In this paper, we establish a regularity criterion for the 3D nematic liquid crystal flows. More precisely, we prove that the local smooth solution (u,d) is regular provided that velocity component u3, vorticity component ω3 and the horizontal derivative components of the orientation field ∇hd satisfy
∫T0||u3||2pp−3Lp+||ω3||2q2q−3Lq+||∇hd||2aa−3Ladt<∞,with 3<p≤∞, 32<q≤∞, 3<a≤∞.
Citation: Qiang Li, Baoquan Yuan. A regularity criterion for liquid crystal flows in terms of the component of velocity and the horizontal derivative components of orientation field[J]. AIMS Mathematics, 2022, 7(3): 4168-4175. doi: 10.3934/math.2022231
[1] | Qiang Li, Mianlu Zou . A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows. AIMS Mathematics, 2022, 7(5): 9278-9287. doi: 10.3934/math.2022514 |
[2] | Qiang Li, Baoquan Yuan . Blow-up criterion for the 3D nematic liquid crystal flows via one velocity and vorticity components and molecular orientations. AIMS Mathematics, 2020, 5(1): 619-628. doi: 10.3934/math.2020041 |
[3] | Junling Sun, Xuefeng Han . Existence of Sobolev regular solutions for the incompressible flow of liquid crystals in three dimensions. AIMS Mathematics, 2022, 7(9): 15759-15794. doi: 10.3934/math.2022863 |
[4] | Tariq Mahmood, Zhaoyang Shang . Blow-up criterion for incompressible nematic type liquid crystal equations in three-dimensional space. AIMS Mathematics, 2020, 5(2): 746-765. doi: 10.3934/math.2020051 |
[5] | Harald Garcke, Kei Fong Lam . Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth. AIMS Mathematics, 2016, 1(3): 318-360. doi: 10.3934/Math.2016.3.318 |
[6] | Wenjuan Liu, Zhouyu Li . Global weighted regularity for the 3D axisymmetric non-resistive MHD system. AIMS Mathematics, 2024, 9(8): 20905-20918. doi: 10.3934/math.20241017 |
[7] | Zhengyan Luo, Lintao Ma, Yinghui Zhang . Optimal decay rates of higher–order derivatives of solutions for the compressible nematic liquid crystal flows in R3. AIMS Mathematics, 2022, 7(4): 6234-6258. doi: 10.3934/math.2022347 |
[8] | Zhongying Liu, Yang Liu, Yiqi Jiang . Global solvability of 3D non-isothermal incompressible nematic liquid crystal flows. AIMS Mathematics, 2022, 7(7): 12536-12565. doi: 10.3934/math.2022695 |
[9] | Abdul Rauf, Nehad Ali Shah, Aqsa Mushtaq, Thongchai Botmart . Heat transport and magnetohydrodynamic hybrid micropolar ferrofluid flow over a non-linearly stretching sheet. AIMS Mathematics, 2023, 8(1): 164-193. doi: 10.3934/math.2023008 |
[10] | Danxia Wang, Ni Miao, Jing Liu . A second-order numerical scheme for the Ericksen-Leslie equation. AIMS Mathematics, 2022, 7(9): 15834-15853. doi: 10.3934/math.2022867 |
In this paper, we establish a regularity criterion for the 3D nematic liquid crystal flows. More precisely, we prove that the local smooth solution (u,d) is regular provided that velocity component u3, vorticity component ω3 and the horizontal derivative components of the orientation field ∇hd satisfy
∫T0||u3||2pp−3Lp+||ω3||2q2q−3Lq+||∇hd||2aa−3Ladt<∞,with 3<p≤∞, 32<q≤∞, 3<a≤∞.
In this paper, we will consider the following three-dimensional (3D) nematic liquid crystal flows:
{∂tu+u⋅∇u−μΔu+∇p=−λ∇⋅(∇d⊙∇d),∂td+u⋅∇d=γ(Δd−f(d)),∇⋅u=0,u(x,0)=u0(x),d(x,0)=d0(x), | (1.1) |
where u=(u1,u2,u3)∈R3 is the velocity field, d=(d1,d2,d3)∈R3 is the macroscopic average of molecular orientation field and p represents the scalar pressure. The notation ∇d⊙∇d represents the 3×3 matrix of which the (i,j) entry can be denoted by
3∑k=1∂idk∂jdk(1≤i,j≤3), |
and
f(d)=1|η|2(|d|2−1)d. |
u0 is the initial velocity with ∇⋅u0=0, d0 is initial orientation vector with |d0|≤1. Here, μ, λ, γ, η are all positive constants. And to simplify the presentation, we shall assume that μ=λ=γ=η=1 in this paper.
The hydrodynamic theory of liquid crystals was established by Ericksen and Leslie during 1960s (see [4,10]). And the system (1.1) is a simplified version of the Ericksen-Leslie model which still retains most of the essential features of the hydrodynamic equations for nematic liquid crystal (see [8]). One of the most significant studies in this area was made by Lin and Liu [9], where they established the existence of global-in-time weak solutions and local-in-time classical solutions. When the orientation field d equals a constant, the above equations reduce to the incompressible Navier-Stokes equations. For well-known Prodi-Serrin type regularity criterion, people paid much focus on decomposing the integral term about u⋅∇u and got some improving results based on the components of velocity field u and the gradient of the velocity field ∇u, readers can refer to [1,2,3,7,14,20,21,23,24]. Naturally, these related results were extended to the liquid crystal flows, see [5,6,11,12,16,17,18,19,22], and references therein. Moreover, these Prodi-Serrin type regularity criteria based on velocity field indicate that the velocity field u plays a more dominate role than the orientation field d does on the regularity of solutions to the system (1.1).
In [13], Qian established the regularity criterion for system (1.1). That is, if
∫T0||u3||qLp+||ω3||bLa+||∂3uh||bLadt<M, for some M>0and 3p+2q=1, 3a+2b=2, 3<p≤∞,32<a≤∞ | (1.2) |
where uh=(u1,u2), ω3=∂1u2−∂2u1, then the solution is regular. Later, Qian [15] proved the following regularity criterion:
∫T0||u3||qLp+||∂3uh||bLa+||∇h∇d||bLadt<M, for some M>0and 3p+2q=1, 3a+2b=2, 3<p≤∞,32<a≤∞. | (1.3) |
Inspired by the above results, we establish the following regularity criterion:
Theorem 1.1. Suppose the initial data u0∈H1(R3) with ∇⋅u0=0, d0∈H2(R3), and let (u,d) be a smooth solution to the system (1.1) on [0,T) for some 0<T<∞. If (u,d) satisfies the following condition
∫T0||u3||2pp−3Lp+||ω3||2q2q−3Lq+||∇hd||2aa−3Ladt<∞,with 3<p≤∞, 32<q≤∞, 3<a≤∞, | (1.4) |
then (u,d) can be extended beyond T.
Remark 1.1. In [20], Zhang has decomposed the integral ∫R3(u⋅∇)u⋅Δudx into the several integrals containing u3 and ω3 for the Navier-Stokes equation, and the corresponding criterion is
∫T0||u3||2pp−3Lp+||ω3||2q2q−3Lqdt<∞, with 3<p≤∞, 32<q≤∞. | (1.5) |
So the condition on ∂3uh in (1.2) can be removed and the condition on ∂3uh in (1.3) can be replaced. And, the regularity condition of orientation field d is needed to control the term ∇⋅(∇d⊙∇d) in view of (1.3).
Remark 1.2. Compared with the corresponding results (1.2), we replace the conditions on ∂3uh with ∇hd because we can not control the 2-order higher derivatives term ∇⋅(∇d⊙∇d) by only u3 and ω3. Compared with (1.3), we reduce 1-order derivative on orientation field d, which improves the result of (1.3).
Throughout this paper, the letter C means a generic constant which may vary from line to line, and the directional derivatives of a function φ are denoted by ∂iφ=∂φ∂xi (i=1,2,3).
According to the local well-posedness of smooth solution established by Lin and Liu [9], we only need to establish the priori estimates. And we have the following standard L2 estimate (for example, see [17,p.2-3])
(||u||2L2+||∇d||2L2)+2∫T0(||∇u||2L2+||Δd||2L2+||d|∇d|||2L2+12||∇|d|2||2L2)dt≤C(||u0||2L2+||∇d0||2L2). | (2.1) |
By an argument similar to [17,Eq (2.7)], we have
12ddt(||∇u||2L2+||Δd||2L2)+||Δu||2L2+||∇Δd||2L2=∫R3(u⋅∇)u⋅Δudx+∫R3∇⋅(∇d⊙∇d)⋅Δudx−∫R3Δ(u⋅∇d)⋅Δddx−∫R3Δ(|d|2d−d)⋅Δddx:=I1+I2+I3+I4. | (2.2) |
In the following part, we estimate the terms above one by one. For I1 referring to [20,(2.1)–(2.7)], (or see [11]), I1 can be decomposed as follows:
I1=3∑i,j,k,l=1∫R3α11ijkl∂1u1∂iuj∂kul+3∑i,j,k,l=1∫R3α12ijkl∂1u2∂iuj∂kul+3∑i,j,k,l=1∫R3α21ijkl∂2u1∂iuj∂k+3∑i,j,k,l=1∫R3α22ijkl∂2u2∂iuj∂k=I11+I12+I13+I14, |
where αmnijkl, 1≤m,n≤2, 1≤i,j,k,l≤3, are suitable integers. And the purpose is to rewrite ∂mun by u3 and ω3, 1≤m,n≤2.
Denoting by Δh=∂1∂1+∂2∂2 the horizontal Laplacian, and ℜm=∂m√−Δh the two-dimension Riesz transformation, it was shown in [20,(2.2)–(2.4)], that
Δhu1=−∂2ω3−∂1∂3u3, Δhu2=∂1ω3−∂2∂3u3. |
∂mu1=∂2√−Δh∂m√−Δhω3+∂1√−Δh∂m√−Δh∂3u3=ℜ2ℜmω3+ℜ1ℜm∂3u3, | (2.3) |
∂mu2=ℜ1ℜmω3+ℜ2ℜm∂3u3, 1≤m,n≤2. | (2.4) |
The term I11 can be expressed as
I11=3∑i,j,k,l=1∫R3α11ijkl∂1u1∂iuj∂kuldx=3∑i,j,k,l=1∫R3α11ijkl(ℜ2ℜ1ω3+ℜ1ℜ1∂3u3)∂iuj∂kuldx=3∑i,j,k,l=1∫R3α11ijklℜ2ℜ1ω3∂iuj∂kuldx−3∑i,j,k,l=1∫R3α11ijklℜ1ℜ1u3(∂3∂iuj∂kul+∂iuj∂3∂kul)dx, |
by (2.3) and integration by parts. Because the Riesz transformation is bounded from Lp(R2) to Lp(R2) for 1<p<∞, we have
I11≤C||u3||Lp||∇u||L2pp−2||∇2u||L2+C||ω3||Lq||∇u||2L2qq−1≤C||u3||Lp||∇u||p−3pL2||∇2u||p+3pL2+C||ω3||Lq||∇u||2q−3qL2||∇2u||3qL2≤C(||u3||2pp−3Lp+||ω3||2q2q−3Lq)||∇u||2L2+116||Δu||2L2, |
where p>3,q>32.
The similar argument as I11 can be used to terms I12,I13,I14, therefore it can be deduced that
I1≤C(||u3||2pp−3Lp+||ω3||2q2q−3Lq)||∇u||2L2+14||Δu||2L2. | (2.5) |
For I2 and I3, by using the fact ∇⋅u=0 and integrating by parts several times, we can rewrite it as follows
I2+I3=∫R33∑i,j,k=1[(∂i∂jdk∂jdk+∂idk∂j∂jdk)Δui−(Δui∂idkΔdk+2∇ui∂i∇dkΔdk+ui∂iΔdkΔdk)]dx=∫R33∑i,j,k=1−2∇ui∂i∇dkΔdkdx=∫R3−23∑j,k=12∑i=1∂jui∂i∂jdkΔdkdx−∫R323∑j,k=1∂ju3∂3∂jdkΔdkdx=I21+I22. |
I21=∫R323∑j,k=12∑i=1∂jui∂idk∂jΔdkdx+∫R323∑j,k=12∑i=1∂j∂jui∂idkΔdkdx=I211+I212. |
Next, employing the H¨older inequality, interpolation inequality and Young's inequality, we have
I211≤C‖∇hd‖La‖∇u‖L2aa−2‖∇Δd‖L2≤C‖∇hd‖La‖∇u‖a−3aL2‖Δu‖3aL2‖∇Δd‖L2≤C‖∇hd‖2aa−3La‖∇u‖2L2+18‖Δu‖2L2+18‖∇Δd‖2L2, | (2.6) |
I212≤C‖∇hd‖La‖Δd‖L2aa−2‖Δu‖L2≤C‖∇hd‖La‖Δd‖a−3aL2‖∇Δd‖3aL2‖Δu‖L2≤C‖∇hd‖2aa−3La‖Δd‖2L2+18‖Δu‖2L2+18‖∇Δd‖2L2. | (2.7) |
In the same way, the term I22 can be bounded as follows
I22=∫R323∑j,k=1(u3∂3∂j∂jdkΔdk+u3∂3∂jdk∂jΔdkdx)dx≤C‖u3‖Lp‖Δd‖L2pp−2‖∇Δd‖L2≤C‖u3‖Lp‖Δd‖p−3pL2‖∇Δd‖3pL2‖∇Δd‖L2≤C‖u3‖2pp−3Lp‖Δd‖2L2+18‖∇Δd‖2L2. | (2.8) |
Adding the above inequalities (2.6)–(2.8) together, one obtains
I2+I3≤C(‖u3‖2pp−3Lp+‖∇hd‖2aa−3La)(‖∇u‖2L2+‖Δd‖2L2)+14‖Δu‖2L2+38‖∇Δd‖2L2. | (2.9) |
For I4, we have
I4≤∫R3|Δd|2+Δ(|d|2d)⋅Δddx≤||Δd||2L2+C(||Δ|d|2||L2||d||L6||Δd||L3+||Δd||L3||d||2L6||Δd||L3)≤||Δd||2L2+C||Δd||L3||d||2L6||Δd||L3≤||Δd||2L2+C||Δd||L2||∇Δd||L2≤C||Δd||2L2+18||∇Δd||2L2. | (2.10) |
Hence, inserting (2.5), (2.9) and (2.10) into (2.2) yields
ddt(||∇u||2L2+||Δd||2L2)+||Δu||2L2+||∇Δd||2L2≤C(1+‖u3‖2pp−3Lp+||ω3||2q2q−3Lq+‖∇hd‖2aa−3La)(||∇u||2L2+||Δd||2L2), |
and it could be derived by Gronwall inequality that
||∇u||2L2+||Δd||2L2+∫T0(||Δu||2L2+||∇Δd||2L2)dt≤(||∇u0||2L2+||Δd0||2L2)exp{∫T0C(1+‖u3‖2pp−3Lp+||ω3||2q2q−3Lq+‖∇hd‖2aa−3La)dt}. |
Then the proof of Theorem 1.1 is completed.
In this paper, we prove a regular criterion of solution for the 3D nematic liquid crystal flows via velocity component u3, vorticity component ω3 and the horizontal derivative components of the orientation field ∇hd, and we hope that the condition on ∇hd will be removed in future study.
The authors are appreciated for the helpful suggestions of referees.
All authors declare no conflict of interest in this paper.
[1] |
C. S. Cao, Sufficient conditions for the regularity to the 3D Navier-Stokes equations, Discrete Contin. Dyn. Syst., 26 (2010), 1141–1151. http://dx.doi.org/10.3934/dcds.2010.26.1141 doi: 10.3934/dcds.2010.26.1141
![]() |
[2] | C. S. Cao, E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations, Indiana Univ. Math. J., 57 (2008), 2643–2661. |
[3] |
B. Q. Dong, Z. F. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components, Nonlinear Anal.: Real World Appl., 11 (2010), 2415–2421. https://doi.org/10.1016/j.nonrwa.2009.07.013 doi: 10.1016/j.nonrwa.2009.07.013
![]() |
[4] |
J. L. Ericksen, Hydrostatic theory of liquid crystals, Arch. Rational Mech. Anal., 9 (1962), 371–378. https://doi.org/10.1007/BF00253358 doi: 10.1007/BF00253358
![]() |
[5] |
J. S. Fan, B. L. Guo, Regularity criterion to some liquid crystal models and the Landau-Lifshitz equations in R3, Sci. China Ser. A-Math., 51 (2008), 1787–1797. https://doi.org/10.1007/s11425-008-0013-3 doi: 10.1007/s11425-008-0013-3
![]() |
[6] | W. J. Gu, B. Samet, Y. Zhou, A regularity criterion for a simplified non-isothermal model for nematic liquid crystals, Funkcial. Ekvac., 63 (2020), 247–258. |
[7] |
X. J. Jia, Y. Zhou, Remarks on regularity criteria for the Navier-Stokes equations via one velocity component, Nonlinear Anal.: Real World Appl., 15 (2014), 239–245. https://doi.org/10.1016/j.nonrwa.2013.08.002 doi: 10.1016/j.nonrwa.2013.08.002
![]() |
[8] |
F. H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Commun. Pure Appl. Math., 42 (1989), 789–814. https://doi.org/10.1002/cpa.3160420605 doi: 10.1002/cpa.3160420605
![]() |
[9] |
F. H. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. Pure Appl. Math., 48 (1995), 501–537. https://doi.org/10.1002/cpa.3160480503 doi: 10.1002/cpa.3160480503
![]() |
[10] |
F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265–283. https://doi.org/10.1007/BF00251810 doi: 10.1007/BF00251810
![]() |
[11] |
Q. Li, B. Q. Yuan, Blow-up criterion for the 3D nematic liquid crystal flows via one velocity and vorticity components and molecular orientations, AIMS Math., 5 (2020), 619–628. https://doi.org/10.3934/math.2020041 doi: 10.3934/math.2020041
![]() |
[12] |
Q. Liu, J. H. Zhao, S. B. Cui, A regularity criterion for the three-dimensional nematic liquid crystal flow in terms of one directional derivative of the velocity, J. Math. Phys., 52 (2011), 033102. https://doi.org/10.1063/1.3567170 doi: 10.1063/1.3567170
![]() |
[13] |
C. Y. Qian, Remarks on the regularity criterion for the nematic liquid crystal flows in R3, Appl. Math. Lett., 274 (2016), 679–689. https://doi.org/10.1016/j.amc.2015.11.007 doi: 10.1016/j.amc.2015.11.007
![]() |
[14] |
C. Y. Qian, A remark on the global regularity for the 3D Navier-Stokes equations, Appl. Math. Comput., 57 (2016), 126–131. https://doi.org/10.1016/j.aml.2016.01.016 doi: 10.1016/j.aml.2016.01.016
![]() |
[15] |
C. Y. Qian, A further note on the regularity criterion for the 3D nematic liquid crystal flows, Appl. Math. Comput., 290 (2016), 258–266. https://doi.org/10.1016/j.amc.2016.06.011 doi: 10.1016/j.amc.2016.06.011
![]() |
[16] |
R. Y. Wei, Y. Li, Z. A. Yao, Two new regularity criteria for nematic liquid crystal flows, J. Math. Anal. Appl., 424 (2015), 636–650. https://doi.org/10.1016/j.jmaa.2014.10.089 doi: 10.1016/j.jmaa.2014.10.089
![]() |
[17] |
B. Q. Yuan, Q. Li, Note on global regular solution to the 3D liquid crystal equations, Appl. Math. Lett., 109 (2020), 106491. https://doi.org/10.1016/j.aml.2020.106491 doi: 10.1016/j.aml.2020.106491
![]() |
[18] |
B. Q. Yuan, C. Z. Wei, BKM's criterion for the 3D nematic liquid crystal flows in Besov spaces of negative regular index, J. Nonlinear Sci. Appl., 10 (2017), 3030–3037. http://dx.doi.org/10.22436/jnsa.010.06.17 doi: 10.22436/jnsa.010.06.17
![]() |
[19] |
B. Q. Yuan, C. Z. Wei, Global regularity of the generalized liquid crystal model with fractional diffusion, J. Math. Anal. Appl., 467 (2018), 948–958. https://doi.org/10.1016/j.jmaa.2018.07.047 doi: 10.1016/j.jmaa.2018.07.047
![]() |
[20] |
Z. J. Zhang, Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component, Czech. Math. J., 68 (2018), 219–225. https://doi.org/10.21136/CMJ.2017.0419-16 doi: 10.21136/CMJ.2017.0419-16
![]() |
[21] |
Z. J. Zhang, F. Alzahrani, T. Hayat, Y. Zhou, Two new regularity criteria for the Navier-Stokes equations via two entries of the velocity Hessian tensor, Appl. Math. Lett., 37 (2014), 124–130. https://doi.org/10.1016/j.aml.2014.06.011 doi: 10.1016/j.aml.2014.06.011
![]() |
[22] | L. L. Zhao, F. Q. Li, On the regularity criteria for 3-D liquid crystal flows in terms of the horizontal derivative components of the pressure, J. Math. Rese. Appl., 40 (2020), 165–168. |
[23] | Y. Zhou, M. Pokorný, On the regularity to the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097–1107. |
[24] |
Z. J. Zhang, W. J. Yuan, Y. Zhou, Some remarks on the Navier-Stokes equations with regularity in one direction, Appl. Math., 64 (2019), 301–308. https://doi.org/10.21136/AM.2019.0264-18 doi: 10.21136/AM.2019.0264-18
![]() |
1. | Qiang Li, Mianlu Zou, A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows, 2022, 7, 2473-6988, 9278, 10.3934/math.2022514 | |
2. | Qiang Li, Baoquan Yuan, Two regularity criteria of solutions to the liquid crystal flows, 2023, 0170-4214, 10.1002/mma.9045 | |
3. | Ruirui Wang, Qiang Mu, Yulei Wang, Qiang Li, Yongqiang Fu, Two Logarithmically Improved Regularity Criteria for the 3D Nematic Liquid Crystal Flows, 2022, 2022, 2314-4785, 1, 10.1155/2022/4454497 | |
4. | Zhong Tan, Xinliang Li, Hui Yang, Energy conservation for the weak solutions to the 3D compressible nematic liquid crystal flow, 2024, 44, 0252-9602, 851, 10.1007/s10473-024-0305-x | |
5. | Ines Ben Omrane, Mourad Ben Slimane, Sadek Gala, Maria Alessandra Ragusa, A new regularity criterion for the 3D nematic liquid crystal flows, 2025, 23, 0219-5305, 287, 10.1142/S0219530524500313 |