In this paper, we study the summability of solutions to the following semilinear elliptic equations involving mixed local and nonlocal operators
$ \left\{ \begin{matrix} - \Delta u(x)+{{(-\Delta )}^{s}}u(x)=f(x), & x\in \Omega , \\ u(x)\ge 0,~~~~~ & x\in \Omega , \\ u(x)=0,~~~~~ & x\in {{\mathbb{R}}^{N}}\setminus \Omega , \\ \end{matrix} \right. $
where $ 0 < s < 1 $, $ \Omega\subset \mathbb{R}^N $ is a smooth bounded domain, $ (-\Delta)^s $ is the fractional Laplace operator, $ f $ is a measurable function.
Citation: CaiDan LaMao, Shuibo Huang, Qiaoyu Tian, Canyun Huang. Regularity results of solutions to elliptic equations involving mixed local and nonlocal operators[J]. AIMS Mathematics, 2022, 7(3): 4199-4210. doi: 10.3934/math.2022233
In this paper, we study the summability of solutions to the following semilinear elliptic equations involving mixed local and nonlocal operators
$ \left\{ \begin{matrix} - \Delta u(x)+{{(-\Delta )}^{s}}u(x)=f(x), & x\in \Omega , \\ u(x)\ge 0,~~~~~ & x\in \Omega , \\ u(x)=0,~~~~~ & x\in {{\mathbb{R}}^{N}}\setminus \Omega , \\ \end{matrix} \right. $
where $ 0 < s < 1 $, $ \Omega\subset \mathbb{R}^N $ is a smooth bounded domain, $ (-\Delta)^s $ is the fractional Laplace operator, $ f $ is a measurable function.
[1] | B. Abdellaoui, M. Medina, I. Peral, A. Primo, The effect of the Hardy potential in some Calderón-Zygmund properties for the fractional Laplacian, J. Differ. Equations, 260 (2016), 8160–8206. http://dx.doi.org/10.1016/j.jde.2016.02.016 doi: 10.1016/j.jde.2016.02.016 |
[2] | D. Applebaum, Lévy processes and stochastic calculus, Cambridge: Cambridge University Press, 2009. |
[3] | B. Barrios, I. Peral, S. Vita, Some remarks about the summability of nonlocal nonlinear problems, Adv. Nonlinear Anal., 4 (2015), 91–107. http://dx.doi.org/10.1515/anona-2015-0012 doi: 10.1515/anona-2015-0012 |
[4] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, Mixed local and nonlocal elliptic operators: regularity and maximum principles, Commun. Part. Diff. Eq., (2021), in press. http://dx.doi.org/10.1080/03605302.2021.1998908 |
[5] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Faber-Krahn inequality for mixed local and nonlocal operators, arXiv: 2104.00830. |
[6] | S. Biagi, S. Dipierro, E. Valdinoci, E. Vecchi, A Hong-Krahn-Szegö inequality for mixed local and nonlocal operators, arXiv: 2110.07129. |
[7] | S. Biagi, E. Vecchi, S. Dipierro, E. Valdinoci, Semilinear elliptic equations involving mixed local and nonlocal operators, P. Roy. Soc. Edinb. A., 151 (2021), 1611–1641. http://dx.doi.org/10.1017/prm.2020.75 doi: 10.1017/prm.2020.75 |
[8] | D. Blazevski, D. del-Castillo-Negrete, Local and nonlocal anisotropic transport in reversed shear magnetic fields shearless Cantori and nondiffusive transport, Phys. Rev. E, 87 (2013), 063106. http://dx.doi.org/10.1103/PhysRevE.87.063106 doi: 10.1103/PhysRevE.87.063106 |
[9] | K. Bogdan, P. Sztonyk, Harnack's inequality for stable Lévy processes, Potential Anal., 22 (2005), 133–150. http://dx.doi.org/10.1007/s11118-004-0590-x doi: 10.1007/s11118-004-0590-x |
[10] | L. Caffarelli, A. Vasseur, Drift diffusion equations with fractional diffusion and the quasi-geostrophic equation, Ann. of Math., 171 (2010), 1903–1930. http://dx.doi.org/10.4007/annals.2010.171.1903 doi: 10.4007/annals.2010.171.1903 |
[11] | Z. Chen, P. Kim, R. Song, Z. Vondraček, Sharp Green function estimates for $\Delta +\Delta^{\alpha/2}$ in $C^{1, 1}$ open sets and their applications, Illinois J. Math., 54 (2010), 981–1024. http://dx.doi.org/10.1215/ijm/1336049983 doi: 10.1215/ijm/1336049983 |
[12] | Z. Chen, P. Kim, R. Song, Z. Vondraček, Boundary Harnack principle for $\Delta +\Delta^{\alpha/2}$, Trans. Amer. Math. Soc., 364 (2012), 4169–4205. http://dx.doi.org/10.1090/S0002-9947-2012-05542-5 doi: 10.1090/S0002-9947-2012-05542-5 |
[13] | R. Cont, P. Tankov, Financial modelling with jump processes, London: Chapman & Hall/CRC, 2004. |
[14] | L. Del Pezzo, R. Ferreira, J. Rossi, Eigenvalues for a combination between local and nonlocal $p$-Laplacians, Fract. Calc. Appl. Anal., 22 (2019), 1414–1436. http://dx.doi.org/10.1515/fca-2019-0074 doi: 10.1515/fca-2019-0074 |
[15] | E. Di Nezza, G. Palatucci, E. Valdinoci, Hitchhiker's guide to the fractional Sobolev spaces, Bull. Sci. Math., 136 (2012), 521–573. http://dx.doi.org/10.1016/j.bulsci.2011.12.004 doi: 10.1016/j.bulsci.2011.12.004 |
[16] | S. Dipierro, E. Proietti-Lippi, E. Valdinoci, Linear theory for a mixed operator with Neumann conditions, Asymptot. Anal., (2021), in press. http://dx.doi.org/10.3233/ASY-211718 |
[17] | S. Dipierro, E. Lippi, E. Valdinoci, (Non)local logistic equations with Neumann conditions, arXiv: 2101.02315. |
[18] | S. Dipierro, M. Medina, I. Peral, E. Valdinoci, Bifurcation results for a fractional elliptic equation with critical exponent in $\mathbb{R}^{N}$, Manuscripta Math., 153 (2017), 183–230. http://dx.doi.org/10.1007/s00229-016-0878-3 doi: 10.1007/s00229-016-0878-3 |
[19] | B. Hu, Y. Yang, A note on the combination between local and nonlocal $p$-Laplacian operators, Complex Var. Elliptic Equ., 65 (2020), 1763–1776. http://dx.doi.org/10.1080/17476933.2019.1701450 doi: 10.1080/17476933.2019.1701450 |
[20] | P. Garain, A. Ukhlov, Mixed local and nonlocal Sobolev inequalities with extremal and associated quasilinear singular elliptic problems, arXiv: 2106.04458. |
[21] | T. Leonori, I. Peral, A. Primo, F. Soria, Basic estimates for solutions of a class of nonlocal elliptic and parabolic equations, Discrete Contin. Dyn. Syst., 35 (2015), 6031–6068. http://dx.doi.org/10.3934/dcds.2015.35.6031 doi: 10.3934/dcds.2015.35.6031 |
[22] | A. Majda, E. Tabak, A two-dimensional model for quasigeostrophic flow: comparison with the two-dimensional Euler flow, Phys. D, 98 (1996), 515–522. http://dx.doi.org/10.1016/0167-2789(96)00114-5 doi: 10.1016/0167-2789(96)00114-5 |
[23] | R. Servadei, E. Valdinoci, Weak and viscosity solutions of the fractional Laplace equation, Publ. Mat., 58 (2014), 133–154. http://dx.doi.org/10.5565/PUBLMAT-58114-06 doi: 10.5565/PUBLMAT-58114-06 |
[24] | G. Stampacchia, Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus, Ann. Inst. Fourier, 15 (1965), 189–257. http://dx.doi.org/10.5802/aif.204 doi: 10.5802/aif.204 |