Processing math: 19%
Research article

Jordan semi-triple derivations and Jordan centralizers on generalized quaternion algebras

  • Received: 05 August 2022 Revised: 11 December 2022 Accepted: 12 December 2022 Published: 29 December 2022
  • MSC : 46K15, 47B49

  • In this paper, we investigate Jordan semi-triple derivations and Jordan centralizers on generalized quaternion algebras over the field of real numbers. We prove that every Jordan semi-triple derivation on generalized quaternion algebras over the field of real numbers is a derivation. Also, we show that every left (resp, right) Jordan centralizer on generalized quaternion algebras over the field of real numbers is a left (resp, right) centralizer.

    Citation: Ai-qun Ma, Lin Chen, Zijie Qin. Jordan semi-triple derivations and Jordan centralizers on generalized quaternion algebras[J]. AIMS Mathematics, 2023, 8(3): 6026-6035. doi: 10.3934/math.2023304

    Related Papers:

    [1] Abdelatif Boutiara, Mohammed S. Abdo, Manar A. Alqudah, Thabet Abdeljawad . On a class of Langevin equations in the frame of Caputo function-dependent-kernel fractional derivatives with antiperiodic boundary conditions. AIMS Mathematics, 2021, 6(6): 5518-5534. doi: 10.3934/math.2021327
    [2] Songkran Pleumpreedaporn, Chanidaporn Pleumpreedaporn, Weerawat Sudsutad, Jutarat Kongson, Chatthai Thaiprayoon, Jehad Alzabut . On a novel impulsive boundary value pantograph problem under Caputo proportional fractional derivative operator with respect to another function. AIMS Mathematics, 2022, 7(5): 7817-7846. doi: 10.3934/math.2022438
    [3] Chutarat Treanbucha, Weerawat Sudsutad . Stability analysis of boundary value problems for Caputo proportional fractional derivative of a function with respect to another function via impulsive Langevin equation. AIMS Mathematics, 2021, 6(7): 6647-6686. doi: 10.3934/math.2021391
    [4] Bounmy Khaminsou, Weerawat Sudsutad, Jutarat Kongson, Somsiri Nontasawatsri, Adirek Vajrapatkul, Chatthai Thaiprayoon . Investigation of Caputo proportional fractional integro-differential equation with mixed nonlocal conditions with respect to another function. AIMS Mathematics, 2022, 7(6): 9549-9576. doi: 10.3934/math.2022531
    [5] Zaid Laadjal, Fahd Jarad . Existence, uniqueness and stability of solutions for generalized proportional fractional hybrid integro-differential equations with Dirichlet boundary conditions. AIMS Mathematics, 2023, 8(1): 1172-1194. doi: 10.3934/math.2023059
    [6] Ishfaq Mallah, Idris Ahmed, Ali Akgul, Fahd Jarad, Subhash Alha . On $ \psi $-Hilfer generalized proportional fractional operators. AIMS Mathematics, 2022, 7(1): 82-103. doi: 10.3934/math.2022005
    [7] Iyad Suwan, Mohammed S. Abdo, Thabet Abdeljawad, Mohammed M. Matar, Abdellatif Boutiara, Mohammed A. Almalahi . Existence theorems for $ \Psi $-fractional hybrid systems with periodic boundary conditions. AIMS Mathematics, 2022, 7(1): 171-186. doi: 10.3934/math.2022010
    [8] Zohreh Heydarpour, Maryam Naderi Parizi, Rahimeh Ghorbnian, Mehran Ghaderi, Shahram Rezapour, Amir Mosavi . A study on a special case of the Sturm-Liouville equation using the Mittag-Leffler function and a new type of contraction. AIMS Mathematics, 2022, 7(10): 18253-18279. doi: 10.3934/math.20221004
    [9] Iman Ben Othmane, Lamine Nisse, Thabet Abdeljawad . On Cauchy-type problems with weighted R-L fractional derivatives of a function with respect to another function and comparison theorems. AIMS Mathematics, 2024, 9(6): 14106-14129. doi: 10.3934/math.2024686
    [10] Yitao Yang, Dehong Ji . Properties of positive solutions for a fractional boundary value problem involving fractional derivative with respect to another function. AIMS Mathematics, 2020, 5(6): 7359-7371. doi: 10.3934/math.2020471
  • In this paper, we investigate Jordan semi-triple derivations and Jordan centralizers on generalized quaternion algebras over the field of real numbers. We prove that every Jordan semi-triple derivation on generalized quaternion algebras over the field of real numbers is a derivation. Also, we show that every left (resp, right) Jordan centralizer on generalized quaternion algebras over the field of real numbers is a left (resp, right) centralizer.



    Abbreviation: CIF: complex intuitionistic fuzzy, CCIFWA: confidence complex intuitionistic fuzzy weighted averaging, CCIFOWA: confidence complex intuitionistic fuzzy ordered weighted averaging, CCIFWG: confidence complex intuitionistic fuzzy weighted geometric, CCIFOWG: confidence complex intuitionistic fuzzy ordered weighted geometric, CCIFEWA: confidence complex intuitionistic fuzzy Einstein weighted averaging, CCIFEOWA: confidence complex intuitionistic fuzzy Einstein ordered weighted averaging, CCIFEWG: confidence complex intuitionistic fuzzy Einstein weighted geometric, CCIFEOWG: confidence complex intuitionistic fuzzy Einstein ordered weighted geometric, MADM: Multi-attribute decision-making, FS: fuzzy sets, IFS: intuitionistic fuzzy sets, CFS: complex fuzzy sets, CIFS: complex intuitionistic fuzzy sets.

    A strategic decision-making tool is one of the dominant and valuable techniques in computer science, business administration, and enterprises and is especially used in the selection of different products in markets. One thing is clear, every attribute is played a very important and many different roles in the decision-making process. These different fluctuating roles are typically shown at distinct attribute weights in the MADM technique. But because of ambiguity and uncertainty in genuine life, experts may provide their decision based on the ambiguity and uncertainty. Thus, the always expert obtain the grade of hesitancy among attributes and decision-making, and hence, the expert obtained result based on the above-cited analysis is not beneficial and hence not suitable, considered the best decision. But Zadeh [1] evaluated the above problematic situation by introducing the theory of FS in 1965, represented as a whole and completed structure for evaluating awkward and unreliable information. The main and original form of FS was evaluated with the grade of supporting whose value is contained in the unit interval [0, 1]. Further, aggregating and finding the distance among any number of attributes is a very challenging task for everyone, due to problematic scenarios, certain attentions are available in the form of utilization of FS in different fields [2,3,4]. After some time of the investigation of FS, certain people have taken about the range of the FS, because it contained only the supporting grade, but ignoring the falsity/supporting against grade and due to these reasons, many scholars have faced a lot of ambiguity during decision-making procedures. Therefore, Atanassov [5] utilized the support against grade in the field of FS by introducing the theory of IFS. The mathematical shape of the supporting grade is stated by: μ(y) and the mathematical shape of the supporting against grade is expressed by: (y) with a rule:

    0μ(y)+(y)1.

    Noticed that the theory of FS is the particular case of the IFS, because by using the value of (y)=0, then we obtained the theory of FS from the theory of IFS. Further, aggregating and finding the distance among any number of attributes is a very challenging task for everyone, due to problematic scenario, certain attentions are available in the form of utilization of IFS in different fields, for instance, variable weighted-based hybrid approach for interval-valued IFS was derived by Liu et al. [6], Thao [7] discovered the entropies and divergence measures under the consideration of Archimedean norms for IFS, Gohain et al. [8] evaluated the distance and similarity information for IFSs, Garg and Rani [9] discovered the similarity measures for IFS, Hayat et al. [10] determined the new aggregation operators for depicting the collection of information into a one set under the consideration of IFS, Ecer and Pamucar [11] examined the MARCOS technique under the presence of IFSs, distance-based knowledge measures for IFS was derived by Wu et al. [12], Augustine [13] discovered the correlation co-efficient under the consideration of IFS, Yang and Yao [14] evaluated the three-ways construction for IFS and their application in decision-making theory, Mahmood et al. [15] derived the power aggregation operators for improved intuitionistic hesitant fuzzy information, Ocampo et al. [16] presented the TOPSIS method under the presence of the IFSs, Dymova et al. [17] evaluated the TOPSIS technique under the consideration of IFSs, and Alcantud et al. [18] formulated the aggregation of finite chain under the presence of temporal IFSs.

    We analyzed that the information available in the above paragraph has very limited application in genuine life because the prevailing information is computed based on FS and IFS which deal with one-dimension information at a time and due to these reasons, it is possible experts have lost a lot of information. Instead of FS and IFS, we have needed such sort of technique which will be perfect and deal with two-dimension information. After some efforts, Ramot et al. [19] find the solution to the above problem by introducing the novel theory of CFS by including the periodic term in the supporting grade, called phase term which plays a very effective and valuable role during the decision-making procedure. Further, aggregating and finding the distance among any number of attributes is a very challenging task for everyone, due to problematic scenarios, certain attentions are available in the form of utilization of CFS in different fields, for instance, Liu et al. [20] examined the distance and cross-entropy measures for CFSs, Al-Qudah and Hassan [21] derived various operations under the presence of complex multi-fuzzy sets, Alkouri and Salleh [22] evaluated the linguistic variables based on CFS and their application, and finally, Li and Chiang [23] discovered the complex neuro-fuzzy information under the presence of CFSs. After some time of the investigation of CFS, certain people have taken about the range of the CFS, because it contained only the supporting grade in the shape of complex-valued but ignoring the falsity/supporting against grade and due to these reasons, many scholars have faced a lot of ambiguity during decision-making procedures. Therefore, Alkouri and Salleh [24] utilized the complex-valued support against grade in the field of CFS by introducing the theory of CIFS. The mathematical shape of the supporting grade is stated by:

    μ(y)=μR(y)ei2πωRμ(y)

    and the mathematical shape of supporting against grade is expressed by:

    (y)=R(y)ei2πωR(y)

    with a rule:

    0μR(y)+R(y)1,0ωRμ(y)+ωR(y)1.

    Noticed that the theory of CFS is the particular case of the CIFS, because by using the value of (y)=0, then we obtained the theory of CFS from the theory of CIFS. Further, aggregating and finding the distance among any number of attributes is a very challenging task for everyone, due to problematic scenarios, certain attentions are available in the form of utilization of CIFS in different fields, for instance, Garg and Rani [25] examined the new aggregation operators under the consideration of CIFS, Garg and Rani [26] derived the robust aggregation information for CIFSs, Garg and Rani [27] discovered the generalized geometric aggregation information under the presence of CIFS, and Ali et al. [28] derived the theory prioritized aggregation operators for complex intuitionistic fuzzy soft information and their application in decision-making. Many individuals have combined different types of structures for evaluating the collection of information into a singleton set. But it is also a very complicated and unreliable task for all researchers is how to combine three or more different structures under the consideration of CIFS. The confidence level is also played a very valuable and dominant role in many awkward and complicated satiations. Here, we have two challenges:

    (ⅰ) How to utilize the theory of confidence level in the environment of aggregation operators for algebraic t-norm and t-conorm under the CIFS.

    (ⅱ) How to utilize the theory of confidence level in the environment of aggregation operators for Einstein t-norm and t-conorm based on CIFS.

    The main benefits and advantages of the presented information are stated below:

    (ⅰ) By removing the phase information from the derived work, then the derived work will be changed for simple IFSs.

    (ⅱ) By removing the phase information and imaginary part from the derived work, then the derived work will be changed for simple FSs.

    (ⅲ) By removing the confidence level from the derived work, then the derived work will be changed for simple aggregation operators under the consideration of algebraic and Einstein t-norm and t-conorm for CIFSs.

    (ⅳ) By removing the confidence level and non-membership grade from the derived work, then the derived work will be changed for simple aggregation operators under the consideration of algebraic and Einstein t-norm and t-conorm for CFSs.

    (ⅴ) By removing the algebraic t-norm and t-conorm from the derived work, then the derived work will be changed for Einstein aggregation operators under the consideration of Einstein t-norm and t-conorm for CIFSs.

    (ⅵ) By removing the Einstein t-norm and t-conorm from the derived work, then the derived work will be changed for simple aggregation operators under the consideration of Algebraic t-norm and t-conorm for CIFSs.

    (ⅶ) By removing the algebraic t-norm and t-conorm and non-membership grade from the derived work, then the derived work will be changed for Einstein aggregation operators under the consideration of Einstein t-norm and t-conorm for CFSs.

    (ⅷ) By removing the Einstein t-norm and t-conorm and non-membership grade from the derived work, then the derived work will be changed for simple aggregation operators under the consideration of Algebraic t-norm and t-conorm for CFSs.

    Further, from the presented information, we can easily describe the simple form of averaging/geometric aggregation operators under the consideration of CIFS. The derived approaches based on CIFS are very famous and valuable compared to existing theories. Under the consideration or presence of the above brief evaluation, our main contribution is listed below:

    (ⅰ) To derive the theory of CCIFWA, CCIFOWA, CCIFWG, and CCIFOWG operators under the consideration of CIFSs.

    (ⅱ) To describe the properties of the presented operators such as idempotency, monotonicity, and boundedness.

    (ⅲ) To discover the theory of CCIFEWA, CCIFEOWA, CCIFEWG, and CCIFEOWG operators under the consideration of CIFSs.

    (ⅳ) To describe the properties of the presented operators such as idempotency, monotonicity, and boundedness.

    (ⅴ) To demonstrate a valuable and dominant theory of MADM under the presence of invented operators.

    (ⅵ) To compare the derived work with various existing works is to show the stability and worth of the presented approach with the help of some suitable examples.

    The main evaluation of this theory is available in the shape: In Section 2, we use the idea of CIFS and their laws for diagnosing a new work in the next section. In Section 3, we diagnosed the CCIFWA, CCIFOWA, CCIFWG, and CCIFOWG operators and explained their valuable properties "idempotency, monotonicity and boundedness" and results. Further, we modified the presented operators by taking Einstein t-norm and t-conorm instead of simple algebraic t-norm and t-conorm. In Section 4, we diagnosed certain Einstein operational laws with the help of CIF information and then we exposed the theory of CCIFEWA, CCIFEOWA, CCIFEWG, and CCIFEOWG operators and explained their valuable properties "idempotency, monotonicity, and boundedness" and results. In Section 5, we illustrated a MADM tool based on invented operators to present the rationality and worth of the diagnosed approaches. The illustrated ranking results are also compared with the existing operators. The conclusion of this theory is available in Section 6.

    In this analysis, we use the idea of CIFS and its laws for diagnosing a new work in the next section.

    Definition 1: [24] A CIFS Œ on Y is defined as:

    Œ={(y,μ(y),(y))|yY}. (1)

    Where the truth grade is expressed by:

    μ(y)=μR(y)ei2πωRμ(y)

    and falsity grade is represented by: (y)=R(y)ei2πωR(y) with 0μR(y)+R(y)1,0ωRμ(y)+ωR(y)1 and i=1. A pair ((μR,ωRμ),(R,ωR)) is called a CIF number (CIFN).

    Definition 2: [24] Consider three CIFNs

    c1=((μR1,ωRμ1),(R1,ωR1)),
    c2=((μR2,ωRμ2),(R2,ωR2)),

    and

    c=((μR,ωRμ),(R,ωR)),

    then

    c1c2=((μR1+μR2μR1μR2)ei2π(ωRμ1+ωRμ2ωRμ1ωRμ2),R1R2ei2π(ωR1ωR2)), (2)
    c1c2=(μR1μR2ei2π(ωRμ1ωRμ2),(R1+R2R1R2)ei2π(ωR1+ωR2ωR1ωR2)), (3)
    τc=((1(1μR)τ)ei2π(1(1ωRμ)τ),Rτei2π(ωRτ)), (4)
    cτ=(μRτei2π(ωRμτ),(1(1R)τ)ei2π(1(1ωRτ)), (5)

    Definition 3: [24] The score function of CIFN c=((μR,ωRμ),(R,ωR)) is defined as:

    S(c)=μRR+ωRμωR. (6)

    And accuracy function of CIFN c=((μR,ωRμ),(R,ωR)) is defined as:

    H(c)=μR+R+ωRμ+ωR. (7)

    Suppose

    c1=((μR1,ωRμ1),(R1,ωR1)),
    c2=((μR2,ωRμ2),(R2,ωR2)),

    are two CIFNs, then if S(c1)<S(c2) then c1<c2 that is c1 is smaller than c2. If S(c1)=S(c2) then if H(c1)<H(c2) then c1<c2 that is c1 is smaller than c2, if H(c1)=H(c2) then c1=c2 that is c1 and c2 represent the same information.

    The primary influence of the current analysis is to diagnose the CCIFWA, CCIFOWA, CCIFWG, and CCIFOWG operators and explained their valuable properties "idempotency, monotonicity and boundedness" and results. Consider a collection (c1,c2,,cn) of CIFNs and kj be the confidence levels of CIFN cj and 0kj1, w=(w1,w2,...,wn) be a weight vector such that wj [0, 1] and nj=1wj=1

    Definition 4: The CCIFWA operator is defined as:

    CCIFWA(<k1,c1>,<k2,c2>,,<kn,cn>)=nj=1wj(kjcj)=w1(k1c1)w2(k2c2)wn(kncn). (8)

    If

    k1=k2=...=kn=1,

    then the CCIFWA operator reduces to CIF weighted averaging (CIFWA) operator.

    CIFWA(c1,c2,,cn)=nj=1wjcj=w1c1w2c2wncn. (9)

    Theorem 1: The aggregated value by using the CCIFWA operator is also a CIFN, such that

    CCIFWA(<k1,c1>,<k2,c2>,,<kn,cn>)=
    ((1nj=1(1μRj)kj×wj)ei2π(1nj=1(1ωRμj)kj×wj),nj=1(Rj)kj×wjei2πnj=1(ωRj)kj×wj). (10)

    Proof: Let

    CCIFWA(<k1,c1>,<k2,c2>,,<kn,cn>)=nj=1wj(kjcj)=w1(k1c1)w2(k2c2)wn(kncn)
    =((1nj=1(1μRj)kj×wj)ei2π(1nj=1(1ωRμj)kj×wj),nj=1(Rj)kj×wjei2πnj=1(ωRj)kj×wj).

    We use mathematical induction (MI) to prove Eq (10), such that for n=2, then

    w1(k1c1)=(1(1μR1)w1k1ei2π(1(1ωRμ1)w1k1,R1k1w1ei2πωR1k1w1),
    w2(k2c2)=(1(1μR2)w2k2ei2π(1(1ωRμ2)w2k2,R2k2w2ei2πωR2k2w2),

    then,

    CCIFWA(<k1,c1>,<k2,c2>)=(w1k1)c1(w2k2)c2=((1(1μR1)w1k1ei2π[1(1ωRμ1)w1k1],R1k1w1ei2πωR1k1w1)((1(1μR2)w2k2ei2π[1(1ωRμ2)w2k2],R2k2w2ei2πωR2k2w2)
    =(1(1μR1)w1k1(1μR2)w2k2ei2π[1(1ωRμ1)w1k1(1ωRμ2)w2k2],R1k1w1R2k2w2ei2πωR1k1w1ωR2k2w2)
    =((12j=1(1μRj)kj×wj)ei2π[12j=1(1ωRμj)kj×wj],2j=1(Rj)kj×wjei2π2j=1(ωRj)kj×wj).

    Suppose Eq (10) is true for n=m, that is

    CCIFWA(<k1,c1>,<k2,c2>,,<km,cm>)=w1(k1c1)w2(k2c2)wm(kmcm)
    =((1mj=1(1μRj)kj×wj)ei2π[1mj=1(1ωRμj)kj×wj],mj=1(Rj)kj×wjei2πmj=1(ωRj)kj×wj).

    For n=m+1, we have

    CCIFWA(<k1,c1>,<k2,c2>,,<km,cm>,<km+1,cm+1>)
    =w1(k1c1)w2(k2c2)wm(kmcm)wm+1(km+1cm+1)
    =((1mj=1(1μRj)kjwj)ei2π[1mj=1(1ωRμj)kjwj],mj=1(Rj)kjwjei2πmj=1(ωRj)kjwj)wm+1(km+1cm+1)
    =((1mj=1(1μRj)kjwj)ei2π[1mj=1(1ωRμj)kjwj],mj=1(Rj)kjwjei2πmj=1(ωRj)kjwj)(1(1μRm+1)wm+1kk+1ei2π[1(1ωRμm+1)wm+1kk+1],Rm+1km+1wm+1ei2πωRm+1km+1wm+1)
    =((1mj=1(1μRj)kjwj)+(1(1μRm+1)wm+1km+1)(1mj=1(1μRj)kjwj)(1(1μRm+1)wm+1kk+1),mj=1(Rj)kjwjRm+1km+1wm+1ei2π[mj=1(ωRj)kjwjωRm+1km+1wm+1])
    =(1m+1j=1(1μRj)kjwjei2π[1m+1j=1(1ωRμj)kjwj],m+1j=1(Rj)kjwjei2πm+1j=1(ωRj)kjwj).

    This shows that Eq (10) is true for n=m+1, so, Eq (10) is true for all n.

    Here, we try to verify the proposed work in Eq (10) with the help of some suitable examples, for this, we use CIFN such as:

    c1={(y1((0.6,0.7),(0.1,0.2))),(y2((0.61,0.71),(0.11,0.21))),(y3((0.62,0.72),(0.12,0.22))),(y4,((0.63,0.73),(0.13,0.23))),},

    with weight vectors 0.4, 0.3, 0.2, 0.1 and confidence levels 0.8, 0.9, 0.7, 0.6, then by using the theory in equation (10), we have

    CCIFWA(<k1,c1>,<k2,c2>,<k3,c3>,<k4,c4>)=
    ((14j=1(1μRj)kj×wj)ei2π(14j=1(1ωRμj)kj×wj),4j=1(Rj)kj×wjei2π4j=1(ωRj)kj×wj)
    =((0.5241,0.6232),(0.1734,0.2903)).

    Definition 5: The CCIFWG operator is defined as:

    CCIFWG(<k1,c1>,<k2,c2>,,<kn,cn>)=nj=1(cjkj)wj=(c1k1)w1(c2k2)w2(cnkn)wn. (11)

    If

    k1=k2=...=kn=1,

    then the CCIFWG operator reduces to CIF weighted geometric (CIFWG) operator.

    CIFWG(c1,c2,,cn)=nj=1cjwj=c1w1c2w2...cnwn. (12)

    Theorem 2: The aggregated value by using the CCIFWG operator is also a CIFN, such that

    CCIFWG(<k1,c1>,<k2,c2>,,<kn,cn>)
    =(nj=1(μRj)kj×wjei2πnj=1(ωRμj)kj×wj,(1nj=1(1Rj)kj×wj)ei2π[1nj=1(1ωRj)kj×wj],). (13)

    Proof: Let

    CCIFWG(<k1,c1>,<k2,c2>,,<kn,cn>)=(c1k1)w1(c2k2)w2(cnkn)wn
    =(nj=1(μRj)kj×wjei2π(nj=1(ωRμj)kj×wj,(1nj=1(1Rj)kj×wj)ei2π[1nj=1(1ωRj)kj×wj]).

    We use MI to prove Eq (13), such that for n = 2, then

    c1w1k1=((μR1)w1k1ei2π(ωRμ1)w1k1,1(1R1)k1w1ei2π[1(1ωR1)k1w1]),
    c2w2k2=((μR2)w2k2ei2π(ωRμ2)w2k2,1(1R2)k2w2ei2π[1(1ωR2)k2w2]).

    So,

    CCIFWG(<k1,c1>,<k2,c2>)=c1k1w1c2k2w2=((μR1)w1k1ei2π(ωRμ1)w1k1,1(1R1)k1w1ei2π[1(1ωR1)k1w1])((μR2)w2k2ei2π(ωRμ2)w2k2,1(1R2)k2w2ei2π[1(1ωR2)k2w2])
    =((μR1)w1k1(μR2)w2k1ei2π(ωRμ1)w1k1(ωRμ2)w2k2,1(1R1)k1w1(1R2)k2w2ei2π[1(1ωR1)k1w1](1ωR2)k2w2)
    =(2j=1(μRj)kjwjei2π2j=1(ωRμj)kjwj,(12j=1(1Rj)kjwj)ei2π[12j=1(1ωRj)kjwj]).

    Suppose Eq (13) is true for n=m, that is,

    CCIFWG(<k1,c1>,<k2,c2>,,<km,cm>)=c1k1w1c2k2w2cmkmwm
    =(mj=1(μRj)kj×wjei2πmj=1(ωRμj)kj×wj,(1mj=1(1Rj)kj×wj)ei2π[1mj=1(1ωRj)kj×wj]).

    For n=m+1, we have

    CCIFWG(<k1,c1>,<k2,c2>,,<km,cm>,<km+1,cm+1>)=c1k1w1c2k2w2cmkmwmcm+1km+1wm+1
    =(mj=1(μRj)kj×wjei2πmj=1(ωRμj)kj×wj,(1mj=1(1Rj)kj×wj)ei2π[1mj=1(1ωRj)kj×wj])cm+1km+1wm+1
    =(mj=1(μRj)kj×wjei2πmj=1(ωRμj)kj×wj,(1mj=1(1Rj)kj×wj)ei2π[1mj=1(1ωRj)kj×wj])
    ((μRm+1)wm+1km+1ei2π(ωRμm+1)wm+1km+1,1(1Rm+1)km+1wm+1ei2π[1(1ωRm+1)km+1wm+1])
    =((m+1j=1(μRj)kj×wj)ei2π[m+1j=1(ωRμj)kj×wj],(1m+1j=1(1Rj)kj×wj)ei2π[1m+1j=1(1ωRj)kj×wj])

    This shows that Eq (13) is true for n=m+1, so, Eq (13) is true for all n.

    Here, we try to verify the proposed work in Eq (13) with the help of some suitable examples, for this, we use CIFN such as:

    c1={(y1,((0.6,0.7),(0.1,0.2))),(y2,((0.61,0.71),(0.11,0.21))),(y3,((0.62,0.72),(0.12,0.22))),(y4,((0.63,0.73),(0.13,0.23))),},

    with weight vectors 0.4, 0.3, 0.2, 0.1 and confidence levels 0.8, 0.9, 0.7, 0.6, then by using the theory in Eq (10), we have

    CCIFWG(<k1,c1>,<k2,c2>,<k3,c3>,<k4,c4>)=
    ((4j=1(μRj)kj×wj)ei2π[4j=1(ωRμj)kj×wj],(14j=1(1Rj)kj×wj)ei2π[14j=1(1ωRj)kj×wj])
    =((0.6759,0.7622),(0.0873,0.1693)).

    Then CCIFWA and CCIFWG operators have the following properties:

    (ⅰ) (Monotonicity) if μRjμ,Rj, ωRμjω'Rμj and Rj'Rj, ωRjω'Rj for all j, then

    CCIFWA(<k1,c1>,<k2,c2>,,<kn,cn>)CCIFWA(<k1,c'1>,<k2,c'2>,,<kn,c'n>), (14)
    CCIFWG(<k1,c1>,<k2,c2>,,<kn,cn>)CCIFWG(<k1,c'1>,<k2,c'2>,,<kn,c'n>), (15)

    (ⅱ) (Idempotency) If c=((μR,ωRμ),(R,ωR)) be a CIFN, μRj=μR,ωRμj=ωRμ, Rj=RandωRj=ωR for all j, then

    CCIFWA(<k1,c1>,<k2,c2>,,<kn,cn>)=kc, (16)

    and

    CCIFWG(<k1,c1>,<k2,c2>,,<kn,cn>)=ck. (17)

    (ⅲ) (Boundedness) Prove that

    min1j1(kjcj)CCIFWA(<k1,c1>,<k2,c2>,,<kn,cn>)max1j1(kjcj), (18)
    min1j1(cjkj)CCIFWG(<k1,c1>,<k2,c2>,,<kn,cn>)max1j1(cjkj). (19)

    Definition 6: The CCIFOWA operator is defined as:

    CCIFOWA(<k1,c1>,<k2,c2>,,<kn,cn>)=nj=1wj(kδ(j)cδ(j))
    =w1(kδ(1)cδ(1))w2(kδ(2)cδ(2))wn(kδ(n)cδ(n)). (20)

    If

    k1=k2=...=kn=1,

    then the CCIFOWA operator reduces to CIF ordered weighted averaging (CIFOWA) operator.

    CIFOWA(c1,c2,,cn)=nj=1wjcδ(j)=w1cδ(1)w2cδ(2)wncδ(n). (21)

    Definition 7: The CCIFOWG operator is defined as:

    CCIFOWG(<k1,c1>,<k2,c2>,,<kn,cn>)=nj=1(cδ(j)kδ(j))wj
    =(cδ(1)kδ(1))w1(cδ(2)kδ(2))w2(cδ(n)kδ(n))wn. (22)

    If

    k1=k2=...=kn=1,

    then the CCIFOWG operator reduces to CIF weighted ordered geometric (CIFOWG) operator.

    CIFOWG(c1,c2,,cn)=nj=1cδ(j)wj=cδ(1)w1cδ(2)w2...cδ(n)wn. (23)

    Theorem 3: The aggregated value by using the CCIFOWA operator is also a CIFN, such that

    CCIFOWA(<k1,c1>,<k2,c2>,,<kn,cn>)
    =((1nj=1(1μRδ(j))kδ(j)×wj)ei2π1nj=1(1ωRμδ(j))kδ(j)×wj,(nj=1(Rδ(j))kδ(j)×wj)ei2πnj=1(ωRδ(j))kδ(j)×wj,), (24)

    and the aggregated value by using the CCIFOWG operator is also a CIFN, such that

    CCIFOWG(<k1,c1>,<k2,c2>,,<kn,cn>)
    =((nj=1(μRδ(j))kδ(j)×wj)ei2πnj=1(ωRμδ(j))kδ(j)×wj,(1nj=1(1Rδ(j))kδ(j)×wj)ei2π(1nj=1(1ωRδ(j))kδ(j)×wj,). (25)

    The primary influence of the current analysis is to modify the presented operators by taking Einstein t-norm and t-conorm instead of simple algebraic t-norm and t-conorm. Therefore, first, we diagnosed certain Einstein operational laws with the help of CIF information and then we exposed the theory of CCIFEWA, CCIFEOWA, CCIFEWG, and CCIFEOWG operators and explained their valuable properties "idempotency, monotonicity, and boundedness" and results.

    Definition 8: Consider three CIFNs

    c1=((μR1,ωRμ1),(R1,ωR1)),
    c2=((μR2,ωRμ2),(R2,ωR2)).

    and

    c=((μR,ωRμ),(R,ωR)),

    then

    c1c2=(μR1+μR21+μR1μR2ei2π(ωRμ1+ωRμ21+ωRμ1ωRμ2),R1R21+(1R1)(1R2)ei2π(ωR1ωR21+(1ωR1)(1ωR2))), (26)
    c1c2=(μR1μR21+(1μR1)(1μR2)ei2π(ωRμ1ωRμ21+(1ωRμ1)(1ωRμ2)),R1+R21+R1R2ei2π(ωR1+ωR21+ωR1ωR2)), (27)
    τc=((1+μR)τ(1μR)τ(1+μR)τ+(1μR)τei2π((1+ωRμ)τ(1ωRμ)τ(1+ωRμ)τ+(1ωRμ)τ),2Rτ(2R)τ+Rτei2π(2ωRτ(2ωR)τ+ωRτ)), (28)
    cτ=(2μRτ(2μR)τ+μRτei2π(2ωRμτ(2ωRμ)τ+ωRμτ)'(1+R)τ(1R)τ(1+R)τ+(1R)τei2π((1+ωR)τ(1ωRτ(1+ωR)τ+(1ωR)τ)). (29)

    Definition 9: The CCIFEWA operator is defined as:

    CCIFEWA(<k1,c1>,<k2,c2>,,<kn,cn>)=nj=1wj(kjcj)=w1(k1c1)w2(k2c2)wn(kncn). (30)

    If

    k1=k2=...=kn=1,

    then the CCIFEWA operator reduces to CIF weighted averaging (CIFEWA) operator.

    CIFEWA(c1,c2,,cn)=nj=1wjcj=w1c1w2c2wncn. (31)

    Theorem 4: The aggregated value by using the CCIFEWA operator is also a CIFN, such that

    CCIFEWA(<k1,c1>,<k2,c2>,,<kn,cn>)
    =(nj=1(1+μRj)kj×wj(1μRj)kj×wjnj=1(1+μRj)kj×wj+(1μRj)kj×wjei2π[nj=1(1+ωRμj)kj×wj(1ωRμj)kj×wjnj=1(1+ωRμj)kj×wj+(1ωRμj)kj×wj],2nj=1(Rj)kj×wjnj=1(2Rj)kj×wj+nj=1(Rj)kj×wjei2π[2nj=1(ωRj)kj×wjnj=1(2ωRj)kj×wj+nj=1(ωRj)kj×wj],). (32)

    Proof: Let

    CCIFEWA(<k1,c1>,<k2,c2>,,<kn,cn>)=nj=1wj(kjcj)=w1(k1c1)w2(k2c2)wn(kncn)
    =(nj=1(1+μRj)kjwj(1μRj)kjwjnj=1(1+μRj)kjwj+(1μRj)kjwjei2π[nj=1(1+ωRμj)kjwj(1ωRμj)kjwjnj=1(1+ωRμj)kjwj+(1ωRμj)kjwj],2nj=1(Rj)kjwjnj=1(2Rj)kjwj+nj=1(Rj)kjwjei2π[2nj=1(ωRj)kjwjnj=1(2ωRj)kjwj+nj=1(ωRj)kjwj],).

    We use the MI to prove Eq (32), such that for n=2, then

    w1(k1c1)=((1+μR1)w1k1(1μR1)w1k1(1+μR1)w1k1+(1μR1)w1k1ei2π((1+ωRμ1)w1k1(1ωRμ1)w1k1(1+ωRμ1)w1k1+(1ωRμ1)w1k1)2R1w1k1(2R1)w1k1+R1w1k1ei2π(2ωR1w1k1(2ωR1)w1k1+ωR1w1k1)),
    w2(k2c2)=((1+μR2)w2k2(1μR2)w2k2(1+μR2)w2k2+(1μR2)w2k2ei2π((1+ωRμ2)w2k2(1ωRμ2)w2k2(1+ωRμ2)w2k2+(1ωRμ2)w2k2)2R2w2k2(2R2)w2k2+R2w2k2ei2π(2ωR2w2k2(2ωR2)w2k2+ωR2w2k2)).

    then,

    CCIFEWA(<k1,c1>,<k2,c2>)=(w1k1)c1(w2k2)c2
    =((1+μR1)w1k1(1μR1)w1k1(1+μR1)w1k1+(1μR1)w1k1ei2π((1+ωRμ1)w1k1(1ωRμ1)w1k1(1+ωRμ1)w1k1+(1ωRμ1)w1k1)2R1w1k1(2R1)w1k1+R1w1k1ei2π(2ωR1w1k1(2ωR1)w1k1+ωR1w1k1))
    ((1+μR2)w2k2(1μR2)w2k2(1+μR2)w2k2+(1μR2)w2k2ei2π((1+ωRμ2)w2k2(1ωRμ2)w2k2(1+ωRμ2)w2k2+(1ωRμ2)w2k2)2R2w2k2(2R2)w2k2+R2w2k2ei2π(2ωR2w2k2(2ωR2)w2k2+ωR2w2k2))
    =((1+μR1)w1k1(1μR1)w1k1(1+μR1)w1k1+(1μR1)w1k1+(1+μR2)w2k2(1μR2)w2k2(1+μR2)w2k2+(1μR2)w2k21+((1+μR1)w1k1(1μR1)w1k1(1+μR1)w1k1+(1μR1)w1k1)((1+μR2)w2k2(1μR2)w2k2(1+μR2)w2k2+(1μR2)w2k2)ei2π[((1+ωRμ1)w1k1(1ωRμ1)w1k1(1+ωRμ1)w1k1+(1ωRμ1)w1k1)+((1+ωRμ2)w2k2(1ωRμ2)w2k2(1+ωRμ2)w2k2+(1ωRμ2)w2k2)1+((1+ωRμ1)w1k1(1ωRμ1)w1k1(1+ωRμ1)w1k1+(1ωRμ1)w1k1)((1+ωRμ2)w2k2(1ωRμ2)w2k2(1+ωRμ2)w2k2+(1ωRμ2)w2k2)],2R1w1k1(2R1)w1k1+R1w1k12R2w2k2(2R2)w2k2+R2w2k21+(12R1w1k1(2R1)w1k1+R1w1k1)(12R2w2k2(2R2)w2k2+R2w2k2)ei2π[(2ωR1w1k1(2ωR1)w1k1+ωR1w1k1)((2ωR2w2k2(2ωR2)w2k2+ωR2w2k2))1+(12ωR1w1k1(2ωR1)w1k1+ωR1w1k1)(12ωR2w2k2(2ωR2)w2k2+ωR2w2k2)],)
    =(2j=1(1+μRj)kjwj(1μRj)kjwj2j=1(1+μRj)kjwj+(1μRj)kjwjei2π[2j=1(1+ωRμj)kjwj(1ωRμj)kjwj2j=1(1+ωRμj)kjwj+(1ωRμj)kjwj],22j=1(Rj)kjwj2j=1(2Rj)kjwj+nj=1(Rj)kjwjei2π[22j=1(ωRj)kjwj2j=1(2ωRj)kjwj+nj=1(ωRj)kjwj],).

    Suppose Eq (32) is true for n=m, that is

    CCIFEWA(<k1,c1>,<k2,c2>,,<km,cm>)=w1(k1c1)w2(k2c2)wm(kmcm)
    =(mj=1(1+μRj)kjwj(1μRj)kjwjmj=1(1+μRj)kjwj+(1μRj)kjwjei2π[mj=1(1+ωRμj)kjwj(1ωRμj)kjwjmj=1(1+ωRμj)kjwj+(1ωRμj)kjwj],2mj=1(Rj)kjwjmj=1(2Rj)kjwj+mj=1(Rj)kjwjei2π[2mj=1(ωRj)kjwjmj=1(2ωRj)kjwj+mj=1(ωRj)kjwj],).

    For n=m+1, we have

    CCIFEWA(<k1,c1>,<k2,c2>,,<km,cm>,<km+1,cm+1>)=w1(k1c1)w2(k2c2)wm(kmcm)wm+1(km+1cm+1)
    =(mj=1(1+μRj)kjwj(1μRj)kjwjmj=1(1+μRj)kjwj+(1μRj)kjwjei2π[mj=1(1+ωRμj)kjwj(1ωRμj)kjwjmj=1(1+ωRμj)kjwj+(1ωRμj)kjwj],2mj=1(Rj)kjwjmj=1(2Rj)kjwj+mj=1(Rj)kjwjei2π[2mj=1(ωRj)kjwjmj=1(2ωRj)kjwj+mj=1(ωRj)kjwj],)wm+1(km+1cm+1)
    =(m+1j=1(1+μRj)kjwj(1μRj)kjwjm+1j=1(1+μRj)kjwj+(1μRj)kjwjei2π[m+1j=1(1+ωRμj)kjwj(1ωRμj)kjwjm+1j=1(1+ωRμj)kjwj+(1ωRμj)kjwj],2m+1j=1(Rj)kjwjm+1j=1(2Rj)kjwj+m+1j=1(Rj)kjwjei2π[2m+1j=1(ωRj)kjwjm+1j=1(2ωRj)kjwj+m+1j=1(ωRj)kjwj],).

    This shows that Eq (32) is true, for n=m+1, so, Eq (32) is true for all n.

    Definition 10: The CCIFEWG operator is defined as:

    CCIFEWG(<k1,c1>,<k2,c2>,,<kn,cn>)=nj=1(cjkj)wj=(c1k1)w1(c2k2)w2(cnkn)wn. (33)

    If

    k1=k2=...=kn=1,

    then the CCIFWG operator reduces to CIF weighted geometric (CIFEWG) operator.

    CIFEWG(c1,c2,,cn)=nj=1cjwj=c1w1c2w2...cnwn. (34)

    Theorem 5: The aggregated value by using the CCIFEWG operator is also a CIFN, such that

    CCIFEWG(<k1,c1>,<k2,c2>,,<kn,cn>)
    =(2(nj=1(μRj)kjwj)(nj=1(2μRj)kjwj)+(nj=1(μRj)kjwj)ei2π[2nj=1(ωRμj)kjwjnj=1(2ωRμj)kjwj+nj=1(ωRμj)kjwj],nj=1(1+Rj)kjwj(1Rj)kjwjnj=1(1+Rj)kjwj(1Rj)kjwjei2π[nj=1(1+ωRj)kjwj(1ωRj)kjwjnj=1(1+ωRj)kjwj(1ωRj)kjwj],). (35)

    Proof: Let

    CCIFWG(<k1,c1>,<k2,c2>,,<kn,cn>)=(c1k1)w1(c2k2)w2(cnkn)wn=(2(nj=1(μRj)kjwj)(nj=1(2μRj)kjwj)+(nj=1(μRj)kjwj)ei2π[2nj=1(ωRμj)kjwjnj=1(2ωRμj)kjwj+nj=1(ωRμj)kjwj],nj=1(1+Rj)kjwj(1Rj)kjwjnj=1(1+Rj)kjwj(1Rj)kjwjei2π[nj=1(1+ωRj)kjwj(1ωRj)kjwjnj=1(1+ωRj)kjwj(1ωRj)kjwj],).

    We use MI to prove Eq (35), we have for n = 2, then

    c1w1k1=(2(μR1)w1k1(2μR1)w1k1+(μR1)w1k1ei2π(2(ωRμ1)w1k1(2ωRμ1)w1k1+(ωRμ1)w1k1)(1+R1)w1k1(1R1)w1k1(1+R1)w1k1+(1R1)w1k1ei2π((1+ωR1)w1k1(1ωR1)w1k1(1+ωR1)w1k1+(1ωR1)w1k1)),
    c2w2k2=(2(μR2)w2k2(2μR2)w2k2+(μR2)w2k2ei2π(2(ωRμ2)w2k2(2ωRμ2)w2k2+(ωRμ2)w2k2)(1+R2)w2k2(1R2)w2k2(1+R2)w2k2+(1R2)w2k2ei2π((1+ωR2)w2k2(1ωR2)w2k2(1+ωR2)w2k2+(1ωR2)w2k2)).

    then,

    CCIFWG(<k1,c1>,<k2,c2>)=c1k1w1c2k2w2=(2(μR1)w1k1(2μR1)w1k1+(μR1)w1k1ei2π(2(ωRμ1)w1k1(2ωRμ1)w1k1+(ωRμ1)w1k1),(1+R1)w1k1(1R1)w1k1(1+R1)w1k1+(1R1)w1k1ei2π((1+ωR1)w1k1(1ωR1)w1k1(1+ωR1)w1k1+(1ωR1)w1k1),)(2(μR2)w2k2(2μR2)w2k2+(μR2)w2k2ei2π(2(ωRμ2)w2k2(2ωRμ2)w2k2+(ωRμ2)w2k2),(1+R2)w2k2(1R2)w2k2(1+R2)w2k2+(1R2)w2k2ei2π((1+ωR2)w2k2(1ωR2)w2k2(1+ωR2)w2k2+(1ωR2)w2k2),)
    = \;\left(\begin{array}{c}\frac{\;\left(\frac{2{\;\left({\mu }_{1}^{R}\right)\;}^{{w}_{1}{k}_{1}}}{{\;\left(2-{\mu }_{1}^{R}\right)\;}^{{w}_{1}{k}_{1}}+({{\mu }_{1}^{R})}^{{w}_{1}{k}_{1}}}\right)\;\;\left(\frac{2{\;\left({\mu }_{2}^{R}\right)\;}^{{w}_{2}{k}_{2}}}{{\;\left(2-{\mu }_{2}^{R}\right)\;}^{{w}_{2}{k}_{2}}+({{\mu }_{2}^{R})}^{{w}_{2}{k}_{2}}}\right)\;}{1+\;\left(1-\frac{2{\;\left({\mu }_{1}^{R}\right)\;}^{{w}_{1}{k}_{1}}}{{\;\left(2-{\mu }_{1}^{R}\right)\;}^{{w}_{1}{k}_{1}}+({{\mu }_{1}^{R})}^{{w}_{1}{k}_{1}}}\right)\;\;\left(1-\frac{2{\;\left({\mu }_{2}^{R}\right)\;}^{{w}_{2}{k}_{2}}}{{\;\left(2-{\mu }_{2}^{R}\right)\;}^{{w}_{2}{k}_{2}}+({{\mu }_{2}^{R})}^{{w}_{2}{k}_{2}}}\right)\;}\\ {e}^{i2\pi \left[\frac{\;\left(\frac{2{\;\left({\omega }_{{\mu }_{1}}^{R}\right)\;}^{{w}_{1}{k}_{1}}}{{\;\left(2-{\omega }_{{\mu }_{1}}^{R}\right)\;}^{{w}_{1}{k}_{1}}+{\;\left({\omega }_{{\mu }_{1}}^{R}\right)\;}^{{w}_{1}{k}_{1}}}\right)\;\;\left(\frac{2{\;\left({\omega }_{{\mu }_{2}}^{R}\right)\;}^{{w}_{2}{k}_{2}}}{{\;\left(2-{\omega }_{{\mu }_{2}}^{R}\right)\;}^{{w}_{2}{k}_{2}}+{\;\left({\omega }_{{\mu }_{2}}^{R}\right)\;}^{{w}_{2}{k}_{2}}}\right)\;}{1+\;\left(1-\frac{2{\;\left({\omega }_{{\mu }_{1}}^{R}\right)\;}^{{w}_{1}{k}_{1}}}{{\;\left(2-{\omega }_{{\mu }_{1}}^{R}\right)\;}^{{w}_{1}{k}_{1}}+{\;\left({\omega }_{{\mu }_{1}}^{R}\right)\;}^{{w}_{1}{k}_{1}}}\right)\;\;\left(1-\frac{2{\;\left({\omega }_{{\mu }_{2}}^{R}\right)\;}^{{w}_{2}{k}_{2}}}{{\;\left(2-{\omega }_{{\mu }_{2}}^{R}\right)\;}^{{w}_{2}{k}_{2}}+{\;\left({\omega }_{{\mu }_{2}}^{R}\right)\;}^{{w}_{2}{k}_{2}}}\right)\;}\right]},\\ \frac{\frac{{(1+{\aleph }_{1}^{R})}^{{w}_{1}{k}_{1}}-{(1-{\aleph }_{1}^{R})}^{{w}_{1}{k}_{1}}}{{(1+{\aleph }_{1}^{R})}^{{w}_{1}{k}_{1}}+{(1-{\aleph }_{1}^{R})}^{{w}_{1}{k}_{1}}}+\frac{{(1+{\aleph }_{2}^{R})}^{{w}_{2}{k}_{2}}-{(1-{\aleph }_{2}^{R})}^{{w}_{2}{k}_{2}}}{{(1+{\aleph }_{2}^{R})}^{{w}_{2}{k}_{2}}+{(1-{\aleph }_{2}^{R})}^{{w}_{2}{k}_{2}}}}{1+\;\left(\frac{{(1+{\aleph }_{1}^{R})}^{{w}_{1}{k}_{1}}-{(1-{\aleph }_{1}^{R})}^{{w}_{1}{k}_{1}}}{{(1+{\aleph }_{1}^{R})}^{{w}_{1}{k}_{1}}+{(1-{\aleph }_{1}^{R})}^{{w}_{1}{k}_{1}}}\right)\;\;\left(\frac{{(1+{\aleph }_{2}^{R})}^{{w}_{2}{k}_{2}}-{(1-{\aleph }_{2}^{R})}^{{w}_{2}{k}_{2}}}{{(1+{\aleph }_{2}^{R})}^{{w}_{2}{k}_{2}}+{(1-{\aleph }_{2}^{R})}^{{w}_{2}{k}_{2}}}\right)\;}\\ {e}^{i2\pi \left[\frac{\;\left(\frac{{(1+{\omega }_{{\aleph }_{1}}^{R})}^{{w}_{1}{k}_{1}}-{(1-{\omega }_{{\aleph }_{1}}^{R})}^{{w}_{1}{k}_{1}}}{{(1+{\omega }_{{\aleph }_{1}}^{R})}^{{w}_{1}{k}_{1}}+{(1-{\omega }_{{\aleph }_{1}}^{R})}^{{w}_{1}{k}_{1}}}\right)\;+\;\left(\frac{{(1+{\omega }_{{\aleph }_{2}}^{R})}^{{w}_{2}{k}_{2}}-{(1-{\omega }_{{\aleph }_{2}}^{R})}^{{w}_{2}{k}_{2}}}{{(1+{\omega }_{{\aleph }_{2}}^{R})}^{{w}_{2}{k}_{2}}+{(1-{\omega }_{{\aleph }_{2}}^{R})}^{{w}_{2}{k}_{2}}}\right)\;}{1+\;\left(\frac{{(1+{\omega }_{{\aleph }_{1}}^{R})}^{{w}_{1}{k}_{1}}-{(1-{\omega }_{{\aleph }_{1}}^{R})}^{{w}_{1}{k}_{1}}}{{(1+{\omega }_{{\aleph }_{1}}^{R})}^{{w}_{1}{k}_{1}}+{(1-{\omega }_{{\aleph }_{1}}^{R})}^{{w}_{1}{k}_{1}}}\right)\;\;\left(\frac{{(1+{\omega }_{{\aleph }_{2}}^{R})}^{{w}_{2}{k}_{2}}-{(1-{\omega }_{{\aleph }_{2}}^{R})}^{{w}_{2}{k}_{2}}}{{(1+{\omega }_{{\aleph }_{2}}^{R})}^{{w}_{2}{k}_{2}}+{(1-{\omega }_{{\aleph }_{2}}^{R})}^{{w}_{2}{k}_{2}}}\right)\;}\right]},\end{array}\right)\;
    = \;\left(\begin{array}{c}\frac{2{{\prod }_{j = 1}^{2}\;\left({\mu }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}}{\;\left({{\prod }_{j = 1}^{2}\;\left({2-\mu }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}\right)\;+\;\left({{\prod }_{j = 1}^{2}\;\left({\mu }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}\right)\;}{e}^{i2\pi \left[\frac{2{{\prod }_{j = 1}^{2}{(\omega }_{{\mu }_{j}}^{R})}^{{k}_{j}{w}_{j}}}{{{\prod }_{j = 1}^{2}{(2-\omega }_{{\mu }_{j}}^{R})}^{{k}_{j}{w}_{j}}+{{\prod }_{j = 1}^{2}{(\omega }_{{\mu }_{j}}^{R})}^{{k}_{j}{w}_{j}}}\right]},\\ \frac{{{\prod }_{j = 1}^{2}(1+{\aleph }_{j}^{R})}^{{k}_{j}{w}_{j}}-{(1-{\aleph }_{j}^{R})}^{{k}_{j}{w}_{j}}}{{{\prod }_{j = 1}^{2}(1+{\aleph }_{j}^{R})}^{{k}_{j}{w}_{j}}-{(1-{\aleph }_{j}^{R})}^{{k}_{j}{w}_{j}}}{e}^{i2\pi \left[\frac{{{\prod }_{j = 1}^{2}(1+{\omega }_{{\aleph }_{j}}^{R})}^{{k}_{j}{w}_{j}}-{(1-{\omega }_{{\aleph }_{j}}^{R})}^{{k}_{j}{w}_{j}}}{{{\prod }_{j = 1}^{2}(1+{\omega }_{{\aleph }_{j}}^{R})}^{{k}_{j}{w}_{j}}-{(1-{\omega }_{{\aleph }_{j}}^{R})}^{{k}_{j}{w}_{j}}}\right]},\end{array}\right)\;

    Suppose Eq (35) is true for n = m , that is,

    {\mathrm{C}}{\mathrm{C}}{\mathrm{I}}{\mathrm{F}}{\mathrm{E}}{\mathrm{W}}{\mathrm{G}}\;\left( < {k}_{1},{c}_{1} > ,{\mathrm{ }} < {k}_{2},{c}_{2} > ,{\mathrm{ }}\dots , < {k}_{m},{c}_{m} > \right)\; = {{c}_{1}}^{{k}_{1}{w}_{1}}\otimes {{c}_{2}}^{{k}_{2}{w}_{2}}\otimes \dots \otimes {{c}_{m}}^{{k}_{m}{w}_{m}}\\ = \;\left(\begin{array}{c}\frac{2{{\prod }_{j = 1}^{m}\;\left({\mu }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}}{\;\left({{\prod }_{j = 1}^{m}\;\left({2-\mu }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}\right)\;+\;\left({{\prod }_{j = 1}^{m}\;\left({\mu }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}\right)\;}{e}^{i2\pi \left[\frac{2{{\prod }_{j = 1}^{m}{(\omega }_{{\mu }_{j}}^{R})}^{{k}_{j}{w}_{j}}}{{{\prod }_{j = 1}^{m}{(2-\omega }_{{\mu }_{j}}^{R})}^{{k}_{j}{w}_{j}}+{{\prod }_{j = 1}^{m}{(\omega }_{{\mu }_{j}}^{R})}^{{k}_{j}{w}_{j}}}\right]},\\ \frac{{{\prod }_{j = 1}^{m}\;\left(1+{\aleph }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}-{\;\left(1-{\aleph }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}}{{{\prod }_{j = 1}^{m}\;\left(1+{\aleph }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}-{\;\left(1-{\aleph }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}}{e}^{i2\pi \left[\frac{{{\prod }_{j = 1}^{m}\;\left(1+{\omega }_{{\aleph }_{j}}^{R}\right)\;}^{{k}_{j}{w}_{j}}-{\;\left(1-{\omega }_{{\aleph }_{j}}^{R}\right)\;}^{{k}_{j}{w}_{j}}}{{{\prod }_{j = 1}^{m}\;\left(1+{\omega }_{{\aleph }_{j}}^{R}\right)\;}^{{k}_{j}{w}_{j}}-{\;\left(1-{\omega }_{{\aleph }_{j}}^{R}\right)\;}^{{k}_{j}{w}_{j}}}\right]},\end{array}\right)\;.

    For n = m+1 , we have

    {\mathrm{C}}{\mathrm{C}}{\mathrm{I}}{\mathrm{F}}{\mathrm{E}}{\mathrm{W}}{\mathrm{G}}\;\left( < {k}_{1},{c}_{1} > ,{\mathrm{ }} < {k}_{2},{c}_{2} > ,{\mathrm{ }}\dots , < {k}_{m},{c}_{m} > ,{\mathrm{ }} < {k}_{m+1},{c}_{m+1} > \right)\;\\ = {{c}_{1}}^{{k}_{1}{w}_{1}}\otimes {{c}_{2}}^{{k}_{2}{w}_{2}}\otimes \dots \otimes {{c}_{m}}^{{k}_{m}{w}_{m}}\otimes {{c}_{m+1}}^{{k}_{m+1}\;{w}_{m+1}} = \\\;\left(\begin{array}{c}\frac{2{{\prod }_{j = 1}^{m}\;\left({\mu }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}}{\;\left({{\prod }_{j = 1}^{m}\;\left({2-\mu }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}\right)\;+\;\left({{\prod }_{j = 1}^{m}\;\left({\mu }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}\right)\;}{e}^{i2\pi \left[\frac{2{{\prod }_{j = 1}^{m}{(\omega }_{{\mu }_{j}}^{R})}^{{k}_{j}{w}_{j}}}{{{\prod }_{j = 1}^{m}{(2-\omega }_{{\mu }_{j}}^{R})}^{{k}_{j}{w}_{j}}+{{\prod }_{j = 1}^{m}{(\omega }_{{\mu }_{j}}^{R})}^{{k}_{j}{w}_{j}}}\right]},\\ \frac{{{\prod }_{j = 1}^{m}\;\left(1+{\aleph }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}-{\;\left(1-{\aleph }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}}{{{\prod }_{j = 1}^{m}\;\left(1+{\aleph }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}-{\;\left(1-{\aleph }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}}{e}^{i2\pi \left[\frac{{{\prod }_{j = 1}^{m}\;\left(1+{\omega }_{{\aleph }_{j}}^{R}\right)\;}^{{k}_{j}{w}_{j}}-{\;\left(1-{\omega }_{{\aleph }_{j}}^{R}\right)\;}^{{k}_{j}{w}_{j}}}{{{\prod }_{j = 1}^{m}\;\left(1+{\omega }_{{\aleph }_{j}}^{R}\right)\;}^{{k}_{j}{w}_{j}}-{\;\left(1-{\omega }_{{\aleph }_{j}}^{R}\right)\;}^{{k}_{j}{w}_{j}}}\right]},\end{array}\right)\;\\\otimes {{c}_{m+1}}^{{k}_{m+1}{w}_{m+1}} = \;\left(\begin{array}{c}\frac{2{{\prod }_{j = 1}^{m+1}\;\left({\mu }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}}{{{\prod }_{j = 1}^{m+1}\;\left({2-\mu }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}+{{\prod }_{j = 1}^{m+1}\;\left({\mu }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}}{e}^{i2\pi \left[\frac{2{{\prod }_{j = 1}^{m+1}{(\omega }_{{\mu }_{j}}^{R})}^{{k}_{j}{w}_{j}}}{{{\prod }_{j = 1}^{m+1}{(2-\omega }_{{\mu }_{j}}^{R})}^{{k}_{j}{w}_{j}}+{{\prod }_{j = 1}^{m+1}{(\omega }_{{\mu }_{j}}^{R})}^{{k}_{j}{w}_{j}}}\right]},\\ \frac{{{\prod }_{j = 1}^{m+1}\;\left(1+{\aleph }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}-{\;\left(1-{\aleph }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}}{{{\prod }_{j = 1}^{m+1}\;\left(1+{\aleph }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}-{\;\left(1-{\aleph }_{j}^{R}\right)\;}^{{k}_{j}{w}_{j}}}{e}^{i2\pi \left[\frac{{{\prod }_{j = 1}^{m+1}\;\left(1+{\omega }_{{\aleph }_{j}}^{R}\right)\;}^{{k}_{j}{w}_{j}}-{\;\left(1-{\omega }_{{\aleph }_{j}}^{R}\right)\;}^{{k}_{j}{w}_{j}}}{{{\prod }_{j = 1}^{m+1}\;\left(1+{\omega }_{{\aleph }_{j}}^{R}\right)\;}^{{k}_{j}{w}_{j}}-{\;\left(1-{\omega }_{{\aleph }_{j}}^{R}\right)\;}^{{k}_{j}{w}_{j}}}\right]},\end{array}\right)\;.

    This shows that Eq (35) is true for n = m+1 , so, Eq (35) is true for all n .

    Definition 11: The CCIFEOWA operator is defined as:

    {\mathrm{C}}{\mathrm{C}}{\mathrm{I}}{\mathrm{F}}{\mathrm{E}}{\mathrm{O}}{\mathrm{W}}{\mathrm{A}}\left( < {k}_{1},{c}_{1} > ,{\mathrm{ }} < {k}_{2},{c}_{2} > ,{\mathrm{ }}\dots , < {k}_{n},{c}_{n} > \right)
    = \begin{array}{c}n\\ \oplus \\ j = 1\end{array}{w}_{j}\left({k}_{\delta \left(j\right)}{c}_{\delta \left(j\right)}\right) = {w}_{1}\left({k}_{\delta \left(1\right)}{c}_{\delta \left(1\right)}\right)\oplus {w}_{2}\left({k}_{\delta \left(2\right)}{c}_{\delta \left(2\right)}\right)\oplus \dots {\oplus w}_{n}\left({k}_{\delta \left(n\right)}{c}_{\delta \left(n\right)}\right). (36)

    If

    {k}_{1} = {k}_{2} = ... = {k}_{n} = 1,

    then the CCIFEOWA operator reduces to CIF ordered weighted averaging (CIFEOWA) operator.

    {\mathrm{C}}{\mathrm{I}}{\mathrm{F}}{\mathrm{E}}{\mathrm{O}}{\mathrm{W}}{\mathrm{A}}\left({c}_{1},{c}_{2},{\mathrm{ }}\dots ,{c}_{n}\right) = \begin{array}{c}n\\ \oplus \\ j = 1\end{array}{w}_{j}{c}_{\delta \left(j\right)} = {w}_{1}{c}_{\delta \left(1\right)}\oplus {w}_{2}{c}_{\delta \left(2\right)}\oplus \dots {\oplus w}_{n}{c}_{\delta \left(n\right)}. (37)

    Definition 12: The CCIFEOWG operator is defined as:

    {\mathrm{C}}{\mathrm{C}}{\mathrm{I}}{\mathrm{F}}{\mathrm{E}}{\mathrm{W}}{\mathrm{G}}\left( < {k}_{1},{c}_{1} > ,{\mathrm{ }} < {k}_{2},{c}_{2} > ,{\mathrm{ }}\dots , < {k}_{n},{c}_{n} > \right)
    = \begin{array}{c}n\\ \otimes \\ j = 1\end{array}{{{(c}_{\delta \left(j\right)}}^{{k}_{\delta \left(j\right)}})}^{{w}_{j}} = {{{(c}_{\delta \left(1\right)}}^{{k}_{\delta \left(1\right)}})}^{{w}_{1}}\otimes {{{(c}_{\delta \left(2\right)}}^{{k}_{\delta \left(2\right)}})}^{{w}_{2}}\otimes \dots \otimes {{{(c}_{\delta \left(n\right)}}^{{k}_{\delta \left(n\right)}})}^{{w}_{n}}. (38)

    If

    {k}_{1} = {k}_{2} = ... = {k}_{n} = 1,

    then the CCIFEOWG operator reduces to CIF weighted ordered geometric (CIFEOWG) operator.

    {\mathrm{C}}{\mathrm{I}}{\mathrm{F}}{\mathrm{E}}{\mathrm{W}}{\mathrm{G}}\left({c}_{1},{c}_{2},{\mathrm{ }}\dots ,{c}_{n}\right) = \begin{array}{c}n\\ \otimes \\ j = 1\end{array}{{c}_{\delta \left(j\right)}}^{{w}_{j}} = {{c}_{\delta \left(1\right)}}^{{w}_{1}}\otimes {{c}_{\delta \left(2\right)}}^{{w}_{2}}\otimes ... \otimes {{c}_{\delta \left(n\right)}}^{{w}_{n}}. (39)

    Theorem 6: The aggregated value by using the CCIFEOWA operator is also a CIFN, such that

    {\mathrm{C}}{\mathrm{C}}{\mathrm{I}}{\mathrm{F}}{\mathrm{E}}{\mathrm{O}}{\mathrm{W}}{\mathrm{A}}\left( < {k}_{1},{c}_{1} > ,{\mathrm{ }} < {k}_{2},{c}_{2} > ,{\mathrm{ }}\dots , < {k}_{n},{c}_{n} > \right)
    = \;\left(\begin{array}{c}\left[\begin{array}{c}\frac{{{\prod }_{j = 1}^{n}\;\left(1+{\mu }_{\delta \;\left(j\right)\;}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}-{\;\left(1-{\mu }_{\delta \;\left(j\right)\;}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}}{{{\prod }_{j = 1}^{n}\;\left(1+{\mu }_{\delta \;\left(j\right)\;}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}+{\;\left(1-{\mu }_{\delta \;\left(j\right)\;}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}}\\ {e}^{i2\pi \left[\frac{{{\prod }_{j = 1}^{n}\;\left(1+{\omega }_{{\mu }_{\delta \;\left(j\right)\;}}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}-{\;\left(1-{\omega }_{{\mu }_{\delta \;\left(j\right)\;}}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}}{{{\prod }_{j = 1}^{n}\;\left(1+{\omega }_{{\mu }_{\delta \;\left(j\right)\;}}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}+{\;\left(1-{\omega }_{{\mu }_{\delta \;\left(j\right)\;}}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}}\right]}\end{array}\right],\\ \left[\begin{array}{c}\frac{{2{\prod }_{j = 1}^{n}\;\left({\aleph }_{\delta \;\left(j\right)\;}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}}{{{\prod }_{j = 1}^{n}\;\left({2-\aleph }_{\delta \;\left(j\right)\;}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}+{{\prod }_{j = 1}^{n}\;\left({\aleph }_{\delta \;\left(j\right)\;}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}}\\ {e}^{i2\pi \left[\frac{{2{\prod }_{j = 1}^{n}\;\left({\omega }_{{\aleph }_{\delta \;\left(j\right)\;}}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}}{{{\prod }_{j = 1}^{n}\;\left(2-{\omega }_{{\aleph }_{\delta \;\left(j\right)\;}}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}+{{\prod }_{j = 1}^{n}\;\left({\omega }_{{\aleph }_{\delta \;\left(j\right)\;}}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}}\right]}\end{array}\right],\end{array}\right)\;. (40)

    and their aggregated value by using the CCIFEOWG operator is also a CIFN, such that

    {\mathrm{C}}{\mathrm{C}}{\mathrm{I}}{\mathrm{F}}{\mathrm{E}}{\mathrm{O}}{\mathrm{W}}{\mathrm{G}}\;\left( < {k}_{1},{c}_{1} > ,{\mathrm{ }} < {k}_{2},{c}_{2} > ,{\mathrm{ }}\dots , < {k}_{n},{c}_{n} > \right)\;
    = \;\left(\begin{array}{c}\left[\begin{array}{c}\frac{2\;\left({{\prod }_{j = 1}^{n}\;\left({\mu }_{\delta \;\left(j\right)\;}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}\right)\;}{\;\left({{\prod }_{j = 1}^{n}\;\left({2-\mu }_{\delta \;\left(j\right)\;}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}\right)\;+\;\left({{\prod }_{j = 1}^{n}\;\left({\mu }_{\delta \;\left(j\right)\;}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}\right)\;}\\ {e}^{i2\pi \left[\frac{2{{\prod }_{j = 1}^{n}{(\omega }_{{\mu }_{\delta \;\left(j\right)\;}}^{R})}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}}{{{\prod }_{j = 1}^{n}{(2-\omega }_{{\mu }_{\delta \;\left(j\right)\;}}^{R})}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}+{{\prod }_{j = 1}^{n}{(\omega }_{{\mu }_{\delta \;\left(j\right)\;}}^{R})}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}}\right]}\end{array}\right],\\ \left[\begin{array}{c}\frac{{{\prod }_{j = 1}^{n}\;\left(1+{\aleph }_{\delta \;\left(j\right)\;}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}-{\;\left(1-{\aleph }_{\delta \;\left(j\right)\;}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}}{{{\prod }_{j = 1}^{n}\;\left(1+{\aleph }_{\delta \;\left(j\right)\;}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}-{\;\left(1-{\aleph }_{\delta \;\left(j\right)\;}^{R}\right)\;}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}}\\ {e}^{i2\pi \left[\frac{{{\prod }_{j = 1}^{n}(1+{\omega }_{{\aleph }_{\delta \;\left(j\right)\;}}^{R})}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}-{(1-{\omega }_{{\aleph }_{\delta \;\left(j\right)\;}}^{R})}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}}{{{\prod }_{j = 1}^{n}(1+{\omega }_{{\aleph }_{\delta \;\left(j\right)\;}}^{R})}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}-{(1-{\omega }_{{\aleph }_{\delta \;\left(j\right)\;}}^{R})}^{{k}_{\delta \;\left(j\right)\;}{w}_{j}}}\right]}\end{array}\right],\end{array}\right)\;. (41)

    In this section, we introduce a group decision-making procedure to solve group decision-making problems with confidence levels under a complex intuitionistic fuzzy environment. Suppose à = \left\{{ã}_{1}, {ã}_{2}, {ã}_{3}, ..., {ã}_{n}\right\} be a set of n alternatives, Ç = \left\{{ç}_{1}, {ç}_{2}, {ç}_{3}, ..., {ç}_{m}\right\} be a set of n criterion with weight vectors {\mathrm{w}} = {({w}_{1}, {w}_{2}, {\mathrm{ }}..., {w}_{m})}^{t} such that {w}_{j} \in [0, 1] and \sum _{j = 1}^{m}{w}_{j} = 1 , and Ë = \left\{{ë}_{1}, {ë}_{2}, {ë}_{3}, ..., {ë}_{p}\right\} with weight vectors {\mathrm{w}} = {({w}_{1}, {w}_{2}, {\mathrm{ }}..., {w}_{p})}^{t} such that {w}_{r} \in [0, 1] and \sum _{r = 1}^{p}{w}_{r} = 1 . Then the main process of decision-making is explained below:

    Step 1: Suppose {{\mathrm{ß}}}^{\left(r\right)} = {\left({{\beta }_{lj}}^{\left(r\right)}\right)}_{n\times m} is a complex intuitionistic fuzzy decision matrix, and {{\beta }_{lj}}^{\left(r\right)} = \left(\left({{\left({\mu }^{R}\right)}_{lj}}^{\left(r\right)}, {{\left({\omega }_{\mu }^{R}\right)}_{lj}}^{\left(r\right)}\right), \left({{\left({\aleph }^{R}\right)}_{lj}}^{\left(r\right)}, {{\left({\omega }_{\aleph }^{R}\right)}_{lj}}^{\left(r\right)}\right)\right) is an attribute value provided by the decision-maker {ë}_{r} , which is a CIFN. Also {k}_{r} where {k}_{r} \in [0, 1] is a confidence level given by decision-makers which shows the degrees to that they are familiar with the research topic.

    Step 2: Using the CCIFWA operator:

    {\beta }_{lj} = C{\mathrm{C}}{\mathrm{I}}{\mathrm{F}}{\mathrm{W}}{\mathrm{A}}\left({{\beta }_{lj}}^{\left(1\right)},{{\beta }_{lj}}^{\left(2\right)},{\mathrm{ }}\dots ,{{\beta }_{lj}}^{\left(p\right)}\right) = \\\left(\begin{array}{c}\left({1-{\prod }_{j = 1}^{m}\;\left(1-{{\left({\mu }^{R}\right)}_{lj}}^{\left(r\right)}\right)}^{{k}_{r}\times {w}_{r}}\right){e}^{i2\pi \left({1-{\prod }_{j = 1}^{m}\;\left(1-{{\left({\omega }_{\mu }^{R}\right)}_{lj}}^{\left(r\right)}\right)}^{{k}_{r}\times {w}_{r}}\right)},\\ {{\prod }_{j = 1}^{m}\;\left({{\left({\aleph }^{R}\right)}_{lj}}^{\left(r\right)}\right)}^{{k}_{r}\times {w}_{r}}{e}^{i2\pi {{\prod }_{j = 1}^{m}\;\left({{\left({\omega }_{\aleph }^{R}\right)}_{lj}}^{\left(r\right)}\right)}^{{k}_{r}\times {w}_{r}}},\end{array}\right).

    Or the CCIFWG operator:

    {\beta }_{lj} = C{\mathrm{C}}{\mathrm{I}}{\mathrm{F}}{\mathrm{W}}{\mathrm{G}}\left({{\beta }_{lj}}^{\left(1\right)},{{\beta }_{lj}}^{\left(2\right)},{\mathrm{ }}\dots ,{{\beta }_{lj}}^{\left(p\right)}\right) = \\\left(\begin{array}{c}{{\prod }_{j = 1}^{m}\;\left({{\left({\mu }^{R}\right)}_{lj}}^{\left(r\right)}\right)}^{{k}_{r}\times {w}_{r}}{e}^{i2\pi \left({{\prod }_{j = 1}^{m}\;\left({{\left({\omega }_{\mu }^{R}\right)}_{lj}}^{\left(r\right)}\right)}^{{k}_{r}\times {w}_{r}}\right)},\\ \left(1-{{\prod }_{j = 1}^{m}\;\left(1-{{\left({\aleph }^{R}\right)}_{lj}}^{\left(r\right)}\right)}^{{k}_{r}\times {w}_{r}}\right){e}^{i2\pi \left[{1 -{\prod }_{j = 1}^{m}\;\left(-{{\left({\omega }_{\aleph }^{R}\right)}_{lj}}^{\left(r\right)}\right)}^{{k}_{r}\times {w}_{r}}\right]},\end{array}\right).

    To aggregate all complex intuitionistic fuzzy matrices {{\mathrm{ß}}}^{\left(r\right)} = {\left({{\beta }_{lj}}^{\left(r\right)}\right)}_{n\times m}, (r = {\mathrm{1, 2}}, 3, ..., p) into the single complex intuitionistic fuzzy matrix {\mathrm{ß}} = {\left({\beta }_{lj}\right)}_{n\times m} , 1\le {\mathrm{l}}\le {\mathrm{n}} and \text{1}\le {\mathrm{j}}\le {\mathrm{m}} .

    Step 3: Aggregate the complex intuitionistic fuzzy numbers {\beta }_{lj} for each alternative {ã}_{l} by CCIFWA (or CCIFWG) operator:

    {\beta }_{l} = {\mathrm{I}}{\mathrm{F}}{\mathrm{W}}{\mathrm{A}}\left({\beta }_{l1},{\beta }_{l2},{\mathrm{ }}\dots ,{\beta }_{lm}\right) = \left(\begin{array}{c}\left({1-{\prod }_{j = 1}^{m}\;\left(1-{\left({\mu }^{R}\right)}_{lj}\right)}^{{w}_{j}}\right){e}^{i2\pi \left({1-{\prod }_{j = 1}^{m}\;\left(1-{\left({\omega }_{\mu }^{R}\right)}_{lj}\right)}^{{w}_{j}}\right)},\\ {{\prod }_{j = 1}^{m}\;\left({\left({\aleph }^{R}\right)}_{lj}\right)}^{{w}_{j}}{e}^{i2\pi {{\prod }_{j = 1}^{m}\;\left({\left({\omega }_{\aleph }^{R}\right)}_{lj}\right)}^{{w}_{j}}},\end{array}\right),
    {\beta }_{l} = {\mathrm{I}}{\mathrm{F}}{\mathrm{W}}{\mathrm{G}}\left({\beta }_{l1},{\beta }_{l2},{\mathrm{ }}\dots ,{\beta }_{lm}\right) = \left(\begin{array}{c}{{\prod }_{j = 1}^{m}\left({\left({\mu }^{R}\right)}_{lj}\right)}^{{w}_{j}}{e}^{i2\pi \left({{\prod }_{j = 1}^{m}\left({\left({\omega }_{\mu }^{R}\right)}_{lj}\right)}^{{w}_{j}}\right)},\\ \left(1-{{\prod }_{j = 1}^{m}\left(1-{\left({\aleph }^{R}\right)}_{lj}\right)}^{{w}_{j}}\right){e}^{i2\pi \left[{1-{\prod }_{j = 1}^{m}\left(1-{\left({\omega }_{\aleph }^{R}\right)}_{lj}\right)}^{{w}_{j}}\right]},\end{array}\right).

    Step 4: Find the score values.

    Step 5: Rank all the values.

    To ease the tension of congestion in huge medical clinics, four patients, signified by xi (i = 1, 2, 3, 4), who are conceivably tainted with lung sicknesses, should be analyzed, what's more, appropriated into various degrees of emergency clinics in progressive clinical treatment framework. The four patients are analyzed from the accompanying four side effects (credits) of the lung infections: {ã}_{1} : important bodily functions, including pulse and pulse; {ã}_{2} : internal heat level; {ã}_{3} : the recurrence of the hack; and {ã}_{4} : the recurrence of hemoptysis. Assume that the specialist gives the rating values for the four patients concerning the side effects by utilizing confidence CIFNs, and the choice grid is displayed in Tables 14.

    Table 1.  Complex intuitionistic fuzzy decision matrix.
    {\boldsymbol{C}}_{1} {\boldsymbol{C}}_{2} {\boldsymbol{C}}_{3} {\boldsymbol{C}}_{4} {\boldsymbol{C}}_{5}
    {\boldsymbol{x}}_{1} \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.5, 0.4}}\right), \\ \left({\mathrm{0.3, 0.3}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left(0.51, 0.41\right), \\ \left({\mathrm{0.31, 0.31}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.52, 0.42}}\right), \\ \left({\mathrm{0.32, 0.32}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.53, 0.43}}\right), \\ \left({\mathrm{0.33, 0.33}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.54, 0.44}}\right), \\ \left({\mathrm{0.34, 0.34}}\right)\end{array}\right)}\right\rangle
    {\boldsymbol{x}}_{2} \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.4, 0.3}}\right), \\ \left({\mathrm{0.2, 0.2}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.41, 0.31}}\right), \\ \left({\mathrm{0.21, 0.21}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.42, 0.32}}\right), \\ \left({\mathrm{0.22, 0.22}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.43, 0.33}}\right), \\ \left({\mathrm{0.23, 0.23}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.44, 0.34}}\right), \\ \left({\mathrm{0.24, 0.24}}\right)\end{array}\right)}\right\rangle
    {\boldsymbol{x}}_{3} \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.3, 0.2}}\right), \\ \left({\mathrm{0.1, 0.1}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.31, 0.21}}\right), \\ \left({\mathrm{0.11, 0.11}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.32, 0.22}}\right), \\ \left({\mathrm{0.12, 0.12}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.33, 0.23}}\right), \\ \left({\mathrm{0.13, 0.13}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.34, 0.24}}\right), \\ \left({\mathrm{0.14, 0.14}}\right)\end{array}\right)}\right\rangle
    {\boldsymbol{x}}_{4} \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.5, 0.4}}\right), \\ \left({\mathrm{0.2, 0.3}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.51, 0.41}}\right), \\ \left({\mathrm{0.11, 0.31}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.52, 0.42}}\right), \\ \left({\mathrm{0.12, 0.32}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.53, 0.43}}\right), \\ \left({\mathrm{0.13, 0.33}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.54, 0.44}}\right), \\ \left({\mathrm{0.14, 0.34}}\right)\end{array}\right)}\right\rangle
    {\boldsymbol{x}}_{5} \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.2, 0.2}}\right), \\ \left({\mathrm{0.2, 0.1}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.21, 0.21}}\right), \\ \left({\mathrm{0.21, 0.11}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.22, 0.22}}\right), \\ \left({\mathrm{0.22, 0.12}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.23, 0.23}}\right), \\ \left({\mathrm{0.23, 0.13}}\right)\end{array}\right)}\right\rangle \left\langle{0.6, \left(\begin{array}{c}\left({\mathrm{0.24, 0.24}}\right), \\ \left({\mathrm{0.24, 0.14}}\right)\end{array}\right)}\right\rangle

     | Show Table
    DownLoad: CSV
    Table 2.  Complex intuitionistic fuzzy decision matrix.
    {\boldsymbol{C}}_{1} {\boldsymbol{C}}_{2} {\boldsymbol{C}}_{3} {\boldsymbol{C}}_{4} {\boldsymbol{C}}_{5}
    {\boldsymbol{x}}_{1} \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.49, 0.39}}\right), \\ \left({\mathrm{0.29, 0.29}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left(0.5, 0.4\right), \\ \left({\mathrm{0.3, 0.3}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.51, 0.41}}\right), \\ \left({\mathrm{0.31, 0.31}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.52, 0.42}}\right), \\ \left({\mathrm{0.32, 0.32}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.53, 0.43}}\right), \\ \left({\mathrm{0.33, 0.33}}\right)\end{array}\right)}\right\rangle
    {\boldsymbol{x}}_{2} \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.39, 0.29}}\right), \\ \left({\mathrm{0.19, 0.19}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.4, 0.3}}\right), \\ \left({\mathrm{0.2, 0.2}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.41, 0.31}}\right), \\ \left({\mathrm{0.21, 0.21}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.42, 0.32}}\right), \\ \left({\mathrm{0.22, 0.22}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.43, 0.33}}\right), \\ \left({\mathrm{0.23, 0.23}}\right)\end{array}\right)}\right\rangle
    {\boldsymbol{x}}_{3} \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.29, 0.19}}\right), \\ \left({\mathrm{0.09, 0.09}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.3, 0.2}}\right), \\ \left({\mathrm{0.1, 0.1}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.31, 0.21}}\right), \\ \left({\mathrm{0.11, 0.11}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.32, 0.22}}\right), \\ \left({\mathrm{0.12, 0.12}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.33, 0.23}}\right), \\ \left({\mathrm{0.13, 0.13}}\right)\end{array}\right)}\right\rangle
    {\boldsymbol{x}}_{4} \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.49, 0.39}}\right), \\ \left({\mathrm{0.09, 0.29}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.5, 0.4}}\right), \\ \left({\mathrm{0.1, 0.3}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.51, 0.41}}\right), \\ \left({\mathrm{0.11, 0.31}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.52, 0.42}}\right), \\ \left({\mathrm{0.12, 0.32}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.53, 0.43}}\right), \\ \left({\mathrm{0.13, 0.33}}\right)\end{array}\right)}\right\rangle
    {\boldsymbol{x}}_{5} \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.19, 0.19}}\right), \\ \left({\mathrm{0.19, 0.09}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.2, 0.2}}\right), \\ \left({\mathrm{0.2, 0.1}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.21, 0.21}}\right), \\ \left({\mathrm{0.21, 0.11}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.22, 0.22}}\right), \\ \left({\mathrm{0.22, 0.12}}\right)\end{array}\right)}\right\rangle \left\langle{0.59, \left(\begin{array}{c}\left({\mathrm{0.23, 0.23}}\right), \\ \left({\mathrm{0.23, 0.13}}\right)\end{array}\right)}\right\rangle

     | Show Table
    DownLoad: CSV
    Table 3.  Complex intuitionistic fuzzy decision matrix.
    {\boldsymbol{C}}_{1} {\boldsymbol{C}}_{2} {\boldsymbol{C}}_{3} {\boldsymbol{C}}_{4} {\boldsymbol{C}}_{5}
    {\boldsymbol{x}}_{1} \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.45, 0.35}}\right), \\ \left({\mathrm{0.25, 0.25}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left(0.46, 0.36\right), \\ \left({\mathrm{0.26, 0.26}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.47, 0.37}}\right), \\ \left({\mathrm{0.27, 0.27}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.48, 0.38}}\right), \\ \left({\mathrm{0.28, 0.28}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.49, 0.39}}\right), \\ \left({\mathrm{0.29, 0.29}}\right)\end{array}\right)}\right\rangle
    {\boldsymbol{x}}_{2} \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.35, 0.25}}\right), \\ \left({\mathrm{0.15, 0.15}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.36, 0.26}}\right), \\ \left({\mathrm{0.16, 0.16}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.37, 0.27}}\right), \\ \left({\mathrm{0.17, 0.17}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.38, 0.28}}\right), \\ ({\mathrm{0.18, 0.18}}\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.39, 0.29}}\right), \\ \left({\mathrm{0.19, 0.19}}\right)\end{array}\right)}\right\rangle
    {\boldsymbol{x}}_{3} \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.25, 0.15}}\right), \\ \left({\mathrm{0.05, 0.05}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.26, 0.16}}\right), \\ \left({\mathrm{0.06, 0.06}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.27, 0.17}}\right), \\ \left({\mathrm{0.07, 0.07}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.28, 0.18}}\right), \\ \left({\mathrm{0.08, 0.08}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.29, 0.19}}\right), \\ \left({\mathrm{0.09, 0.09}}\right)\end{array}\right)}\right\rangle
    {\boldsymbol{x}}_{4} \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.45, 0.35}}\right), \\ \left({\mathrm{0.05, 0.25}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.46, 0.36}}\right), \\ \left({\mathrm{0.06, 0.26}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.47, 0.37}}\right), \\ \left({\mathrm{0.07, 0.27}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.48, 0.38}}\right), \\ \left({\mathrm{0.08, 0.28}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.49, 0.39}}\right), \\ \left({\mathrm{0.09, 0.29}}\right)\end{array}\right)}\right\rangle
    {\boldsymbol{x}}_{5} \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.15, 0.15}}\right), \\ \left({\mathrm{0.15, 0.05}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.16, 0.16}}\right), \\ \left({\mathrm{0.16, 0.06}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.17, 0.17}}\right), \\ \left({\mathrm{0.17, 0.07}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.18,018}}\right), \\ \left({\mathrm{0.18, 0.08}}\right)\end{array}\right)}\right\rangle \left\langle{0.55, \left(\begin{array}{c}\left({\mathrm{0.19, 0.19}}\right), \\ \left({\mathrm{0.19, 0.09}}\right)\end{array}\right)}\right\rangle

     | Show Table
    DownLoad: CSV
    Table 4.  Complex intuitionistic fuzzy decision matrix.
    {\boldsymbol{C}}_{1} {\boldsymbol{C}}_{2} {\boldsymbol{C}}_{3} {\boldsymbol{C}}_{4} {\boldsymbol{C}}_{5}
    {\boldsymbol{x}}_{1} \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.4, 0.3}}\right), \\ \left({\mathrm{0.2, 0.2}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left(0.41, 0.31\right), \\ \left({\mathrm{0.21, 0.21}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.42, 0.32}}\right), \\ \left({\mathrm{0.22, 0.22}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.43, 0.33}}\right), \\ \left({\mathrm{0.23, 0.23}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.44, 0.34}}\right), \\ \left({\mathrm{0.24, 0.24}}\right)\end{array}\right)}\right\rangle
    {\boldsymbol{x}}_{2} \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.3, 0.2}}\right), \\ \left({\mathrm{0.1, 0.1}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.31, 0.21}}\right), \\ \left({\mathrm{0.11, 0.11}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.32, 0.22}}\right), \\ \left({\mathrm{0.12, 0.12}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.33, 0.23}}\right), \\ ({\mathrm{0.13, 0.13}}\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.34, 0.24}}\right), \\ \left({\mathrm{0.14, 0.14}}\right)\end{array}\right)}\right\rangle
    {\boldsymbol{x}}_{3} \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.2, 0.1}}\right), \\ \left({\mathrm{0.0, 0.0}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.21, 0.11}}\right), \\ \left({\mathrm{0.01, 0.01}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.22, 0.12}}\right), \\ \left({\mathrm{0.02, 0.02}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.23, 0.13}}\right), \\ \left({\mathrm{0.03, 0.03}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.24, 0.14}}\right), \\ \left({\mathrm{0.04, 0.04}}\right)\end{array}\right)}\right\rangle
    {\boldsymbol{x}}_{4} \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.4, 0.3}}\right), \\ \left({\mathrm{0.0, 0.2}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.41, 0.31}}\right), \\ \left({\mathrm{0.01, 0.21}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.42, 0.32}}\right), \\ \left({\mathrm{0.02, 0.22}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.43, 0.33}}\right), \\ \left({\mathrm{0.03, 0.23}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.44, 0.34}}\right), \\ \left({\mathrm{0.04, 0.24}}\right)\end{array}\right)}\right\rangle
    {\boldsymbol{x}}_{5} \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.1, 0.1}}\right), \\ \left({\mathrm{0.1, 0.0}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.11, 0.11}}\right), \\ \left({\mathrm{0.11, 0.01}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.12, 0.12}}\right), \\ \left({\mathrm{0.12, 0.02}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.13,013}}\right), \\ \left({\mathrm{0.13, 0.03}}\right)\end{array}\right)}\right\rangle \left\langle{0.5, \left(\begin{array}{c}\left({\mathrm{0.14, 0.14}}\right), \\ \left({\mathrm{0.14, 0.04}}\right)\end{array}\right)}\right\rangle

     | Show Table
    DownLoad: CSV

    Then the main process of decision-making is explained below:

    Step 1: Suppose {{\mathrm{ß}}}^{\left(r\right)} = {\left({{\beta }_{lj}}^{\left(r\right)}\right)}_{n\times m} is a complex intuitionistic fuzzy decision matrix, and {{\beta }_{lj}}^{\left(r\right)} = \left(\left({{\left({\mu }^{R}\right)}_{lj}}^{\left(r\right)}, {{\left({\omega }_{\mu }^{R}\right)}_{lj}}^{\left(r\right)}\right), \left({{\left({\aleph }^{R}\right)}_{lj}}^{\left(r\right)}, {{\left({\omega }_{\aleph }^{R}\right)}_{lj}}^{\left(r\right)}\right)\right) is an attribute value provided by the decision-maker {ë}_{r} , which is a CIFN. Also {k}_{r} where {k}_{r} \in [0, 1] is a confidence level given by decision-makers which shows the degrees to that they are familiar with the research topic.

    Step 2: Using the CCIFWA operator, see Tables 5 and 6.

    Table 5.  Complex intuitionistic fuzzy decision matrix (Using CCIFWA).
    {\boldsymbol{C}}_{1} {\boldsymbol{C}}_{2} {\boldsymbol{C}}_{3} {\boldsymbol{C}}_{4} {\boldsymbol{C}}_{5}
    {\boldsymbol{x}}_{1} \left(\begin{array}{c}\left(0.413, 0.2407\right), \\ \left({\mathrm{0.5467, 0.4766}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.3216, 0.2478\right), \\ \left({\mathrm{0.5545, 0.4866}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.3293, 0.2549\right), \\ \left({\mathrm{0.5621, 0.4963}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.3371, 0.2621\right), \\ \left({\mathrm{0.5696, 0.506}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.345, 0.2693\right), \\ \left({\mathrm{0.577, 0.5155}}\right)\end{array}\right)
    {\boldsymbol{x}}_{2} \left(\begin{array}{c}\left(0.2407, 0.1722\right), \\ \left({\mathrm{0.4581, 0.3664}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.2478, 0.1789\right), \\ \left({\mathrm{0.4683, 0.3786}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.2549, 0.1856\right), \\ \left({\mathrm{0.478, 0.3904}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.2621, 0.1923\right), \\ \left({\mathrm{0.4875, 0.402}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.2693, 0.1991\right), \\ ({\mathrm{0.4966, 0.4133}}\end{array}\right)
    {\boldsymbol{x}}_{3} \left(\begin{array}{c}\left(0.1722, 0.1077\right), \\ \left({\mathrm{0, 0}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.1789, 0.114\right), \\ \left({\mathrm{0.327, 0.2283}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.1856, 0.1204\right), \\ \left({\mathrm{0.3505, 0.2597}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.1923, 0.1267\right), \\ \left({\mathrm{0.3689, 0.2667}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.1991, 0.1331\right), \\ ({\mathrm{0.3484, 0.284}}\end{array}\right)
    {\boldsymbol{x}}_{4} \left(\begin{array}{c}\left(0.314, 0.2407\right), \\ \left({\mathrm{0, 0.4766}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.3216, 0.2478\right), \\ \left({\mathrm{0.1119, 0.4866}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.3293, 0.2549\right), \\ \left({\mathrm{0.3583, 0.4963}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.3371, 0.2621\right), \\ \left({\mathrm{0.3776, 0.506}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.345, 0.2693\right), \\ \left({\mathrm{0.2394, 0.5155}}\right)\end{array}\right)
    {\boldsymbol{x}}_{5} \left(\begin{array}{c}\left(0.1077, 0.1077\right), \\ (0.4472, 0)\end{array}\right) \left(\begin{array}{c}\left(0.114, 0.114\right), \\ \left({\mathrm{0.457, 0.2283}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.1204, 0.1204\right), \\ \left({\mathrm{0.4664, 0.2497}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.1267, 0.1267\right), \\ \left({\mathrm{0.4756, 0.2667}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.13331, 0.1331\right), \\ \left({\mathrm{0.4844, 0.284}}\right)\end{array}\right)

     | Show Table
    DownLoad: CSV
    Table 6.  Complex intuitionistic fuzzy decision matrix (Using CCIFWG).
    {\boldsymbol{C}}_{1} {\boldsymbol{C}}_{2} {\boldsymbol{C}}_{3} {\boldsymbol{C}}_{4} {\boldsymbol{C}}_{5}
    {\boldsymbol{x}}_{1} \left(\begin{array}{c}\left(0.5699, 0.5366\right), \\ \left({\mathrm{0.2541, 0.8166}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.5786, 0.5786\right), \\ \left({\mathrm{0.2478, 0.8211}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.5872, 0.5872\right), \\ \left({\mathrm{0.2549, 0.8144}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.5957, 0.5957\right), \\ \left({\mathrm{0.2621, 0.8077}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.6041, 0.6041\right), \\ \left({\mathrm{0.2693, 0.8009}}\right)\end{array}\right)
    {\boldsymbol{x}}_{2} \left(\begin{array}{c}\left(0.4766, 0.4766\right), \\ \left({\mathrm{0.1722, 0.8923}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.4866, 0.4866\right), \\ \left({\mathrm{0.1789, 0.886}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.4963, 0.4963\right), \\ \left({\mathrm{0.1856, 0.8796}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.506, 0.506\right), \\ \left({\mathrm{0.1923, 0.8733}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.5155, 0.5155\right), \\ ({\mathrm{0.1991, 0.8669}}\end{array}\right)
    {\boldsymbol{x}}_{3} \left(\begin{array}{c}\left(0.6529, 0.3664\right), \\ \left({\mathrm{0.1077, 0.9535}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.6608, 0.3786\right), \\ \left({\mathrm{0.114, 0.9475}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.6686, 0.3904\right), \\ \left({\mathrm{0.1204, 0.9415}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.6763, 0.402\right), \\ \left({\mathrm{0.1267, 0.9354}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.684, 0.4133\right), \\ ({\mathrm{0.1331, 0.9294}}\end{array}\right)
    {\boldsymbol{x}}_{4} \left(\begin{array}{c}\left(0.3664, 0.5699\right), \\ \left({\mathrm{0.2407, 0.9535}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.3786, 0.5786\right), \\ \left({\mathrm{0.2478, 0.9475}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.3904, 0.5872\right), \\ \left({\mathrm{0.2549, 0.9415}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.402, 0.5957\right), \\ \left({\mathrm{0.2621, 0.9354}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.4133, 0.6041\right), \\ \left({\mathrm{0.2693, 0.9294}}\right)\end{array}\right)
    {\boldsymbol{x}}_{5} \left(\begin{array}{c}\left(0.3664, 0.3664\right), \\ \left(0.1077, 0.8923\right)\end{array}\right) \left(\begin{array}{c}\left(0.3786, 0.3876\right), \\ \left({\mathrm{0.114, 0.886}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.3904, 0.3904\right), \\ \left({\mathrm{0.1204, 0.8796}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.402, 0.402\right), \\ \left({\mathrm{0.1267, 0.8733}}\right)\end{array}\right) \left(\begin{array}{c}\left(0.4133, 0.4133\right), \\ \left({\mathrm{0.1331, 0.8669}}\right)\end{array}\right)

     | Show Table
    DownLoad: CSV

    To aggregate all complex intuitionistic fuzzy matrices {{\mathrm{ß}}}^{\left(r\right)} = {\left({{\beta }_{lj}}^{\left(r\right)}\right)}_{n\times m}, (r = {\mathrm{1, 2}}, 3, ..., p) into the single complex intuitionistic fuzzy matrix {\mathrm{ß}} = {\left({\beta }_{lj}\right)}_{n\times m} , 1\le {\mathrm{l}}\le {\mathrm{n}} and \text{1}\le {\mathrm{j}}\le {\mathrm{m}} .

    Step 3: Aggregate the complex intuitionistic fuzzy numbers {\beta }_{lj} for each alternative {ã}_{l} by CCIFWA operator:

    {\beta }_{1} = \left(\left({\mathrm{0.3893,0.255}}\right),\left({\mathrm{0,0.496}}\right)\right),
    {\beta }_{2} = \left(\left({\mathrm{0.255,0.1857}}\right),\left({\mathrm{0.496,0.3898}}\right)\right),
    {\beta }_{3} = \left(\left({\mathrm{0.1857,0.1204}}\right),\left({\mathrm{0.3898,0}}\right)\right),
    {\beta }_{4} = \left(\left({\mathrm{0.3295,0.255}}\right),\left({\mathrm{0.587,0}}\right)\right),
    {\beta }_{5} = \left(\left({\mathrm{0.1204,0.1204}}\right),\left({\mathrm{0.3898,0.3898}}\right)\right).

    For CCIFWG operator:

    {{\beta }^{\text{'}}}_{1} = \left(\left({\mathrm{0.587,0.58}}\right),\left({\mathrm{0.2575,0.1873}}\right)\right),
    {{\beta }^{\text{'}}}_{2} = \left(\left({\mathrm{0.496,0.496}}\right),\left({\mathrm{0.1854,0.1201}}\right)\right),
    {{\beta }^{\text{'}}}_{3} = \left(\left({\mathrm{0.6685,0.3898}}\right),\left({\mathrm{0.1201,0.0579}}\right)\right),
    {{\beta }^{\text{'}}}_{4} = \left(\left({\mathrm{0.3898,0.587}}\right),\left({\mathrm{0.2547,0.0579}}\right)\right),
    {{\beta }^{\text{'}}}_{5} = \left(\left({\mathrm{0.3898,0.3898}}\right),\left({\mathrm{0.1201,0.1201}}\right)\right).

    Step 4: Find the score values for the CCIFWA operator

    {S}_{1} = 0.0741,
    {S}_{2} = 0.2225,
    {S}_{3} = 0.0418,
    {S}_{4} = 0.0012,
    {S}_{5} = 0.2693.

    For CCIFWG operator

    {{S}_{1}}^{\text{'}} = 0.3611,
    {{S}_{2}}^{\text{'}} = 0.3433,
    {{S}_{3}}^{\text{'}} = 0.4401,
    {{S}_{4}}^{\text{'}} = 0.3321,
    {{S}_{5}}^{\text{'}} = 0.2697.

    Step 5: Rank all the values, for the CCIFWA operator

    {S}_{5}\ge {S}_{2}\ge {S}_{1}{\ge S}_{3}{\ge S}_{4}.

    So,

    {x}_{5}\ge {x}_{2}\ge {x}_{1}{\ge x}_{3}{\ge x}_{4}.

    Based on the CCIFWG Steps are:

    {{S}_{3}}^{\text{'}}\ge {{S}_{1}}^{\text{'}}\ge {{S}_{2}}^{\text{'}}\ge {{S}_{4}}^{\text{'}}\ge {{S}_{5}}^{\text{'}}.

    So,

    {x}_{3}\ge {x}_{1}\ge {x}_{2}{\ge x}_{4}{\ge x}_{5}.

    Hence, both operators are given different values, the best optimal is available in the above ranking results.

    Here, we compare the evaluated operators with certain existing operators to show the capability and worth of the diagnosed approaches. For this, we consider some well-known operators which are developed by different authors, called aggregation operators based on IFSs [18], novel aggregation operators based on CIFSs [25], robust averaging/geometric aggregation operators for CIFSs [26], and generalized geometric aggregation operators for CIFSs [27]. A brief evaluation is explained below.

    Criterion 1: The theory of aggregation operators based on IFS was diagnosed by Alcantud et al. [18] and contained a huge number of restrictions because these operators developed based on IFS which ignored the phase term and due to this reason, they lose a lot of information. Instead of these operators, the diagnosed operators are more beneficial because they are diagnosed based on CIFS in the presence of confidence degree which is very accurately evaluated the considered information. Therefore, the information available in Tables 14 is not evaluated by operators constructed based on IFSs [18].

    Criterion 2: The theory of aggregation operators based on CIFS was diagnosed by Garg and Rani [25] and contained a huge number of restrictions because these operators developed based on CIFS which ignored the confidence degree and due to this reason, they lose a lot of information. Instead of these operators, the diagnosed operators are more beneficial because they are diagnosed based on CIFS in the presence of confidence degree which is very accurately evaluated the considered information. Therefore, the information available in Tables 14 is not evaluated by operators constructed based on CIFSs [25].

    Criterion 3: The theory of Robust averaging\geometric aggregation operators based on CIFS was diagnosed by Garg and Rani [26] and contained a huge number of restrictions because these operators developed based on CIFS which is ignored the confidence degree and due to this reason, they lose a lot of information. Instead of these operators, the diagnosed operators are more beneficial because they are diagnosed based on CIFS in the presence of confidence degree which is very accurately evaluated the considered information. Therefore, the information available in Tables 14 is not evaluated by operators constructed based on CIFSs [26].

    Criterion 4: The theory of generalized geometric aggregation operators based on CIFS was diagnosed by Garg and Rani [27] and contained a huge number of restrictions because these operators developed based on CIFS which ignored the confidence degree and due to this reason, they lose a lot of information. Instead of these operators, the diagnosed operators are more beneficial because they are diagnosed based on CIFS in the presence of confidence degree which is very accurately evaluated the considered information. Therefore, the information available in Tables 14 is not evaluated by operators constructed based on CIFSs [27].

    Therefore, the diagnosed operators based on CIFS with confidence levels are massive and powerful due to their mathematical constructions. Hence, in the future, we will utilize it in many areas like engineering science, computer science, and networking systems.

    Under the availability of the CIFS, algebraic, Einstein t-norm, and t-conorm, we determined the following ideas:

    (ⅰ) We derived the theory of CCIFWA, CCIFOWA, CCIFWG, and CCIFOWG operators under the consideration of CIFSs.

    (ⅱ) We described the properties of the presented operators such as idempotency, monotonicity, and boundedness.

    (ⅲ) We discovered the theory of CCIFEWA, CCIFEOWA, CCIFEWG, and CCIFEOWG operators under the consideration of CIFSs.

    (ⅳ) We described the properties of the presented operators such as idempotency, monotonicity, and boundedness.

    (ⅴ) We demonstrated a valuable and dominant theory of MADM under the presence of invented operators.

    (ⅵ) We compared the derived work with various existing works to show the stability and worth of the presented approach with the help of some suitable examples.

    The main theory of CIFS has very famous and valuable to manage unreliable and vague information in real-life problems, but in various cases, the theory of CIFS has failed, for instance, by using these types of information which cannot satisfy the condition of CIFS, then we assumed that the theory of CIFS has been neglected, for this, we needed to evaluate the theory of complex Pythagorean fuzzy sets, complex q-rung orthopair fuzzy sets, and their modification is to enhance the worth of the derived work.

    In the future, we aim to utilize the theory of Einstein and algebraic aggregation operators in the environment of complex Pythagorean fuzzy set and their modification and try to employ their application in the field of distance measures [29], TOPSIS method [30], game theory, neural network, artificial intelligence, machine learning, decision-making, clustering analysis, and pattern recognition.

    The authors would like to thank the Deanship of Scientific Research at Umm Al-Qura University for supporting this work under grand code: 22UQU4310396DSR40.

    About the publication of this manuscript the authors declare that they have no conflicts of interest.



    [1] B. Zalar, On centralizers of semiprime rings, Comment. Math. Univ. Carolin., 32 (1991), 609–614.
    [2] J. Vukman, I. Kosi-Ulbl, Centralisers on rings and algebras, B. Aust. Math. Soc., 71 (2005), 225–234. https://doi.org/10.1017/S000497270003820X doi: 10.1017/S000497270003820X
    [3] W. Du, J. Zhang, Jordan semi-triple derivable maps of matrix algebras, Acta. Math. Sinica., 51 (2008), 571–578. https://doi.org/10.3321/j.issn:0583-1431.2008.01.016 doi: 10.3321/j.issn:0583-1431.2008.01.016
    [4] L. Chen L, J. Zhang, *-Jordan semi-triple derivable mappings, Indian J. Pure Appl. Math., 51 (2020), 825–837. https://doi.org/10.1007/s13226-020-0434-4 doi: 10.1007/s13226-020-0434-4
    [5] W. R. Hamilton, Theory of conjugate functions, or algebraic couples; with a preliminary and elementary essay on algebra as the science of pure time, Trans. R. Irish Acad., 17 (1835), 293–422.
    [6] Z. Kurt, Ö. N. Gerek, A. Bilge, K. Özkan, A graph-based recommendation algorithm on quaternion algebra, SN Comput. Sci., 3 (2022), 299. https://doi.org/10.1007/s42979-022-01171-4 doi: 10.1007/s42979-022-01171-4
    [7] A. M. Grigoryan, S. S. Agaian, Commutative quaternion algebra and DSP fundamental properties: Quaternion convolution and Fourier transform, Signal Process., 196 (2022), 108533. https://doi.org/10.1016/j.sigpro.2022.108533 doi: 10.1016/j.sigpro.2022.108533
    [8] J. Voight, The arithmetic of quaternion algebras, 2014.
    [9] A. Bouhlal, N. Safouane, A. Achak, R. Daher, Wavelet transform of Dini Lipschitz functions on the quaternion algebra, Adv. Appl. Clifford Algebras, 31 (2021), 8. https://doi.org/10.1007/s00006-020-01112-5 doi: 10.1007/s00006-020-01112-5
    [10] S. Malev, The images of noncommutative polynomials evaluated on the quaternion algebra, J. Algebra Appl., 20 (2021), 2150074. https://doi.org/10.1142/S0219498821500742 doi: 10.1142/S0219498821500742
    [11] T. Csahók, P. Kutas, M. Montessinos, G. Zábrádi, Explicit isomorphisms of quaternion algebras over quadratic global fields, Res. Number Theory, 8 (2022), 77. https://doi.org/10.1007/s40993-022-00380-3 doi: 10.1007/s40993-022-00380-3
    [12] H. Boylan, N. P. Skoruppa, H. Zhou, Counting zeros in quaternion algebras using Jacobi forms, Trans. Amer. Math. Soc., 371 (2019), 6487–6509. https://doi.org/10.1090/tran/7575 doi: 10.1090/tran/7575
    [13] L. Rodman, Topics in quaternion linear algebra, In: Topics in quaternion linear algebra, Princeton: Princeton University Press, 2014. https://doi.org/10.23943/princeton/9780691161853.001.0001
    [14] Z. Jia, M. K. Ng, G. J. Song, Robust quaternion matrix completion with applications to image inpainting, Numer. Linear Algebra Appl., 26 (2019), e2245. https://doi.org/10.1002/nla.2245 doi: 10.1002/nla.2245
    [15] Z. H. He, M. Wang, X. Liu, On the general solutions to some systems of quaternion matrix equations, RACSAM, 114 (2020), 95. https://doi.org/10.1007/s13398-020-00826-2 doi: 10.1007/s13398-020-00826-2
    [16] L. S. Liu, Q. W. Wang, J. F. Chen, Y. Z. Xie, An exact solution to a quaternion matrix equation with an application, Symmetry, 14 (2022), 375. https://doi.org/10.3390/sym14020375 doi: 10.3390/sym14020375
    [17] A. B. Mamagani, M. Jafari, On properties of generalized quaternion algebra, J. Nov. Appl. Sci., 2 (2013), 683–689.
    [18] H. Ghahramani, M. N. Ghosseiriand, L. H. Zadeh, Generalized derivations and generalized Jordan derivations of quaternion rings, Iran. J. Sci. Technol. Trans. Sci., 45 (2021), 305–308. https://doi.org/10.1007/s40995-020-01046-4 doi: 10.1007/s40995-020-01046-4
    [19] H. Ghahramani, M. N. Ghosseiriand, L. H. Zadeh, On the Lie derivations and generalized Lie derivations of quaternion rings, Commun. Algebra, 47 (2019), 1215–1221. https://doi.org/10.1080/00927872.2018.1501577 doi: 10.1080/00927872.2018.1501577
    [20] E. Kizil E, Y. Alagöz, Derivations of generalized quaternion algebra, Turk. J. Math., 43 (2019), 2649–2657. https://doi.org/10.3906/mat-1905-86 doi: 10.3906/mat-1905-86
  • This article has been cited by:

    1. Lijun Ma, Kinza Javed, Zeeshan Ali, Tehreem Tehreem, Shi Yin, 3D seismic analysis of mine planning using Aczel–Alsina aggregation operators based on T-spherical fuzzy information, 2024, 14, 2045-2322, 10.1038/s41598-024-54422-0
    2. Abrar Hussain, Xiaoya Zhu, Kifayat Ullah, Dragan Pamucar, Muhammad Rashid, Shi Yin, Recycling of waste materials based on decision support system using picture fuzzy Dombi Bonferroni means, 2024, 1432-7643, 10.1007/s00500-023-09328-w
    3. Esmail Hassan Abdullatif Al-Sabri, Muhammad Rahim, Fazli Amin, Rashad Ismail, Salma Khan, Agaeb Mahal Alanzi, Hamiden Abd El-Wahed Khalifa, Multi-criteria decision-making based on Pythagorean cubic fuzzy Einstein aggregation operators for investment management, 2023, 8, 2473-6988, 16961, 10.3934/math.2023866
    4. Dian Pratama, Binyamin Yusoff, Lazim Abdullah, Adem Kilicman, The generalized circular intuitionistic fuzzy set and its operations, 2023, 8, 2473-6988, 26758, 10.3934/math.20231370
    5. Xiaoming Wu, Zeeshan Ali, Tahir Mahmood, Peide Liu, Power aggregation operators based on Yager t-norm and t-conorm for complex q-rung orthopair fuzzy information and their application in decision-making problems, 2023, 9, 2199-4536, 5949, 10.1007/s40747-023-01033-3
    6. Raiha Imran, Kifayat Ullah, Zeeshan Ali, Maria Akram, Tapan Senapati, The theory of prioritized Muirhead mean operators under the presence of Complex Single-Valued Neutrosophic values, 2023, 7, 27726622, 100214, 10.1016/j.dajour.2023.100214
    7. Peide Liu, Zeeshan Ali, Hamacher interaction aggregation operators for complex intuitionistic fuzzy sets and their applications in green supply chain management, 2024, 10, 2199-4536, 3853, 10.1007/s40747-023-01329-4
    8. Rong Yan, Yongguang Han, Fang Li, Pengfei Li, Evaluation of Sustainable Potential Bearing Capacity of Tourism Environment Under Uncertainty: A Multiphase Intuitionistic Fuzzy EDAS Technique Based on Hamming Distance and Logarithmic Distance Measures, 2024, 12, 2169-3536, 8081, 10.1109/ACCESS.2024.3352732
    9. Abrar Hussain, Kifayat Ullah, Tapan Senapati, Sarbast Moslem, Complex spherical fuzzy Aczel Alsina aggregation operators and their application in assessment of electric cars, 2023, 9, 24058440, e18100, 10.1016/j.heliyon.2023.e18100
    10. Harish Garg, Zeeshan Ali, Walid Emam, A decision-making algorithm with circular complex intuitionistic fuzzy information and their application in cognitive wireless communications, 2024, 11100168, 10.1016/j.aej.2024.12.021
    11. Shichao Li, Zeeshan Ali, Peide Liu, Prioritized Hamy mean operators based on Dombi t-norm and t-conorm for the complex interval-valued Atanassov-Intuitionistic fuzzy sets and their applications in strategic decision-making problems, 2025, 10, 2473-6988, 6589, 10.3934/math.2025302
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1681) PDF downloads(97) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog