Research article

Torse-forming vector fields on $ m $ -spheres

  • Received: 28 September 2021 Accepted: 11 November 2021 Published: 24 November 2021
  • MSC : 53C25, 83F05

  • A characterization of an $ m $-sphere $ \mathbf{S}^{m}(a) $ is obtained using a non-trivial torse-forming vector field $ \zeta $ on an $ m $-dimensional Riemannian manifold.

    Citation: Amira Ishan, Sharief Deshmukh. Torse-forming vector fields on $ m $ -spheres[J]. AIMS Mathematics, 2022, 7(2): 3056-3066. doi: 10.3934/math.2022169

    Related Papers:

  • A characterization of an $ m $-sphere $ \mathbf{S}^{m}(a) $ is obtained using a non-trivial torse-forming vector field $ \zeta $ on an $ m $-dimensional Riemannian manifold.



    加载中


    [1] I. Al-Dayel, S. Deshmukh, O. Belova, A remarkable property of concircular vector fields on a Riemannian manifold, Mathematics, 8 (2020), 469. doi: 10.3390/math8040469. doi: 10.3390/math8040469
    [2] A. L. Besse, Einstein manifolds, Springer-Verlag, 1987.
    [3] S. Capozziello, C. A. Mantica, L. G. Molinari, Cosmological perfect fluids in higher-order gravity, Gen. Relativ. Gravit., 52 (2020), 36. doi: 10.1007/s10714-020-02690-2. doi: 10.1007/s10714-020-02690-2
    [4] M. C. Chaki, R. K. Maity, On quasi Einstein manifolds, Publ. Math. Debrecen, 57 (2000), 297–306.
    [5] B. Y. Chen, A simple characterization of generalized Robertson-Walker spacetimes, Gen. Relativ. Gravit., 46 (2014), 1833. doi: 10.1007/s10714-014-1833-9. doi: 10.1007/s10714-014-1833-9
    [6] B. Y. Chen, Rectifying submanifolds of Riemannian manifolds and torqued vector fields, Kragujev. J. Math., 41 (2017), 93–103. doi: 10.5937/KgJMath1701093C. doi: 10.5937/KgJMath1701093C
    [7] S. Deshmukh, Characterizing spheres and Euclidean spaces by conformal vector fields, Ann. Mat. Pur. Appl., 196 (2017), 2135–2145. doi: 10.1007/s10231-017-0657-0. doi: 10.1007/s10231-017-0657-0
    [8] S. Deshmukh, Geometry of conformal vector fields, Arab. J. Math. Sci., 23 (2017), 44–73. doi: 10.1016/j.ajmsc.2016.09.003. doi: 10.1016/j.ajmsc.2016.09.003
    [9] S. Deshmukh, Conformal vector fields and eigenvectors of Laplace operator, Math. Phys. Anal. Geom., 15 (2012), 163–172. doi: 10.1007/s11040-012-9106-x. doi: 10.1007/s11040-012-9106-x
    [10] S. Deshmukh, Characterizing spheres by conformal vector fields, Ann. Univ. Ferrara, 56 (2010), 231–236. doi: 10.1007/s11565-010-0101-5. doi: 10.1007/s11565-010-0101-5
    [11] S. Deshmukh, I. Al-Dayel, D. M. Naik, On an anti-torqued vector field on Riemannian, Mathematics, 9 (2021), 2201. doi: 10.3390/math9182201. doi: 10.3390/math9182201
    [12] S. Deshmukh, Jacobi-type vector fields on Ricci solitons, B. Math. Soc. Sci. Math., 55 (2012), 41–50.
    [13] S. Deshmukh, F. Al-Solamy, Conformal gradient conformal vector fields on a compact Riemannian manifold, Colloq. Math., 112 (2008), 157–161. doi: 10.4064/cm112-1-8. doi: 10.4064/cm112-1-8
    [14] S. Deshmukh, F. Al-Solamy, A note on conformal vector fields on a Riemannian manifold, Colloq. Math., 136 (2014), 65–73. doi: 10.4064/cm136-1-7. doi: 10.4064/cm136-1-7
    [15] S. Deshmukh, F. Al-Solamy, Conformal vector fields on a Riemannian manifold, Balk. J. Geom. Appl., 19 (2014), 86–93.
    [16] S. Deshmukh, N. Turki, H. Alodan, On the differential equation governing torqued vector fields on a Riemannian manifold, Symmetry, 12 (2020), 1941. doi: 10.3390/sym12121941. doi: 10.3390/sym12121941
    [17] F. Erkekoglu, E. García-Río, D. N. Kupeli, B. Ünal, Characterizing specific Riemannian manifolds by differential equations, Acta Appl. Math., 76 (2003), 195–219. doi: 10.1023/A:1022987819448. doi: 10.1023/A:1022987819448
    [18] E. García-Río, D.N. Kupeli, B. Ünal, Some conditions for Riemannian manifolds to be isometric with Euclidean spheres, J. Differ. Equ., 194 (2003), 287–299.
    [19] C. A. Mantica, L. G. Molinari, U. C. De, A note on generalized Robertson–Walker spacetimes, Int. J. Geom. Methods M., 13 (2016), 1650079. doi: 10.1142/S0219887816500791. doi: 10.1142/S0219887816500791
    [20] C. A. Mantica, L. G. Molinari, Generalized Robertson-Walker spacetimes-A survey, Int. J. Geom. Methods M., 14 (2017), 1730001. doi: 10.1142/S021988781730001X. doi: 10.1142/S021988781730001X
    [21] A. Mihai, I. Mihai, Torse forming vector fields and exterior concurrent vector fields on Riemannian manifolds and applications, J. Geom. Phys., 23 (2013), 200–208. doi: 10.1016/j.geomphys.2013.06.002. doi: 10.1016/j.geomphys.2013.06.002
    [22] M. Obata, Certain conditions for a Riemannian manifold to be isometric with a sphere, J. Math. Soc. Jpn., 14 (1962), 333–340. doi: 10.2969/jmsj/01430333. doi: 10.2969/jmsj/01430333
    [23] M. Obata, Conformal transformations of Riemannian manifolds, J. Differ. Geom., 4 (1970), 311–333. doi: 10.4310/jdg/1214429505. doi: 10.4310/jdg/1214429505
    [24] R. Rosca, On Lorentzian manifolds, Atti Accad. Pelorit. Pericolanti Cl. Sci. Fis. Mat. Natur., 69 (1993), 15–30.
    [25] S. Tanno, Some differential equations on Riemannian manifolds, J. Math. Soc. Jpn., 30 (1978), 509–531. doi: 10.2969/jmsj/03030509. doi: 10.2969/jmsj/03030509
    [26] S. Tanno, W. C. Weber, Closed conformal vector fields, J. Differ. Geom., 3 (1969), 361–366. doi: 10.4310/jdg/1214429058.
    [27] Y. Tashiro, Complete Riemannian manifolds and some vector fields, T. Am. Math. Soc., 117 (1965), 251–275. doi: 10.2307/1994206. doi: 10.2307/1994206
    [28] K. Yano, On torse forming direction in a Riemannian space, Proc. Imp. Acad. Tokyo, 20 (1944), 340–345. doi:10.3792/pia/1195572958. doi: 10.3792/pia/1195572958
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1509) PDF downloads(63) Cited by(1)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog