A characterization of an $ m $-sphere $ \mathbf{S}^{m}(a) $ is obtained using a non-trivial torse-forming vector field $ \zeta $ on an $ m $-dimensional Riemannian manifold.
Citation: Amira Ishan, Sharief Deshmukh. Torse-forming vector fields on $ m $ -spheres[J]. AIMS Mathematics, 2022, 7(2): 3056-3066. doi: 10.3934/math.2022169
A characterization of an $ m $-sphere $ \mathbf{S}^{m}(a) $ is obtained using a non-trivial torse-forming vector field $ \zeta $ on an $ m $-dimensional Riemannian manifold.
[1] | I. Al-Dayel, S. Deshmukh, O. Belova, A remarkable property of concircular vector fields on a Riemannian manifold, Mathematics, 8 (2020), 469. doi: 10.3390/math8040469. doi: 10.3390/math8040469 |
[2] | A. L. Besse, Einstein manifolds, Springer-Verlag, 1987. |
[3] | S. Capozziello, C. A. Mantica, L. G. Molinari, Cosmological perfect fluids in higher-order gravity, Gen. Relativ. Gravit., 52 (2020), 36. doi: 10.1007/s10714-020-02690-2. doi: 10.1007/s10714-020-02690-2 |
[4] | M. C. Chaki, R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297–306. |
[5] | B. Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relativ. Gravit., 46 (2014), 1833. doi: 10.1007/s10714-014-1833-9. doi: 10.1007/s10714-014-1833-9 |
[6] | B. Y. Chen, Rectifying submanifolds of Riemannian manifolds and torqued vector fields, Kragujev. J. Math., 41 (2017), 93–103. doi: 10.5937/KgJMath1701093C. doi: 10.5937/KgJMath1701093C |
[7] | S. Deshmukh, Characterizing spheres and Euclidean spaces by conformal vector fields, Ann. Mat. Pur. Appl., 196 (2017), 2135–2145. doi: 10.1007/s10231-017-0657-0. doi: 10.1007/s10231-017-0657-0 |
[8] | S. Deshmukh, Geometry of conformal vector fields, Arab. J. Math. Sci., 23 (2017), 44–73. doi: 10.1016/j.ajmsc.2016.09.003. doi: 10.1016/j.ajmsc.2016.09.003 |
[9] | S. Deshmukh, Conformal vector fields and eigenvectors of Laplace operator, Math. Phys. Anal. Geom., 15 (2012), 163–172. doi: 10.1007/s11040-012-9106-x. doi: 10.1007/s11040-012-9106-x |
[10] | S. Deshmukh, Characterizing spheres by conformal vector fields, Ann. Univ. Ferrara, 56 (2010), 231–236. doi: 10.1007/s11565-010-0101-5. doi: 10.1007/s11565-010-0101-5 |
[11] | S. Deshmukh, I. Al-Dayel, D. M. Naik, On an anti-torqued vector field on Riemannian, Mathematics, 9 (2021), 2201. doi: 10.3390/math9182201. doi: 10.3390/math9182201 |
[12] | S. Deshmukh, Jacobi-type vector fields on Ricci solitons, B. Math. Soc. Sci. Math., 55 (2012), 41–50. |
[13] | S. Deshmukh, F. Al-Solamy, Conformal gradient conformal vector fields on a compact Riemannian manifold, Colloq. Math., 112 (2008), 157–161. doi: 10.4064/cm112-1-8. doi: 10.4064/cm112-1-8 |
[14] | S. Deshmukh, F. Al-Solamy, A note on conformal vector fields on a Riemannian manifold, Colloq. Math., 136 (2014), 65–73. doi: 10.4064/cm136-1-7. doi: 10.4064/cm136-1-7 |
[15] | S. Deshmukh, F. Al-Solamy, Conformal vector fields on a Riemannian manifold, Balk. J. Geom. Appl., 19 (2014), 86–93. |
[16] | S. Deshmukh, N. Turki, H. Alodan, On the differential equation governing torqued vector fields on a Riemannian manifold, Symmetry, 12 (2020), 1941. doi: 10.3390/sym12121941. doi: 10.3390/sym12121941 |
[17] | F. Erkekoglu, E. García-Río, D. N. Kupeli, B. Ünal, Characterizing specific Riemannian manifolds by differential equations, Acta Appl. Math., 76 (2003), 195–219. doi: 10.1023/A:1022987819448. doi: 10.1023/A:1022987819448 |
[18] | E. García-Río, D.N. Kupeli, B. Ünal, Some conditions for Riemannian manifolds to be isometric with Euclidean spheres, J. Differ. Equ., 194 (2003), 287–299. |
[19] | C. A. Mantica, L. G. Molinari, U. C. De, A note on generalized Robertson–Walker spacetimes, Int. J. Geom. Methods M., 13 (2016), 1650079. doi: 10.1142/S0219887816500791. doi: 10.1142/S0219887816500791 |
[20] | C. A. Mantica, L. G. Molinari, Generalized Robertson-Walker spacetimes-A survey, Int. J. Geom. Methods M., 14 (2017), 1730001. doi: 10.1142/S021988781730001X. doi: 10.1142/S021988781730001X |
[21] | A. Mihai, I. Mihai, Torse forming vector fields and exterior concurrent vector fields on Riemannian manifolds and applications, J. Geom. Phys., 23 (2013), 200–208. doi: 10.1016/j.geomphys.2013.06.002. doi: 10.1016/j.geomphys.2013.06.002 |
[22] | M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Jpn., 14 (1962), 333–340. doi: 10.2969/jmsj/01430333. doi: 10.2969/jmsj/01430333 |
[23] | M. Obata, Conformal transformations of Riemannian manifolds, J. Differ. Geom., 4 (1970), 311–333. doi: 10.4310/jdg/1214429505. doi: 10.4310/jdg/1214429505 |
[24] | R. Rosca, On Lorentzian manifolds, Atti Accad. Pelorit. Pericolanti Cl. Sci. Fis. Mat. Natur., 69 (1993), 15–30. |
[25] | S. Tanno, Some differential equations on Riemannian manifolds, J. Math. Soc. Jpn., 30 (1978), 509–531. doi: 10.2969/jmsj/03030509. doi: 10.2969/jmsj/03030509 |
[26] | S. Tanno, W. C. Weber, Closed conformal vector fields, J. Differ. Geom., 3 (1969), 361–366. doi: 10.4310/jdg/1214429058. |
[27] | Y. Tashiro, Complete Riemannian manifolds and some vector fields, T. Am. Math. Soc., 117 (1965), 251–275. doi: 10.2307/1994206. doi: 10.2307/1994206 |
[28] | K. Yano, On torse forming direction in a Riemannian space, Proc. Imp. Acad. Tokyo, 20 (1944), 340–345. doi:10.3792/pia/1195572958. doi: 10.3792/pia/1195572958 |