In this paper, we investigate local Lie derivations of a certain class of generalized matrix algebras and show that, under certain conditions, every local Lie derivation of a generalized matrix algebra is a sum of a derivation and a linear central-valued map vanishing on each commutator. The main result is then applied to full matrix algebras and unital simple algebras with nontrivial idempotents.
Citation: Dan Liu, Jianhua Zhang, Mingliang Song. Local Lie derivations of generalized matrix algebras[J]. AIMS Mathematics, 2023, 8(3): 6900-6912. doi: 10.3934/math.2023349
In this paper, we investigate local Lie derivations of a certain class of generalized matrix algebras and show that, under certain conditions, every local Lie derivation of a generalized matrix algebra is a sum of a derivation and a linear central-valued map vanishing on each commutator. The main result is then applied to full matrix algebras and unital simple algebras with nontrivial idempotents.
[1] | G. An, X. Zhang, J. He, W. Qian, Characterizations of local Lie derivations on von Neumann algebras, AIMS Mathematics, 7 (2022), 7519–7527. http://doi.org/10.3934/math.2022422 doi: 10.3934/math.2022422 |
[2] | M. Brešar, Characterizing homomorphisms, derivations and multipliers in rings with idempotents, Proc. Roy. Soc. Edinb. A, 137 (2007), 9–21. https://doi.org/10.1017/S0308210504001088 doi: 10.1017/S0308210504001088 |
[3] | L. Chen, F. Lu, T. Wang, Local and $2$-local Lie derivations of operator algebras on Banach spaces, Integr. Equ. Oper. Theory, 77 (2013), 109–121. https://doi.org/10.1007/s00020-013-2074-0 doi: 10.1007/s00020-013-2074-0 |
[4] | R. L. Crist, Local derivations on operator algebras, J. Funct. Anal., 135 (1996), 76–92. https://doi.org/10.1006/jfan.1996.0004 doi: 10.1006/jfan.1996.0004 |
[5] | Y. Du, Y. Wang, Lie derivations of generalized matrix algebras, Linear Algebra Appl., 437 (2012), 2719–2726. https://doi.org/10.1016/j.laa.2012.06.013 doi: 10.1016/j.laa.2012.06.013 |
[6] | D. Hadwin, J. Li, Local derivations and local automorphisms on some algebras, J. Operat. Theor., 60 (2008), 29–44. |
[7] | W. Jing, Local derivations on reflexive algebras Ⅱ, Proc. Amer. Math. Soc., 129 (2001), 1733–1737. https://doi.org/10.1090/S0002-9939-01-05792-6 doi: 10.1090/S0002-9939-01-05792-6 |
[8] | R. V. Kadison, Local derivations, J. Algebra, 130 (1990), 494–509. https://doi.org/10.1016/0021-8693(90)90095-6 doi: 10.1016/0021-8693(90)90095-6 |
[9] | D. R. Larson, A. R. Sourour, Local derivations and local automorphisms of $B(X)$, Proc. Sympos. Pure Math., 51 (1990), 187–194. |
[10] | D. Liu, J. Zhang, Local Lie derivations of factor von Neumann algebras, Linear Algebra Appl., 519 (2017), 208–218. https://doi.org/10.1016/j.laa.2017.01.004 doi: 10.1016/j.laa.2017.01.004 |
[11] | D. Liu, J. Zhang, Local Lie derivations on certain operator algebras, Ann. Funct. Anal., 8 (2017), 270–280. https://doi.org/10.1215/20088752-0000012x doi: 10.1215/20088752-0000012x |
[12] | G. J. Murphy, $C^{\ast}$-Algebras and operator theory, San Diego: Academic press, 1990. https://doi.org/10.1016/C2009-0-22289-6 |
[13] | P. Šemrl, Local automorphisms and derivations on $B(H)$, Proc. Amer. Math. Soc., 125 (1997), 2677–2680. https://doi.org/10.1090/S0002-9939-97-04073-2 doi: 10.1090/S0002-9939-97-04073-2 |
[14] | Z. Xiao, F. Wei, Commuting mappings of generalized matrix algebras, Linear Algebra Appl., 433 (2010), 2178–2197. https://doi.org/10.1016/j.laa.2010.08.002 doi: 10.1016/j.laa.2010.08.002 |
[15] | J. Zhang, F. Pan, A. Yang, Local derivations on certain CSL algebras, Linear Algebra Appl., 413 (2006), 93–99. https://doi.org/10.1016/j.laa.2005.08.003 doi: 10.1016/j.laa.2005.08.003 |