The purpose of this article is to discuss some midpoint type HHF fractional integral inequalities and related results for a class of fractional operators (weighted fractional operators) that refer to harmonic convex functions with respect to an increasing function that contains a positive weighted symmetric function with respect to the harmonic mean of the endpoints of the interval. It can be concluded from all derived inequalities that our study generalizes a large number of well-known inequalities involving both classical and Riemann-Liouville fractional integral inequalities.
Citation: Muhammad Amer Latif, Humaira Kalsoom, Zareen A. Khan. Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function[J]. AIMS Mathematics, 2022, 7(3): 4176-4198. doi: 10.3934/math.2022232
The purpose of this article is to discuss some midpoint type HHF fractional integral inequalities and related results for a class of fractional operators (weighted fractional operators) that refer to harmonic convex functions with respect to an increasing function that contains a positive weighted symmetric function with respect to the harmonic mean of the endpoints of the interval. It can be concluded from all derived inequalities that our study generalizes a large number of well-known inequalities involving both classical and Riemann-Liouville fractional integral inequalities.
[1] | R. Almeida, A Caputo fractional derivative of a function with respect to another function, Commun. Nonlinear Sci., 44 (2017), 460–481. https://doi.org/10.1016/j.cnsns.2016.09.006 doi: 10.1016/j.cnsns.2016.09.006 |
[2] | T. Abdeljawad, P. O. Mohammed, A. Kashuri, New modified conformable fractional integral inequalities of Hermite-Hadamard type with applications, J. Funct. Space., 2020 (2020), 4352357. https://doi.org/10.1155/2020/4352357 doi: 10.1155/2020/4352357 |
[3] | A. O. Akdemir, S. I. Butt, M. Nadeem, M. A. Ragusa, New general variants of Chebyshev type inequalities via generalized fractional integral operators, Mathematics, 9 (2021), 122. https://doi.org/10.3390/math9020122 doi: 10.3390/math9020122 |
[4] | D. Baleanu, P. O. Mohammed, M. Vivas-Cortez, Y. Rangel-Oliveros, Some modifications in conformable fractional integral inequalities, Adv. Differ. Equ., 2020 (2020), 374. https://doi.org/10.1186/s13662-020-02837-0 doi: 10.1186/s13662-020-02837-0 |
[5] | C. Bardaro, P. L. Butzer, I. Mantellini, The foundations of fractional calculus in the Mellin transform setting with applications, J. Fourier Anal. Appl., 21 (2015), 961–1017. https://doi.org/10.1007/s00041-015-9392-3 doi: 10.1007/s00041-015-9392-3 |
[6] | D. Baleanu, P. O. Mohammed, S. Zeng, Inequalities of trapezoidal type involving generalized fractional integrals, Alex. Eng. J., 59 (2020), 2975–2984. https://doi.org/10.1016/j.aej.2020.03.039 doi: 10.1016/j.aej.2020.03.039 |
[7] | F. Chen, S. Wu, Fejér and Hermite-Hadamard type inqequalities for harmonically convex functions, J. Appl. Math., 2014 (2014). https://doi.org/10.1155/2014/386806 doi: 10.1155/2014/386806 |
[8] | S. S. Dragomir, C. E. M. Pearce, Selected topics on Hermite-Hadamard inequalities and applications, RGMIA Monographs, Victoria University: Footscray, Australia, 2000. |
[9] | S. S. Dragomir, R. P. Agarwal, Two inequalities for differentiable mappings and applications to special means of real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998) 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X |
[10] | M. R. Delavar, M. Aslani, M. De La Sen, Hermite-Hadamard-Fejér inequality related to generalized convex functions via fractional integrals, J. Math., 2018 (2018), 5864091. https://doi.org/10.1155/2018/5864091 doi: 10.1155/2018/5864091 |
[11] | L. Fejér, Über die fourierreihen, Ⅱ, Math. Naturwiss. Anz Ungar. Akad. Wiss, 24 (1906), 369–390. https://doi.org/10.1086/141409 doi: 10.1086/141409 |
[12] | A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Method. Appl. Sci., 44 (2020), 1–18. https://doi.org/10.1002/mma.6188 doi: 10.1002/mma.6188 |
[13] | B. Gavrea, I. Gavrea, On some Ostrowski type inequalities, Gen. Math., 18 (2010), 33–44. https://doi.org/10.1016/j.mcm.2007.12.004 doi: 10.1016/j.mcm.2007.12.004 |
[14] | H. Gunawan, Eridani, Fractional integrals and generalized Olsen inequalities, Kyungpook Math. J., 49 (2009), 31–39. https://doi.org/10.5666/KMJ.2009.49.1.031 doi: 10.5666/KMJ.2009.49.1.031 |
[15] | J. Hadamard, Étude sur les propriétés des fonctions entières en particulier d'une fonction considérée par Riemann, J. Math. Pure. Appl., 58 (1893), 171–215. |
[16] | J. Han, P. O. Mohammed, H. Zeng, Generalized fractional integral inequalities of Hermite-Hadamard-type for a convex function, Open Math., 18 (2020), 794–806. https://doi.org/10.1515/math-2020-0038 doi: 10.1515/math-2020-0038 |
[17] | İ. İşcan, Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals, Stud. U. Babes-Bol. Mat., 60 (2015), 355–366. |
[18] | İ. İşcan, S. Wu, Hermite-Hadamard type inequalities for harmonically convex functions via fractional integrals, Appl. Math. Comput., 238 (2014), 237–244. https://doi.org/10.1016/j.amc.2014.04.020 doi: 10.1016/j.amc.2014.04.020 |
[19] | İ. İşcan, M. Kunt, N. Yazici, Hermite-Hadamard-Fejér type inequalities for harmonically convex functions via fractional integrals, New Tre. Math. Sci., 4 (2016), 239–253. http://dx.doi.org/10.20852/ntmsci.2016320378 doi: 10.20852/ntmsci.2016320378 |
[20] | F. Jarad, T. Abdeljawad, K. Shah, On the weighted fractional operators of a function with respect to another function, Fractals, 28 (2020). https://doi.org/10.1142/S0218348X20400113 doi: 10.1142/S0218348X20400113 |
[21] | S. Kaijser, L. Nikolova, L. E. Persson, A. Wedestig, A Hardy type inequalities via convexity, Math. Inequal. Appl., 8 (2005), 403–417. |
[22] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier B. V., 204 (2006). |
[23] | M. Kunt, İ. İşcan, On new Hermite-Hadamard-Fejér type inequalities for $p$-convex functions via fractional integrals, CMMA, 2 (2017), 1–15. |
[24] | A. Kashuri, T. M. Rassias, New Hermite-Hadamard-Fejer inequalities via k-fractional integrals for di erentiable generalized nonconvex functions, Filomat, 34 (2020), 2549–2558. https://doi.org/10.2298/FIL2008549K doi: 10.2298/FIL2008549K |
[25] | P. O. Mohammed, I. Brevik, A new version of the Hermite-Hadamard inequality for Riemann-Liouville fractional integrals, Symmetry, 12 (2020), 610. https://doi.org/10.3390/sym12040610 doi: 10.3390/sym12040610 |
[26] | P. O. Mohammed, T. Abdeljawad, Opial integral inequalities for generalized fractional operators with nonsingular kernel, J. Inequal. Appl., 2020 (2020), 148. https://doi.org/10.1186/s13660-020-02419-4 doi: 10.1186/s13660-020-02419-4 |
[27] | H. Kalsoom, M. Vivas-Cortez, M. Amer Latif, H. Ahmad, Weighted midpoint Hermite-Hadamard-Fejér type inequalities in fractional calculus for harmonically convex functions, Fractal Fract., 5 (2021), 252. https://doi.org/10.3390/fractalfract5040252 doi: 10.3390/fractalfract5040252 |
[28] | H. Kalsoom, H. Budak, H. Kara, M. A. Ali, Some new parameterized inequalities for co-ordinated convex functions involving generalized fractional integrals, Open Math., 19 (2021), 1153–1186. https://doi.org/10.1515/math-2021-0072 doi: 10.1515/math-2021-0072 |
[29] | P. O. Mohammed, T. Abdeljawad, S. Zeng, A. Kashuri, Fractional Hermite-Hadamard integral inequalities for a new class of convex functions, Symmetry, 12 (2020), 1485. https://doi.org/10.3390/sym12091485 doi: 10.3390/sym12091485 |
[30] | P. O. Mohammed, T. Abdeljawad, Modification of certain fractional integral inequalities for convex functions, Adv. Differ. Equ., 2020 (2020), 69. https://doi.org/10.1186/s13662-020-2541-2 doi: 10.1186/s13662-020-2541-2 |
[31] | S. Z. Ullah, M. A. Khan, Z. A. Khan, Y. M. Chu, Coordinate strongly s-convex functions and related results, J. Math. Inequal., 14 (2020), 829–843. https://doi.org/10.17719/jisr.11662 doi: 10.17719/jisr.11662 |
[32] | Y. Khurshid, M. A. Khan, Y. M. Chu, Z. A. Khan, Hermite-Hadamard Fejér inequalities for conformal fractional integrals via preinvex functions, J. Funct. Space., 2019 (2019), 1–10. https://doi.org/10.1155/2019/4976351 doi: 10.1155/2019/4976351 |
[33] | Z. A. Khan, R. Gul, K. Shah, On impulsive boundary value problem with Riemann-Liouville fractional order derivative, J. Funct. Space., 2021 (2021), 1–11. https://doi.org/10.1155/2021/8331731 doi: 10.1155/2021/8331731 |
[34] | P. O. Mohammed, Hermite-Hadamard inequalities for Riemann-Liouville fractional integrals of a convex function with respect to a monotone function, Math. Method. Appl. Sci., 44 (2019), 2314–2324. https://doi.org/10.1002/mma.5784 doi: 10.1002/mma.5784 |
[35] | P. O. Mohammed, M. Z. Sarikaya, D. Baleanu, On the generalized Hermite-Hadamard inequalities via the tempered fractional integrals, Symmetry, 12 (2020), 595. https://doi.org/10.1039/D0AY90014A doi: 10.1039/D0AY90014A |
[36] | I. G. Macdonald, Symmetric functions and orthogonal polynomials, American Mathematical Society, New York, 1997. |
[37] | S. Mehmood, F. Zafar, N. Asmin, New Hermite-Hadamard-Fejér type inequalities for ($h_{1}$, $h_{2}$)-convex functions via fractional calculus, ScienceAsia, 46 (2020), 102–108. https://doi.org/10.2306/scienceasia1513-1874.2020.S015 doi: 10.2306/scienceasia1513-1874.2020.S015 |
[38] | T. J. Osler, The fractional derivative of a composite function, SIAM J. Math. Anal., 1 (1970), 288–293. https://doi.org/10.1137/0501026 doi: 10.1137/0501026 |
[39] | F. Qi, O. P. Mohammed, J. C. Yao, Y. H. Yao, Generalized fractional integral inequalities of Hermite-Hadamard type for ($\nu$, $m$)-convex functions, J. Inequal. Appl., 2019 (2019), 135. https://doi.org/10.1186/s13660-019-2079-6 doi: 10.1186/s13660-019-2079-6 |
[40] | M. Z. Sarikaya, H. Yaldiz, On generalization integral inequalities for fractional integrals, Nihonkai Math. J., 25 (2014), 93–104. |
[41] | M. Z. Sarikaya, C. C. Bilisik, P. O. Mohammed, Some generalizations of Opial type inequalities, Appl. Math. Inf. Sci., 14 (2020), 809–816. https://doi.org/10.18576/amis/140508 doi: 10.18576/amis/140508 |
[42] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Basak, Hermite-Hadamard's inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048 |
[43] | Y. Sawano, H. Wadade, On the Gagliardo-Nirenberg type inequality in the critical Sobolev-Morrey space, J. Fourier Anal. Appl., 19 (2013), 20–47. https://doi.org/10.1007/s00041-012-9223-8 doi: 10.1007/s00041-012-9223-8 |
[44] | D. P. Shi, B. Y. Xi, F. Qi, Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals of ($\nu$, $m$)-convex functions, Fract. Differ. Calc., 4 (2014), 31–43. |
[45] | M. Vivas-Cortez, T. Abdeljawad, P. O. Mohammed, Y. Rangel-Oliveros, Simpson's integral inequalities for twice differentiable convex functions, Math. Probl. Eng., 2020 (2020), 1936461. https://doi.org/10.1155/2020/1936461 doi: 10.1155/2020/1936461 |
[46] | C. J. Zhao, W. S. Cheung, On improvements of the Rozanova's inequality, J. Inequal. Appl., 2011 (2011), 33. https://doi.org/10.1186/1029-242X-2011-33 doi: 10.1186/1029-242X-2011-33 |
[47] | A. Scapellato, Riesz potential, Marcinkiewicz integral and their commutators on mixed Morrey spaces, Filomat, 34 (2020), 931–944. https://doi.org/10.2298/FIL2003931S doi: 10.2298/FIL2003931S |
[48] | A. Abdalmonem, A. Scapellato, Fractional operators with homogeneous kernels in weighted Herz spaces with variable exponent, Appl. Anal., 2020. https://doi.org/10.1080/00036811.2020.1789602 doi: 10.1080/00036811.2020.1789602 |
[49] | T. Y. Zhang, A. P. Ji, F. Qi, On integral inequalities of Hermite-Hadamard type for $s$-geometrically convex functions, Abstr. Appl. Anal., 2012 (2012), 560586. https://doi.org/10.1155/2012/560586 doi: 10.1155/2012/560586 |
[50] | T. Y. Zhang, A. P. Ji, F. Qi, Some inequalities of Hermite-Hadamard type for GA-convex functions with applications to means, Le Mat., 68 (2013), 229–239. https://doi.org/10.4418/2013.68.1.17 doi: 10.4418/2013.68.1.17 |