Research article

Local Lie derivations of generalized matrix algebras

  • Received: 20 September 2022 Revised: 21 December 2022 Accepted: 27 December 2022 Published: 10 January 2023
  • MSC : 15A78, 17B40, 47L35

  • In this paper, we investigate local Lie derivations of a certain class of generalized matrix algebras and show that, under certain conditions, every local Lie derivation of a generalized matrix algebra is a sum of a derivation and a linear central-valued map vanishing on each commutator. The main result is then applied to full matrix algebras and unital simple algebras with nontrivial idempotents.

    Citation: Dan Liu, Jianhua Zhang, Mingliang Song. Local Lie derivations of generalized matrix algebras[J]. AIMS Mathematics, 2023, 8(3): 6900-6912. doi: 10.3934/math.2023349

    Related Papers:

  • In this paper, we investigate local Lie derivations of a certain class of generalized matrix algebras and show that, under certain conditions, every local Lie derivation of a generalized matrix algebra is a sum of a derivation and a linear central-valued map vanishing on each commutator. The main result is then applied to full matrix algebras and unital simple algebras with nontrivial idempotents.



    加载中


    [1] G. An, X. Zhang, J. He, W. Qian, Characterizations of local Lie derivations on von Neumann algebras, AIMS Mathematics, 7 (2022), 7519–7527. http://doi.org/10.3934/math.2022422 doi: 10.3934/math.2022422
    [2] M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Roy. Soc. Edinb. A, 137 (2007), 9–21. https://doi.org/10.1017/S0308210504001088 doi: 10.1017/S0308210504001088
    [3] L. Chen, F. Lu, T. Wang, Local and $2$-local Lie derivations of operator algebras on Banach spaces, Integr. Equ. Oper. Theory, 77 (2013), 109–121. https://doi.org/10.1007/s00020-013-2074-0 doi: 10.1007/s00020-013-2074-0
    [4] R. L. Crist, Local derivations on operator algebras, J. Funct. Anal., 135 (1996), 76–92. https://doi.org/10.1006/jfan.1996.0004 doi: 10.1006/jfan.1996.0004
    [5] Y. Du, Y. Wang, Lie derivations of generalized matrix algebras, Linear Algebra Appl., 437 (2012), 2719–2726. https://doi.org/10.1016/j.laa.2012.06.013 doi: 10.1016/j.laa.2012.06.013
    [6] D. Hadwin, J. Li, Local derivations and local automorphisms on some algebras, J. Operat. Theor., 60 (2008), 29–44.
    [7] W. Jing, Local derivations on reflexive algebras Ⅱ, Proc. Amer. Math. Soc., 129 (2001), 1733–1737. https://doi.org/10.1090/S0002-9939-01-05792-6 doi: 10.1090/S0002-9939-01-05792-6
    [8] R. V. Kadison, Local derivations, J. Algebra, 130 (1990), 494–509. https://doi.org/10.1016/0021-8693(90)90095-6 doi: 10.1016/0021-8693(90)90095-6
    [9] D. R. Larson, A. R. Sourour, Local derivations and local automorphisms of $B(X)$, Proc. Sympos. Pure Math., 51 (1990), 187–194.
    [10] D. Liu, J. Zhang, Local Lie derivations of factor von Neumann algebras, Linear Algebra Appl., 519 (2017), 208–218. https://doi.org/10.1016/j.laa.2017.01.004 doi: 10.1016/j.laa.2017.01.004
    [11] D. Liu, J. Zhang, Local Lie derivations on certain operator algebras, Ann. Funct. Anal., 8 (2017), 270–280. https://doi.org/10.1215/20088752-0000012x doi: 10.1215/20088752-0000012x
    [12] G. J. Murphy, $C^{\ast}$-Algebras and operator theory, San Diego: Academic press, 1990. https://doi.org/10.1016/C2009-0-22289-6
    [13] P. Šemrl, Local automorphisms and derivations on $B(H)$, Proc. Amer. Math. Soc., 125 (1997), 2677–2680. https://doi.org/10.1090/S0002-9939-97-04073-2 doi: 10.1090/S0002-9939-97-04073-2
    [14] Z. Xiao, F. Wei, Commuting mappings of generalized matrix algebras, Linear Algebra Appl., 433 (2010), 2178–2197. https://doi.org/10.1016/j.laa.2010.08.002 doi: 10.1016/j.laa.2010.08.002
    [15] J. Zhang, F. Pan, A. Yang, Local derivations on certain CSL algebras, Linear Algebra Appl., 413 (2006), 93–99. https://doi.org/10.1016/j.laa.2005.08.003 doi: 10.1016/j.laa.2005.08.003
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1196) PDF downloads(87) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog