỹ , where A is a real n×n matrix, X̃ and Ỹ are fuzzy number vectors. In 2006, Muzziloi et al.
[21] considered fuzzy linear systems of the form A1x + b1 = A2x + b2 with A1, A2 square matrices
of fuzzy coefficients and b1, b2 fuzzy number vectors. In 2008, Abbasbandy et al. [6] proposed
a numerical method to obtain the minimal solution of the m × n general dual fuzzy linear systems
AX̃ + Ỹ = BX̃ + Z̃ based on pseudo-inverse calculation. Later, Ezzati [12] investigated the non-square
symmetric dual fuzzy linear system of the form AX̃ = BX̃ + Ỹ . In 2009, Sun and Guo [24] solved a
non-square dual fuzzy linear systems AX̃ + Ỹ = BX̃ + Z̃, in which A and B are non-full rank matrices.
In 2012, Fariborzi Araghi et al. [13] solved a non-square dual fuzzy linear system AX̃ + Ỹ = BX̃ + Z̃,
by applied a special algorithm of the class of ABS algorithms. In 2013, Otadi proposed a new model
for solving the dual fuzzy linear system AX̃ = BX̃ + Ỹ [23]. In 2013, Gong et al. [17] obtained a
simple and practical method to solve the dual fuzzy matrix equation AX̃ + B̃ = CX̃ + D̃, in which A,
C are m × n matrices and B̃, D̃ are m × p LR fuzzy numbers matrices. By the arithmetic operations on
LR fuzzy numbers space, they fined that the above dual fuzzy matrix equation could be converted into
two classical matrix equations to solve, and the LR minimal fuzzy solution and the strong(weak) LR
minimal fuzzy solutions of the dual fuzzy matrix equation are derived based on the generalized inverses
of matrices. In 2019, Gong et al. investigated the solution of m×n fuzzy linear system Ax̃ = ỹ based on
LR-trapezoidal fuzzy numbers and its numerical calculation. In 2021, M. Ghanbari et al. [15] proposed
a straightforward approach for solving dual fuzzy linear systems of the form AX̃ + Ỹ = BX̃ + Z̃, where
A and B are crisp-valued matrices and Ỹ and Z̃ are fuzzy number vectors. The benefits of this method
is that it does not need to transformed into two crisp linear systems. For more research results see [7,9,
26].

The main purpose of this paper is to explore how to solve the dual fuzzy matrix equations AX̃+ B̃ =

CX̃+ D̃ algebraically, in which A, C are n×n matrices and B̃, D̃ are n×n fuzzy number matrices. First,
we define the extended and algebraic solutions of the dual fuzzy matrix equations AX̃ + B̃ = CX̃ + D̃.
Meanwhile, the relationship between them is investigated. Second, a necessary and sufficient condition
for the unique algebraic solution existence is given. Unlike the existing methods, the main advantage
of our method is that there is no need to convert a dual fuzzy matrix equation to two crisp matrix
equations to solve. Finally, by the generalized inverses of the matrices we solve the general dual fuzzy
matrix equations and dual fuzzy linear systems.

The rest of the paper is organized as follows: Section 2 reviews some basic concepts associated
with fuzzy numbers and establishes several useful results. The definition of dual fuzzy matrix
equation is given. Then, two types of solutions for a dual fuzzy matrix equation are presented and the
relationship between them is investigated. In Section 3, our method is explained by presenting a
theorem. Numerical examples are given in Section 4. Finally, we conclude the paper in Section 5.
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2. Preliminaries

At first, we will recall some basic concepts associated with fuzzy numbers.

Definition 2.1. (see [5, 27]) A fuzzy set x̃ with the membership function µx̃ : R → [0, 1] is a fuzzy
number if
(1) There exists t0 ∈ R such that µx̃(t0) = 1, i.e., x̃ is normal;
(2) For any λ ∈ [0, 1] and s, t ∈ R, we have µx̃(λs + (1−λ)t) > min{µx̃(s), µx̃(t)}, i.e., x̃ is a convex fuzzy
set;
(3) For any s ∈ R, the set {t ∈ R : µx̃(t) > s} is an open set in R, i.e., µx̃ is upper semi-continuous on R;
(4) The set {t ∈ R : µx̃(t) > 0} is compact set in R, where A denotes the closure of A.

Let us denote by RF the space of fuzzy numbers. It immediately follows that R ⊂ RF because
R = {xt : t is real number}. For 0 < α 6 1, we denote [x̃]α = {t ∈ R : µx̃(t) > α} and [x̃]0 =

{t ∈ R : µx̃(t) > 0}. Then [x̃]α will be called the α−level set of the fuzzy number x̃. The 1−level is
called the core of the fuzzy number, while the 0−level is called the support of the fuzzy number.
Usually, the support of the fuzzy number x̃ is defined as supp(x̃) = [x̃]0 = {t ∈ R : µx̃(t) > 0}.

Lemma 2.1. (see [19]) If x̃ ∈ RF is a fuzzy number and [x̃]α are its α−levels then
(1) [x̃]α = [x(α), x(α)] is a bounded closed interval, for each α ∈ [0, 1];
(2) [x(α1), x(α1)] ⊇ [x(α2), x(α2)] for all 0 6 α1 6 α2 6 1;
(3) [limk→∞ x(αk), limk→∞ x(αk)] = [x(α), x(α)] whenever αk is a non-decreasing sequence in [0, 1]
converging to α.

Remark 2.1. (see [22]) By lemma 2.1 it is conclude that if the family {[x(α), x(α)] : 0 6 α 6 1},
presents the α−levels of a fuzzy number, then
(1) The condition (1) implies the functions x and x are bounded over [0, 1] and x 6 x for each α ∈ [0, 1];
(2) The condition (2) implies the functions x and x are non-decreasing and non-increasing over [0, 1],
respectively;
(3) The condition (3) implies the functions x and x are left-continuous over [0, 1].

For x, y ∈ RF and λ ∈ R, based on the extension principle, arithmetic operations on the fuzzy
numbers are presented using the concept of α−levels of fuzzy numbers and interval arithmetic. Then
the α−levels of the sum x̃ + ỹ and the product λ · x̃ are obtained as follows

[x̃ + ỹ]α = [x̃]α + [̃y]α = {s + t : s ∈ [x̃]α, t ∈ [̃y]α} = [x(α) + y(α), x(α) + y(α)],

[λ · x̃]α = λ · [x̃]α = {λt : t ∈ [x̃]α} =

[λx(α), λx(α)], λ > 0,
[λx(α), λx(α)], λ < 0.

Definition 2.2. We say that two fuzzy numbers x̃ and ỹ are equal, if and only if for any t ∈ R, µx̃(t) =

µỹ(t), i.e. [x̃]α = [̃y]α, for any α ∈ [0, 1]. Also x̃ ⊆ ỹ⇔ [x̃]α ⊆ [̃y]α, for any α ∈ [0, 1].

Definition 2.3. (see [11]) A triangular fuzzy number x̃ = (xl, xm, xu) is a fuzzy set defined on the set R
of real numbers, whose membership function is defined as follows

µx̃(t) =


(t − xl)/(xm − xl), i f xl 6 t 6 xm,

(xu − t)/(xu − xm), i f xm 6 t 6 xu,

0, others,
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where xl, xm and xu are called the lower bound, the mode and the upper bound of the triangular fuzzy
number x̃ = (xl, xm, xu), respectively, and xl 6 xm 6 xu. If xl > 0, then the triangular fuzzy number
x̃ = (xl, xm, xu) is called a positive triangular fuzzy number.

If xu 6 0, then the triangular fuzzy number x̃ = (xl, xm, xu) is called a negative triangular fuzzy
number. The α−levels of x̃ = (xl, xm, xu) is denoted as [x̃]α = [xl + α(xm − xl), xu − α(xu − xm)].

Definition 2.4. Let x̃ = (xl, xm, xu), ỹ = (yl, ym, yu) be two triangular fuzzy numbers, λ a real number.
Then the arithmetic operations of x̃ and ỹ are defined as follows:
(1) x̃ ⊕ ỹ = (xl, xm, xu) ⊕ (yl, ym, yu) = (xl + yl, xm + ym, xu + yu);
(2) x̃ 	 ỹ = (xl, xm, xu) 	 (yl, ym, yu) = (xl − yu, xm − ym, xu − yl);

(3) λ ⊗ x̃ = λ ⊗ (xl, xm, xu) ≈

(λxl, λxm, λxu), i fλ > 0,
(λxu, λxm, λxl), i fλ < 0.

In continuation, we define two concepts namely α−center and α−radius of an arbitrary fuzzy
number.

Definition 2.5. (see [1]) xC(α) is called the α−center of the fuzzy number x̃ if xC(α) =
x(α)+x(α)

2 , for any
α ∈ [0, 1].

Definition 2.6. (see [1]) xR(α) is called the α-radius of the fuzzy number x̃ if xR(α) =
x(α)−x(α)

2 , for any
α ∈ [0, 1].

Obviously, the α−center and α−radius of an arbitrary fuzzy number are crisp real functions of α.

Remark 2.2. Let ũ =
∑n

i=1 λi x̃i, x̃1, x̃2, . . . , x̃n ∈ RF , λ1, λ2, . . . , λn ∈ R. then

uC(α) =

n∑
i=1

λixC
i (α), uR(α) =

n∑
i=1

|λi|xR
i (α).

Definition 2.7. Let x̃i be a fuzzy number (i = 1, 2, . . . , n), then we say that X̃ = (x̃1, x̃2, . . . , x̃n)T is a
fuzzy number-valued vector. The α−center and α−radius of [X̃]α = ([x̃1]α, [x̃2]α, . . . , [x̃n]α)T can be
defined by XC(α) = (xC

1 (α), xC
2 (α), . . . , xC

n (α))T and XR(α) = (xR
1 (α), xR

2 (α), . . . , xR
n (α))T .

Therefore, we can obtain

X̃ ⊆ Ỹ ⇔ [X̃]α ⊆ [Ỹ]α,∀α ∈ [0, 1]
⇔ [x̃i]α ⊆ [̃yi]α, i = 1, 2, . . . , n, α ∈ [0, 1],

where X̃ and Ỹ are two fuzzy number-valued vectors.

Theorem 2.1. Let matrix A = (ai j)n×n be a crisp-valued matrix, vector X̃ = (x̃1, x̃2, · · · , x̃n)> be a fuzzy
number-valued vector. We have

(A · X̃)C(α) = A · XC(α), (A · X̃)R(α) = |A| · XR(α).

Based on the results obtained above, in the following comment we will consider a dual fuzzy matrix
equation.
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Definition 2.8. The matrix equation
a11 a12 · · · a1n

a21 a22 · · · a2n
...

...
...

an1 an2 · · · ann




x̃11 x̃12 · · · x̃1n

x̃21 x̃22 · · · x̃2n
...

...
...

x̃n1 x̃n2 · · · x̃nn

 +


b̃11 b̃12 · · · b̃1n

b̃21 b̃22 · · · b̃2n
...

...
...

b̃n1 b̃n2 · · · b̃nn


=


c11 c12 · · · c1n

c21 c22 · · · c2n
...

...
...

cn1 cn2 · · · cnn




x̃11 x̃12 · · · x̃1n

x̃21 x̃22 · · · x̃2n
...

...
...

x̃n1 x̃n2 · · · x̃nn

 +


d̃11 d̃12 · · · d̃1n

d̃21 d̃22 · · · d̃2n
...

...
...

d̃n1 d̃n2 · · · d̃nn

 ,
(2.1)

where ai j, ci j, 1 6 i, j 6 n are real numbers and elements b̃i j, d̃i j, 1 6 i, j 6 n are fuzzy numbers, is
called a dual fuzzy matric equation. Using matric notation, we have

AX̃ + B̃ = CX̃ + D̃.

A fuzzy number matric X̃ = (x̃i j)n×n is called the solution of the dual fuzzy matric Eq (2.1) if satisfies

Ax̃ j + B̃ j = Cx̃ j + D̃ j, j = 1, 2, . . . , n,

where x̃ j = (x̃1 j, x̃2 j, . . . , x̃n j)T , B̃ j = (̃b1 j, b̃2 j, . . . , b̃n j)T , D̃ j = (d̃1 j, d̃2 j, . . . , d̃n j)T , j = 1, 2, . . . , n are
j−th column of fuzzy matrices X̃, B̃ and D̃, respectively.

It is well known that for an arbitrary fuzzy number x̃, there exists no element ỹ ∈ RF such that
x̃ + ỹ = 0. Consequently, we cannot equivalently replace the dual fuzzy matric equation (2.1) by the
fuzzy matric equation (A − C)X̃ = D̃ − B̃. Therefore, it is crucial to develop mathematical methods
that can solve the dual fuzzy matric equation (2.1).
Example 2.1. Consider the problem of the classical coordinate rotation and shift in Cartesian
coordinate systems: a point P(x, y) rotates θi(i = 1, 2) in counterclockwise, and then shifts the origin
of the coordinate to the point Pi(xi, yi), (i = 1, 2), and we obtains P′i(x′i , y

′
i), (i = 1, 2) in new coordinate

system. The relationship between P(x, y), P′i(x′i , y
′
i), (i = 1, 2) and Pi(xi, yi), (i = 1, 2) as follows.(

x′i
y′i

)
=

(
cos θi sin θi

− sin θi cos θi

) (
x
y

)
+

(
−xi

−yi

)
.

In some sense, we need to calculate those points P(x, y) such that P′i(x′i , y
′
i), (i = 1, 2) are equal to

each other at least in quantitative values or in a specific functions in an engineering modeling. In fact,
the problem will be converted to solving a two dimensional matrix linear system as follows.(

cos θi sin θi

− sin θi cos θi

) (
x
y

)
+

(
−x1

−y1

)
=

(
cos θ2 sin θ2

− sin θ2 cos θ2

) (
x
y

)
+

(
−x2

−y2

)
.

As we all know, in the classical theory of the matrix linear system, it equivalent to the following
linear system (

cos θi − cos θ2 sin θi − sin θ2

− sin θi + sin θ2 cos θi − cos θ2

) (
x
y

)
=

(
x1 − x2

y1 − y2

)
.
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However, there are often uncertainty of parameters in the process of mathematical modeling in a
concrete engineering, and the parameter with uncertainty is easy to describe whether it can be written as
fuzzy number in some sense. When xi, yi(i = 1, 2) are fuzzy numbers. We need to solve the following
two dimensional fuzzy matrix linear system.(

cos θi sin θi

− sin θi cos θi

) (
x
y

)
+

(
−x1

−y1

)
=

(
cos θ2 sin θ2

− sin θ2 cos θ2

) (
x
y

)
+

(
−x2

−y2

)
.

For above two dimensional fuzzy matrix linear system, the system AX̃ + B̃ = CX̃ + D̃ is not
equivalent to the system (A−C)X̃ = (B̃− D̃) since there does not exist an element fuzzy number ṽ such
that ũ + ṽ = 0̃ for any fuzzy number ũ.

The following definition gives two types of the solutions to the dual fuzzy matrix equation (2.1).

Definition 2.9. Let det(A−C) , 0 for the Eq (2.1). The extended solution of the Eq (2.1) is defined as
follows

X̃E = (A − C)−1(D̃ − B̃).

Remark 2.3. Consider Eq (2.1). If x̃i j, b̃i j and d̃i j are triangular fuzzy numbers and also det(A−C) , 0,
then the extended solution X̃E = (xl

E, x
m
E , x

u
E) is equivalent to the matrix system

X̃E = (A − C)−1((Dl,Dm,Du) − (Bl,Bm,Bu))
= (A − C)−1(Dl − Bu,Dm − Bm,Du − Bl).

Definition 2.10. Let x̃ jA = (x̃1 jA , x̃2 jA , . . . , x̃n jA)> denote the jth column of the X̃A. Then X̃A is said to be
an algebraic solution of equation (2.1) equivalent to

AX̃A + B̃ = CX̃A + D̃,

or
n∑

k=1

aik x̃k jA + b̃i j =

n∑
k=1

cik x̃k jA + d̃i j, i, j = 1, 2, . . . , n.

Remark 2.4. By Definition 2.9 and Theorem 2.1 we have

XC
E(α) = (A − C)−1(DC(α) − BC(α)), α ∈ [0, 1],

XR
E(α) = |(A − C)−1|(DR(α) + BR(α)), α ∈ [0, 1].

Remark 2.5. By Definition 2.5, Definition 2.6, Remark 2.3 and Remark 2.4, if x̃i j, b̃i j and d̃i j are
triangular fuzzy numbers and also det(A − C) , 0, we have

XC
E(α) = (A − C)−1(α(Dm − Bm) +

1 − α
2

(Dl + Du − Bl − Bu)),

XR
E(α) =

1 − α
2
|(A − C)−1|(Du − Dl + Bu − Bl).

The following result provide the relationship between the extended solution X̃E and the algebraic
solution X̃A.
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Theorem 2.2. Suppose that both the extended and the algebraic solutions of the dual fuzzy matrix
equation (2.1) exist, we have XC

A(α) = XC
E(α).

Proof. Let X̃A is an algebraic solution of Eq (2.1), we have AX̃A + B̃ = CX̃A + D̃. According to
the matrix theory, we know that the above matrix equation is equivalent to Ax̃ jA + B̃ j = Cx̃ jA + D̃ j,
j = 1, 2, . . . , n. From the above conclusions, we have A · xC

jA
(α) + BC

j (α) = C · xC
jA

(α) + DC
j (α). Since

the extended solution X̃E exists, det(A − C) , 0. In addition, since the α−center of an arbitrary fuzzy
number is a crisp function in terms of α, we obtain xC

jA
(α) = (A − C)−1 · (DC

j (α) − BC
j (α)) = xC

jE
(α),

j = 1, 2, . . . , n. It is easy to verify that XC
A(α) = XC

E(α).

3. The discussion of the solution for dual fuzzy matrix equations

In this section, we give a method for obtaining an algebraic solution of the dual fuzzy matrix
equation (2.1) by first giving the following theorem.

Theorem 3.1. The Eq (2.1) has a unique algebraic solution if and only if det(A−C) , 0, det(|C|−|A|) ,
0 and the family of sets [XE(α) + F(α),XE(α)−F(α)]constructs the α−levels of a fuzzy number-valued
matrix for any α ∈ [0, 1]. Where [X̃E]α = [XE(α),XE(α)] and

F(α) = XR
E(α) + (|C| − |A|)−1(DR(α) − BR(α)). (3.1)

Thus, the unique algebraic solution of Eq (2.1) is expressed in terms of the α−levels as

[X̃A]α = [XE(α) + F(α),XE(α) − F(α)], (3.2)

for any α ∈ [0, 1].

Proof. Suppose that the Eq (2.1) has a unique algebraic solution X̃A. firstly, the fuzzy matrix
equation (2.1) can be written in the block forms

A(x̃1, x̃2, . . . , x̃n) + (B̃1, B̃2, . . . , B̃n) = C(x̃1, x̃2, . . . , x̃n) + (D̃1, D̃2, . . . , D̃n),

where x̃ j = (x̃1 j, x̃2 j, . . . , x̃n j)>, B̃ j = (̃b1 j, b̃2 j, . . . , b̃n j)> and D̃ j = (d̃1 j, d̃2 j, . . . , d̃n j)>, j = 1, 2, . . . , n
denote the jth column of unknown matrix X̃ and fuzzy numbers matrices B̃ and D̃, respectively. Thus
the original Eq (2.1) is equivalent to the following dual fuzzy linear systems

Ax̃ j + B̃ j = Cx̃ j + D̃ j, j = 1, 2, . . . , n.

Based on Definition 2.7 and Eq (3.2), then we can obtain

n∑
k=1

aik[xk jE
(α) + fk j(α), xk jE (α) − fk j(α)] + [bi j(α), bi j(α)]

=

n∑
k=1

cik[xk jE
(α) + fk j(α), xk jE (α) − fk j(α)] + [bi j(α), di j(α)].

AIMS Mathematics Volume 8, Issue 3, 7310–7328.
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Note that for i = 1, 2, . . . , n, we have∑
k:aik>0

aik(xk jE
(α) + fk j(α)) +

∑
k:aik<0

aik(xk jE (α) − fk j(α))

−
∑

k:cik>0

cik(xk jE
(α) + fk j(α)) −

∑
k:cik<0

cik(xk jE (α) − fk j(α))

= di j(α) − bi j(α)

(3.3)

and ∑
k:aik>0

aik(xk jE (α) − fk j(α)) +
∑

k:aik<0

aik(xk jE
(α) + fk j(α))

−
∑

k:cik>0

cik(xk jE (α) − fk j(α)) −
∑

k:cik<0

cik(xk jE
(α) + fk j(α))

= di j(α) − bi j(α).

(3.4)

By Eq (3.1), Definitions 2.5 and 2.6, i = 1, 2, . . . , n, we have

(|C| − |A|)F j(α) = (|C| − |A|)
 x jE (α) − x jE

(α)

2

 +
D j(α) − D j(α)

2
−

B j(α) − B j(α)

2

and

n∑
k=1

(|cik| − |aik|) fk j(α) =

n∑
k=1

(|cik| − |aik|)
xk jE (α) − xk jE

(α)

2
+

di j(α) − di j(α)

2
−

bi j(α) − bi j(α)

2
. (3.5)

By the det(A − C) , 0, we know that x̃ jE = (A − C)−1(D̃ j − B̃ j), thus

(A − C)x̃ jE = (D̃ j − B̃ j).

According to Theorem 2.1, for any α ∈ [0, 1], we have

(A − C)xC
jE (α) = DC

j (α) − BC
j (α).

This implies

n∑
k=1

(aik − bik)
(
xk jE

(α) + xk jE (α)
)

= (di jE
(α) + di jE (α)) − (bi jE

(α) + bi jE (α)), (3.6)

for any i = 1, 2, . . . , n.
By Eqs (3.5) and (3.6), we have∑

k:aik>0

aik(xk jE
(α) + fk j(α)) +

∑
k:aik<0

aik(xk jE (α) − fk j(α))

−
∑

k:cik>0

cik(xk jE
(α) + fk j(α)) −

∑
k:cik<0

cik(xk jE (α) − fk j(α))
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=
∑

k:aik>0

aikxk jE
(α) +

∑
k:aik<0

aikxk jE (α) −
∑

k:cik>0

cikxk jE
(α) −

∑
k:cik<0

cikxk jE (α) +

n∑
k=1

|aik| fk j(α) −
n∑

k=1

|cik| fk j(α)

=
∑

k:aik>0

aikxk jE
(α) +

∑
k:aik<0

aikxk jE (α) −
∑

k:cik>0

cikxk jE
(α) −

∑
k:cik<0

cikxk jE (α) −
n∑

k=1

(|cik| − |aik|) fk j(α)

=
∑

k:aik>0

aikxk jE
(α) +

∑
k:aik<0

aikxk jE (α) −
∑

k:cik>0

cikxk jE
(α) −

∑
k:cik<0

cikxk jE (α)

−

n∑
k=1

(|cik| − |aik|)
xk jE (α) − xk jE

(α)

2
−

di jE (α) − di jE
(α)

2
+

bi jE (α) − bi jE
(α)

2

=
∑

k:aik ,cik>0

(aik − cik)
 xk jE (α) − xk jE

(α)

2
+ xk jE

(α)
 +

∑
k:aik ,cik<0

(aik − cik)
xk jE (α) +

xk jE
(α) − xk jE (α)

2


−

di jE (α) − di jE
(α)

2
+

bi jE (α) − bi jE
(α)

2

=
1
2

∑
k:aik ,cik>0

(aik − cik)(xk jE (α) + xk jE
(α)) +

1
2

∑
k:aik ,cik<0

(aik − cik)(xk jE (α) + xk jE
(α))

−
1
2

(di jE (α) − di jE
(α)) +

1
2

(bi jE (α) − bi jE
(α))

=
1
2

n∑
k=1

(aik − cik)(xk jE (α) + xk jE
(α)) −

1
2

(di jE (α) − di jE
(α)) +

1
2

(bi jE (α) − bi jE
(α))

=
1
2

(di jE
(α) + di jE (α)) −

1
2

(bi jE
(α) + bi jE (α)) −

1
2

(di jE (α) − di jE
(α)) +

1
2

(bi jE (α) − bi jE
(α))

= di jE
(α) − bi jE

(α),

for any α ∈ [0, 1] and i = 1, 2, . . . , n, the proof of Eq (3.3) is complete. Similarly,∑
k:aik>0

aik(xk jE (α) − fk j(α)) +
∑

k:aik<0

aik(xk jE
(α) + fk j(α))

−
∑

k:cik>0

cik(xk jE (α) − fk j(α)) −
∑

k:cik<0

cik(xk jE
(α) + fk j(α))

=
∑

k:aik>0

aikxk jE (α) +
∑

k:aik<0

aikxk jE
(α) −

∑
k:cik>0

cikxk jE (α) −
∑

k:cik<0

cikxk jE
(α) +

n∑
k=1

(|cik| − |aik|) fk j(α)

=
1
2

n∑
k=1

(aik − cik)(xk jE (α) + xk jE
(α)) +

1
2

(di jE (α) − di jE
(α)) −

1
2

(bi jE (α) − bi jE
(α))

=
1
2

(di jE
(α) + di jE (α)) −

1
2

(bi jE
(α) + bi jE (α)) +

1
2

(di jE (α) − di jE
(α)) −

1
2

(bi jE (α) − bi jE
(α))

= di jE (α) − bi jE (α),

for any α ∈ [0, 1] and i = 1, 2, . . . , n, the proof of Eq (3.4) is complete. This prove that X̃A is an
algebraic solution of dual fuzzy matrix Eq (2.1). In the following we verify the uniqueness of this
solution. Suppose that W̃ is another algebraic solution of the equation (2.1). Using Theorem 2.1 we
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have
AxC

jA(α) + BC
j (α) = CxC

jA(α) + DC
j (α),

AwC
j (α) + BC

j (α) = CwC
j (α) + DC

j (α).

Hence, we obtain
|A|xR

jA(α) + BR
j (α) = |C|xR

jA(α) + DR
j (α),

|A|wR
j (α) + BR

j (α) = |C|wR
j (α) + DR

j (α).

This implies that xC
jA

(α) = wC
j (α), xR

jA(α) = wR
j (α), we have w̃ j = x̃ jA .

Now we say that the fuzzy number-valued vector w̃ j is unique algebraic solution of the system (2.1),
Also, the crisp vectors wC

j (α) and wR
j (α) are unique solution of the following crisp linear systems

AxC
j (α) + BC

j (α) = CxC
j (α) + DC

j (α)

and
|A|xR

j (α) + BR
j (α) = |C|xR

j (α) + DR
j (α).

These imply that det(A − C) , 0 and det(|C| − |A|) , 0 and consequently [x̃ jA]α can be obtained by
Eq (3.2) for any α ∈ [0, 1]. In the first part of the proof, we obtain

A[x̃ jA]α + [B̃ j]α = C[x̃ jA]α + [D̃ j]α.

Obviously, [x̃ jA]α = [w̃ j]α, for any α ∈ [0, 1], j = 1, 2, . . . , n. Thus, Eq (3.2) constructs the α− levels
of a fuzzy number-matrix, the proof is complete.

Corollary 3.1. Let X̃ = (xl, xm, xu), B̃ = (Bl,Bm,Bu) and D̃ = (Dl,Dm,Du) are triangular fuzzy
numbers matrices for the Eq (2.1). According to Remark 2.5 and Theorem 3.1, we have

F(α) =
1 − α

2
(|(A − C)−1|(Du − Dl + Bu − Bl) + (|C| − |A|)−1(Du − Dl − Bu + Bl)),

XE(α) = XC
E(α)−XR

E(α) = (A−C)−1(α(Dm−Bm)+
1 − α

2
(Dl+Du−Bl−Bu))−

1 − α
2
|(A−C)−1|(Du−Dl+Bu−Bl),

XE(α) = XC
E(α)+XR

E(α) = (A−C)−1(α(Dm−Bm)+
1 − α

2
(Dl+Du−Bl−Bu))+

1 − α
2
|(A−C)−1|(Du−Dl+Bu−Bl).

Hence,

XA(α) = XE(α)+F(α) = (A−C)−1(α(Dm−Bm)+
1 − α

2
(Dl+Du−Bl−Bu))+

1 − α
2

(|C|−|A|)−1(Du−Dl−Bu+Bl),

XA(α) = XE(α)−F(α) = (A−C)−1(α(Dm−Bm)+
1 − α

2
(Dl+Du−Bl−Bu))−

1 − α
2

(|C|−|A|)−1(Du−Dl−Bu+Bl).

Thus, we obtain the unique algebraic solution X̃A = (xl
A, x

m
A , x

u
A) to the dual fuzzy matrix

equation (2.1), where

xl
A =

1
2

(A − C)−1(Dl + Du − Bl − Bu) +
1
2

(|C| − |A|)−1(Du − Dl − Bu + Bl),

xu
A =

1
2

(A − C)−1(Dl + Du − Bl − Bu) −
1
2

(|C| − |A|)−1(Du − Dl − Bu + Bl),

xm
A = (A − C)−1(Dm − Bm).
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Remark 3.1. The condition of det(A − C) , 0 and det(|C| − |A|) , 0 in Theorem 3.1 is a necessary
condition for the existence of unique algebraic solution of the dual fuzzy matrix equation (2.1). In other
words, if det(A −C) = 0 or det(|C| − |A|) = 0, then the Eq (2.1) may not have an algebraic solution or
it may have infinite algebraic solutions.

Remark 3.2. Let F(α) = ( f1(α), f2(α), . . . , fn(α)), f j(α) = ( f1 j(α), f2 j(α), . . . , fn j(α))>, by Theorem 3.1,
if F(α) > 0, i.e. fi j(α) > 0, then X̃A ⊆ X̃E, for each α ∈ [0, 1]. Also, if F(α) 6 0, i.e. fi j(α) 6 0, then
X̃E ⊆ X̃A.

We use the same method to discuss fuzzy matrix equations

AX̃ = CX̃ + D̃, (3.7)

AX̃ + B̃ = D̃, (3.8)

and
AX̃ = D̃. (3.9)

(1) Let B = O, then the dual fuzzy matrix equation (2.1) is reduced to the fuzzy matrix equation

AX̃ = CX̃ + D̃.

According to our proposed method, the following results are obvious:
The dual fuzzy matrix equation (3.7) has a unique algebraic solution if and only if det(A − C) , 0,

det(|C| − |A|) , 0 and the family of sets [XE(α) + F(α),XE(α) − F(α)] constructs the α−levels of a
fuzzy number-valued matrix and [X̃A]α = [XE(α) + F(α),XE(α) − F(α)]. Where

X̃E = (A − C)−1D̃, [X̃E]α = (A − C)−1[D̃]α, XR
E(α) = |(A − C)−1|DR(α),

and the parameter matrix

F(α) = XR
E(α) + (|C| − |A|)−1DR(α), α ∈ [0, 1].

(2) In the dual fuzzy matrix equation (2.1), let C = O and have

AX̃ + B̃ = D̃.

Then the dual fuzzy matrix equation (3.8) has a unique algebraic solution if and only if det(A) , 0,
det((−1) · |A|) , 0 and the family of sets [XE(α) + F(α),XE(α) − F(α)] constructs the α−levels of a
fuzzy number-valued matrix and [X̃A]α = [XE(α) + F(α),XE(α) − F(α)]. Where

X̃E = A−1(D̃ − B̃), [X̃E]α = A−1([D̃]α − [B̃]α), XR
E(α) = |A−1|(DR(α) + BR(α)),

and the parameter matrix

F(α) = XR
E(α) + ((−1) · |A|)−1(DR(α) + BR(α)).

(3) In the dual fuzzy matrix equation (2.1), let B = O, C = O, there is a fuzzy matrix equation

AX̃ = D̃.
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Then the dual fuzzy matrix equation (3.9) has a unique algebraic solution if and only if det(A) , 0,
det((−1) · |A|) , 0 and the family of sets [XE(α) + F(α),XE(α) − F(α)] constructs the α−levels of a
fuzzy number-valued matrix and [X̃A]α = [XE(α) + F(α),XE(α) − F(α)]. Where

X̃E = A−1D̃, [X̃E]α = A−1[D̃]α, XR
E(α) = |A−1|DR(α),

and the parameter matrix
F(α) = XR

E(α) + ((−1) · |A|)−1DR(α).

Theorem 3.2. Let det(A − C) , 0 and det(|C| − |A|) , 0 for the dual fuzzy matrix equation (2.1). If B̃
and D̃ are crisp-valued matrices, then for any α ∈ [0, 1], F(α) = 0 and

X̃A = X̃E = (A − C)−1(D̃ − B̃).

Proof. Since the matrices B̃ and D̃ are crisp-valued matrices, obviously, BR(α) = 0 and DR(α) = 0. We
infer that

XR
E(α) = |(A − C)−1|(DR(α) + BR(α)) = 0.

This follows that
F(α) = XR

E(α) + (|C| − |A|)−1
(
DR(α) − BR(α)

)
= 0,

then
X̃A = X̃E = (A − C)−1(D̃ − B̃).

Remark 3.3. Let X̃ = (xl, xm, xu), B̃ = (Bl,Bm,Bu) and D̃ = (Dl,Dm,Du) are triangular fuzzy numbers
for the Eq (2.1). By Theorem 3.2, we have Bl = Bm = Bu and Dl = Dm = Du, according to Corollary 3.1

F(α) = 0

and

XE(α) = XA(α) = (A − C)−1(α(Dm − Bm) +
1 − α

2
(Dl + Du − Bl − Bu)),

XE(α) = XA(α) = (A − C)−1(α(Dm − Bm) +
1 − α

2
(Dl + Du − Bl − Bu)).

Remark 3.4. For Theorem 3.2, the condition that B̃ and D̃ are crisp-valued matrices is a sufficient
but not a necessary condition. That is, even if B̃ (or D̃) is not a crisp-valued matrices, it is possible to
obtain F(α) = 0 and consequently X̃A = X̃E.

For example, consider the dual fuzzy matrix equation

AX̃ + B̃ = CX̃ + D̃,

where

A =

(
1 1
0 −1

)
, C =

(
0 0
0 0

)
,

and also

B̃ =

(
(0, 0, 0) (0, 0, 0)
(0, 0, 0) (0, 0, 0)

)
, D̃ =

(
(3, 4, 7) (3, 4, 7)
(0, 0, 0) (0, 0, 0)

)
.

AIMS Mathematics Volume 8, Issue 3, 7310–7328.



7322

Not that det(A − C) = −1 and det(|C| − |A|) = 1, then

F(α) =
1 − α

2
(|(A −C)−1|(Du −Dl + Bu −Bl) + (|C| − |A|)−1(Du −Dl −Bu + Bl)) =

(
(0, 0, 0) (0, 0, 0)
(0, 0, 0) (0, 0, 0)

)
.

Therefore
X̃A = X̃E = (A − C)−1(D̃ − B̃).

The following theorem presents a sufficient condition for the existence and uniqueness of the
algebraic solution of Eq (2.1).

Theorem 3.3. In the fuzzy matrix equation (2.1), let
(1) both det(A − C) , 0 and det(|C| − |A|) , 0;
(2) F(α) is a bounded left-continuous nondecreasing matrix function over [0, 1], i.e., fi j(α) for
i = 1, 2, . . . , n, are bounded left-continuous nondecreasing functions over [0, 1]. Where
f j(α) = ( f1 j(α), f2 j(α), . . . , fn j(α))> is the jth column of F(α), j = 1, 2, . . . , n;
(3) F(α) 6 XR

E(α), i.e. fi j(α) 6 (xi jE (α) − xi jE
(α))/2, for i = 1, 2, . . . , n; Where

F j(α) = ( f1 j(α), f2 j(α), . . . , fn j(α))> and xR
jE (α) = (xR

1 jE
(α), xR

2 jE
(α), . . . , xR

n jE (α))> denote the jth
column of F(α) and XR

E(α), respectively.
Then, the dual fuzzy matrix equation (2.1) has a unique algebraic solution with the α−levels

indicated by Eq (3.2).

Proof. Suppose X̃A is an algebraic solution of (2.1), we have

AX̃A + B̃ = CX̃A + D̃.

Since matrix det(A − C) , 0, the extended solution X̃E exists and the α−levels expressed as

[X̃E]α = [XE(α),XE(α)],

sinceF(α) is a bounded left-continuous non-decreasing matrix function over [0, 1], −F(α) is a bounded
left-continuous non-increasing matrix function over [0, 1]; Also because F(α) 6 XR

E(α), i.e.

XE(α) − XE(α) − 2F(α) > 0,

then [XE(α) + F(α),XE(α) − F(α)] satisfies the required conditions of Definition 2.1, Lemma 2.1 and
Remark 2.1 and also constructs the α-levels of a fuzzy number-valued matrix, since |C| − |A| is
invertible, [X̃A]α can be obtained by Eq (3.2), i.e. [X̃A]α = [XE(α) + F(α),XE(α) − F(α)], for any
α ∈ [0, 1].

The proof is complete.

Theorem 3.4. Let x̃ jE (α) = (x̃1 jE (α), x̃2 jE (α), . . . , x̃n jE (α))>, F j(α) = ( f1 j(α), f2 j(α), . . . , fn j(α))>, for
the dual fuzzy matrix equation (2.1), and there exist at least α0 ∈ [0, 1] and i∗ ∈ 1, 2, . . . , n, such that

fi∗ j(α0) > xR
i∗ jE (α0) =

xi∗ jE (α0) − xi∗ jE
(α0)

2
.

then the dual fuzzy matrix equation (2.1) does not has a unique algebraic solution.
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Proof. Suppose that the dual fuzzy matrix equation (2.1) has a unique algebraic solution, then by
Theorem (3.1), it follows that [xi jE

(α)+ fi jE (α), xi jE (α)− fi jE (α)] constructs α−levels of a fuzzy number,
for any i ∈ 1, 2, . . . , n and α ∈ [0, 1]. Since it is a closed interval, then we have

xi∗ jE
(α0) + fi∗ jE (α0) 6 xi∗ jE (α0) − fi∗ jE (α0)

or

fi∗ jE (α0) 6
xi∗ jE (α0) − xi∗ jE

(α0)

2
.

Clearly, this is a contradiction.

Definition 3.1. (see [17]) Let A be a m × n matrix and (·)T denote the transpose of the matrix (·). We
recall that a generalized inverse G of A is an n × m matrix which satisfies one or more of Penrose
equations
(1) AGA = A,
(2) GAG = G,
(3) (AG)T = AG,
(4) (GA)T = GA.

The matrix G is called a g−inverse of A if it satisfies (1). As usual, the g−inverse of A is denoted
by A−. If G satisfies (1) and (2), then it is called a reflexive inverse of A. When the matrix G satisfies
(1) − (4), it is called the Moore-Penrose inverse of A. Any matrix A admits a unique Moore-Penrose
inverse, denoted by A†.

By our proposed method, the following result is obvious.

Corollary 3.2. If for the dual fuzzy matrix equation AX̃ + B̃ = CX̃ + D̃, where A, C are m× n matrices
and B̃, D̃ are m × p fuzzy numbers matrices. Note that the α−levels of the unique algebraic solution of
equation is expressed by

[X̃A]α = [XE(α) + F(α),XE(α) − F(α)], ∀α ∈ [0, 1],

where X̃E = (A − C)†(D̃ − B̃) and F(α) = XR
E(α) + (|C| − |A|)†(DR(α) − BR(α)).

Remark 3.5. Let X̃ = (xl, xm, xu), B̃ = (Bl,Bm,Bu) and D̃ = (Dl,Dm,Du) are triangular fuzzy numbers
matrices. By Corollary 3.2,

X̃E = (xl
E, x

m
E , x

u
E) = (A − C)†(Dl − Bu,Dm − Bm,Du − Bl)

and
X̃A = (xl

A, x
m
A , x

u
A),

where

xl
A =

1
2

(A − C)†(Dl + Du − Bl − Bu) +
1
2

(|C| − |A|)†(Du − Dl − Bu + Bl),

xu
A =

1
2

(A − C)†(Dl + Du − Bl − Bu) −
1
2

(|C| − |A|)†(Du − Dl − Bu + Bl),

xm
A = (A − C)†(Dm − Bm).
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Corollary 3.3. As a special case of the dual fuzzy matrix equation, if for the dual fuzzy linear system
AX̃ + Ỹ = BX̃ + Z̃, where A, B are m × n matrices and Ỹ, Z̃ are fuzzy numbers vectors. We can obtain
the α−levels of the unique algebraic solution of equation is expressed by

[X̃A]α = [XE(α) + F(α), XE(α) − F(α)],∀α ∈ [0, 1],

where X̃E = (A − B)†(Z̃ − Ỹ) and F(α) = XR
E(α) + (|B| − |A|)†(ZR(α) − YR(α)).

Remark 3.6. Let X̃ = ((xl
1, x

m
1 , x

u
1), · · · , (xl

n, x
m
n , x

u
n))>, Ỹ = ((yl

1, y
m
1 , y

u
1), · · · , (yl

n, y
m
n , y

u
n))>,

Z̃ = ((zl
1, z

m
1 , z

u
1), · · · , (zl

n, z
m
n , z

u
n))> are triangular fuzzy numbers vectors. By Corollary 3.3,

X̃E = (xl
E, x

m
E , x

u
E) = (A − B)†(Zl − Yu,Zm − Ym,Zu − Y l) and X̃A = (xl

A, x
m
A , x

u
A), where

xl
A =

1
2

(A − B)†(Zl + Zu − Y l − Yu) +
1
2

(|B| − |A|)†(Zu − Zl − Yu + Y l),

xu
A =

1
2

(A − B)†(Zl + Zu − Y l − Yu) −
1
2

(|B| − |A|)†(Zu − Zl − Yu + Y l),

xm
A = (A − B)†(Zm − Ym).

4. Numerical examples

Example 4.1. Consider the 2 × 2 dual fuzzy matrix equation(
1 −2

10 1

) (
x̃11 x̃12

x̃21 x̃22

)
+

(
b̃11 b̃12

b̃21 b̃22

)
=

(
3 −1
−2 4

) (
x̃11 x̃12

x̃21 x̃22

)
+

(
d̃11 d̃12

d̃21 d̃22

)
,

where

B̃ =

(
b̃11 b̃12

b̃21 b̃22

)
=

(
(−5, 1, 2) (1, 3, 4)
(−3, 1, 4) (2, 5, 6)

)
and

D̃ =

(
d̃11 d̃12

d̃21 d̃22

)
=

(
(2, 4, 12) (1, 5, 7)
(−2, 3, 6) (−7,−5,−2)

)
.

We first compute the extended solution X̃E as follows

X̃E =(A − C)−1(Dl − Bu,Dm − Bm,Du − Bl)

=

(
(−19

6 ,−
7

18 ,
1
2 ) (−31

18 ,−
8
9 ,

5
18 )

(−37
3 ,−

20
9 ,

2
3 ) (−32

9 ,−
2
9 ,

31
9 )

)
.

Now, we compute the xl
A, xm

A , xu
A as follows

xl
A =

(
−23

6 −29
9

−37
3 −59

9

)
, xm

A =

(
− 7

18 −8
9

−20
9 −2

9

)
, xu

A =

( 7
6

16
9

2
3

58
9

)
.

Finally, we can obtain the unique algebraic solution as follows

X̃A =

(
(−23

6 ,−
7
18 ,

7
6 ) (−29

9 ,−
8
9 ,

16
9 )

(−37
3 ,−

20
9 ,

2
3 ) (−59

9 ,−
2
9 ,

58
9 )

)
.
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Note that each element in X̃A is a triangular fuzzy number, so the algebraic solution is acceptable.
Example 4.2. Consider the 3 × 3 dual fuzzy matrix equation


10 2 0
3 24 0
0 0 16




x̃11 x̃12 x̃13

x̃21 x̃22 x̃23

x̃31 x̃32 x̃33

 +


b̃11 b̃12 b̃13

b̃21 b̃22 b̃13

b̃31 b̃32 b̃33


=


−12 2 0

3 −26 0
0 0 −18




x̃11 x̃12 x̃13

x̃21 x̃22 x̃23

x̃31 x̃32 x̃33

 +


d̃11 d̃12 d̃13

d̃21 d̃22 d̃23

d̃31 d̃32 d̃33

 ,
where

B̃ =


b̃11 b̃12 b̃13

b̃21 b̃22 b̃23

b̃31 b̃32 b̃33

 =


(−4,−3, 7) (10, 20, 30) (−10,−1, 2)

(−10,−9, 1) (−1, 6, 8) (−11,−10, 1)
(−14,−2, 2) (8, 12, 16) 9 − 8,−7, 1)


and

D̃ =


d̃11 d̃12 d̃13

d̃21 d̃22 d̃23

d̃31 d̃32 d̃33

 =


(−8,−7, 2) (−4,−2, 6) (−11,−8,−7)
(−1, 0, 4) (0, 2, 7) (−1, 5, 10)
(3, 5, 6) (2, 4, 5) 5, 7, 12)

 .
Similarly, first, we get

X̃E =(A − C)−1(Dl − Bu,Dm − Bm,Du − Bl)

=


(−15

22 ,−
2

11 ,
3
11 ) (−17

11 ,−1,− 2
11 ) (−13

22 ,−
7

22 ,
3
22 )

(− 1
25 ,

9
50 ,

7
25 ) (− 4

25 ,−
2
25 ,

4
25 ) (− 1

25 ,
3
10 ,

21
50 )

( 1
34 ,

7
34 ,

10
17 ) (− 7

17 ,−
4

17 ,−
3

34 ) ( 2
17 ,

7
17 ,

10
17 )

 .
Next, we compute the xl

A, xm
A , xu

A as follows

xl
A =


− 5

11 −37
11 −49

22
−69

50 −1
2 − 3

50
−50

17 −51
34 − 5

34

 , xm
A =


− 2

11 −1 − 7
22

9
50 − 2

25
3
10

7
34 − 4

17
7
17

 , xu
A =


1

22
18
11

39
22

81
50

1
2

11
25

121
34 1 29

34

 .
Finally, we can obtain the unique algebraic solution as follows

X̃A =


(− 5

11 ,−
2
11 ,

1
22 ) (−37

11 ,−1, 18
11 ) (−49

22 ,−
7

22 ,
39
22 )

(−69
50 ,

9
50 ,

81
50 ) (−1

2 ,−
2
25 ,

1
2 ) (− 3

50 ,
3
10 ,

11
25 )

(−50
17 ,

7
34 ,

121
34 ) (−51

34 ,−
4

17 , 1) (− 5
34 ,

7
17 ,

29
34 )

 .
Obviously every element in X̃A is a triangular fuzzy number, so the algebraic solution is acceptable.

Example 4.3. Consider the dual fuzzy linear system
−4 −6
1 0
−6 −5


(

x̃1

x̃2

)
+


ỹ1

ỹ2

ỹ3

 =


8 6
1 0
−6 7


(

x̃1

x̃2

)
+


z̃1

z̃2

z̃3

 .
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where

Z̃ =


z̃1

z̃2

z̃3

 =


(1, 2, 3)
(1, 3, 5)

(−3,−4,−2)

 , Ỹ =


ỹ1

ỹ2

ỹ3

 =


(1, 4, 7)

(−2, 1, 3)
(−2, 0, 2)

 .
Then, we can obtain the extended solution x̃E as follows

X̃E = (A − B)†((Zl − Yu,Zm − Ym,Zu − Y l))

=

(
(−2

3 ,−
1

12 ,
1
2 )

(−1
2 ,−

1
4 , 0)

)
.

Now, we compute the xl
A, xm

A , xu
A as follows

xl
A =

(
− 1

12
−3

4

)
, xm

A =

(
− 1

12
−1

4

)
, xu

A =

( 11
12
1
4

)
.

Finally, we obtain the algebraic solution of the system as follows

X̃A =

(
(− 1

12 ,−
1

12 ,
11
12 )

(−3
4 ,−

1
4 ,

1
4 )

)
.

Every element in X̃A is a triangular fuzzy number, so the algebraic solution is acceptable.

5. Conclusions

In this paper, we obtained a simple method to solve the dual fuzzy matrix equations of the form
AX̃ + B̃ = CX̃ + D̃ algebraically. In the system under consideration, A and C are n × n crisp matrices,
B̃ and D̃ are n × n fuzzy numbers matrices. A necessary and sufficient condition for the existence of
unique algebraic solution of a dual fuzzy matrix equations is presented. More generally, We have also
considered the dual fuzzy matrix equation AX̃ + B̃ = CX̃ + D̃, in which A and C are m×n matrices and
B̃ and D̃ are m× p fuzzy numbers matrices and the dual fuzzy linear systems AX̃ + Ỹ = BX̃ + Z̃ whose
coefficient matrices are m × n matrices and the left and right hand sides vectors are triangular fuzzy
numbers matrices based on the generalized inverses of matrices. Finally, some examples are presented
to illustrate our results. Our results will be useful in developing the theory of fuzzy matrix equations
and fuzzy linear systems. Compared to existing methods, Not need to transform a dual fuzzy matrix
equation into two crisp matrix equations is the main advantage of our method. In the future, we will
further use method established in this article to explore some more complex forms of dual fuzzy matrix
equations and dual fuzzy linear systems.
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