Research article

A regularity criterion for liquid crystal flows in terms of the component of velocity and the horizontal derivative components of orientation field

  • Received: 14 October 2021 Revised: 06 December 2021 Accepted: 07 December 2021 Published: 17 December 2021
  • MSC : 35B65, 35Q35, 76A15

  • In this paper, we establish a regularity criterion for the 3D nematic liquid crystal flows. More precisely, we prove that the local smooth solution (u,d) is regular provided that velocity component u3, vorticity component ω3 and the horizontal derivative components of the orientation field hd satisfy

    T0||u3||2pp3Lp+||ω3||2q2q3Lq+||hd||2aa3Ladt<,with  3<p, 32<q, 3<a.

    Citation: Qiang Li, Baoquan Yuan. A regularity criterion for liquid crystal flows in terms of the component of velocity and the horizontal derivative components of orientation field[J]. AIMS Mathematics, 2022, 7(3): 4168-4175. doi: 10.3934/math.2022231

    Related Papers:

    [1] Qiang Li, Mianlu Zou . A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows. AIMS Mathematics, 2022, 7(5): 9278-9287. doi: 10.3934/math.2022514
    [2] Qiang Li, Baoquan Yuan . Blow-up criterion for the 3D nematic liquid crystal flows via one velocity and vorticity components and molecular orientations. AIMS Mathematics, 2020, 5(1): 619-628. doi: 10.3934/math.2020041
    [3] Junling Sun, Xuefeng Han . Existence of Sobolev regular solutions for the incompressible flow of liquid crystals in three dimensions. AIMS Mathematics, 2022, 7(9): 15759-15794. doi: 10.3934/math.2022863
    [4] Tariq Mahmood, Zhaoyang Shang . Blow-up criterion for incompressible nematic type liquid crystal equations in three-dimensional space. AIMS Mathematics, 2020, 5(2): 746-765. doi: 10.3934/math.2020051
    [5] Harald Garcke, Kei Fong Lam . Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth. AIMS Mathematics, 2016, 1(3): 318-360. doi: 10.3934/Math.2016.3.318
    [6] Wenjuan Liu, Zhouyu Li . Global weighted regularity for the 3D axisymmetric non-resistive MHD system. AIMS Mathematics, 2024, 9(8): 20905-20918. doi: 10.3934/math.20241017
    [7] Zhengyan Luo, Lintao Ma, Yinghui Zhang . Optimal decay rates of higher–order derivatives of solutions for the compressible nematic liquid crystal flows in R3. AIMS Mathematics, 2022, 7(4): 6234-6258. doi: 10.3934/math.2022347
    [8] Zhongying Liu, Yang Liu, Yiqi Jiang . Global solvability of 3D non-isothermal incompressible nematic liquid crystal flows. AIMS Mathematics, 2022, 7(7): 12536-12565. doi: 10.3934/math.2022695
    [9] Abdul Rauf, Nehad Ali Shah, Aqsa Mushtaq, Thongchai Botmart . Heat transport and magnetohydrodynamic hybrid micropolar ferrofluid flow over a non-linearly stretching sheet. AIMS Mathematics, 2023, 8(1): 164-193. doi: 10.3934/math.2023008
    [10] Danxia Wang, Ni Miao, Jing Liu . A second-order numerical scheme for the Ericksen-Leslie equation. AIMS Mathematics, 2022, 7(9): 15834-15853. doi: 10.3934/math.2022867
  • In this paper, we establish a regularity criterion for the 3D nematic liquid crystal flows. More precisely, we prove that the local smooth solution (u,d) is regular provided that velocity component u3, vorticity component ω3 and the horizontal derivative components of the orientation field hd satisfy

    T0||u3||2pp3Lp+||ω3||2q2q3Lq+||hd||2aa3Ladt<,with  3<p, 32<q, 3<a.



    In this paper, we will consider the following three-dimensional (3D) nematic liquid crystal flows:

    {tu+uuμΔu+p=λ(dd),td+ud=γ(Δdf(d)),u=0,u(x,0)=u0(x),d(x,0)=d0(x), (1.1)

    where u=(u1,u2,u3)R3 is the velocity field, d=(d1,d2,d3)R3 is the macroscopic average of molecular orientation field and p represents the scalar pressure. The notation dd represents the 3×3 matrix of which the (i,j) entry can be denoted by

    3k=1idkjdk(1i,j3),

    and

    f(d)=1|η|2(|d|21)d.

    u0 is the initial velocity with u0=0, d0 is initial orientation vector with |d0|1. Here, μ, λ, γ, η are all positive constants. And to simplify the presentation, we shall assume that μ=λ=γ=η=1 in this paper.

    The hydrodynamic theory of liquid crystals was established by Ericksen and Leslie during 1960s (see [4,10]). And the system (1.1) is a simplified version of the Ericksen-Leslie model which still retains most of the essential features of the hydrodynamic equations for nematic liquid crystal (see [8]). One of the most significant studies in this area was made by Lin and Liu [9], where they established the existence of global-in-time weak solutions and local-in-time classical solutions. When the orientation field d equals a constant, the above equations reduce to the incompressible Navier-Stokes equations. For well-known Prodi-Serrin type regularity criterion, people paid much focus on decomposing the integral term about uu and got some improving results based on the components of velocity field u and the gradient of the velocity field u, readers can refer to [1,2,3,7,14,20,21,23,24]. Naturally, these related results were extended to the liquid crystal flows, see [5,6,11,12,16,17,18,19,22], and references therein. Moreover, these Prodi-Serrin type regularity criteria based on velocity field indicate that the velocity field u plays a more dominate role than the orientation field d does on the regularity of solutions to the system (1.1).

    In [13], Qian established the regularity criterion for system (1.1). That is, if

    T0||u3||qLp+||ω3||bLa+||3uh||bLadt<M, for some  M>0and  3p+2q=1, 3a+2b=2, 3<p,32<a (1.2)

    where uh=(u1,u2), ω3=1u22u1, then the solution is regular. Later, Qian [15] proved the following regularity criterion:

    T0||u3||qLp+||3uh||bLa+||hd||bLadt<M, for some  M>0and  3p+2q=1, 3a+2b=2, 3<p,32<a. (1.3)

    Inspired by the above results, we establish the following regularity criterion:

    Theorem 1.1. Suppose the initial data u0H1(R3) with u0=0, d0H2(R3), and let (u,d) be a smooth solution to the system (1.1) on [0,T) for some 0<T<. If (u,d) satisfies the following condition

    T0||u3||2pp3Lp+||ω3||2q2q3Lq+||hd||2aa3Ladt<,with  3<p, 32<q, 3<a, (1.4)

    then (u,d) can be extended beyond T.

    Remark 1.1. In [20], Zhang has decomposed the integral R3(u)uΔudx into the several integrals containing u3 and ω3 for the Navier-Stokes equation, and the corresponding criterion is

    T0||u3||2pp3Lp+||ω3||2q2q3Lqdt<, with 3<p, 32<q. (1.5)

    So the condition on 3uh in (1.2) can be removed and the condition on 3uh in (1.3) can be replaced. And, the regularity condition of orientation field d is needed to control the term (dd) in view of (1.3).

    Remark 1.2. Compared with the corresponding results (1.2), we replace the conditions on 3uh with hd because we can not control the 2-order higher derivatives term (dd) by only u3 and ω3. Compared with (1.3), we reduce 1-order derivative on orientation field d, which improves the result of (1.3).

    Throughout this paper, the letter C means a generic constant which may vary from line to line, and the directional derivatives of a function φ are denoted by iφ=φxi (i=1,2,3).

    According to the local well-posedness of smooth solution established by Lin and Liu [9], we only need to establish the priori estimates. And we have the following standard L2 estimate (for example, see [17,p.2-3])

    (||u||2L2+||d||2L2)+2T0(||u||2L2+||Δd||2L2+||d|d|||2L2+12|||d|2||2L2)dtC(||u0||2L2+||d0||2L2). (2.1)

    By an argument similar to [17,Eq (2.7)], we have

    12ddt(||u||2L2+||Δd||2L2)+||Δu||2L2+||Δd||2L2=R3(u)uΔudx+R3(dd)ΔudxR3Δ(ud)ΔddxR3Δ(|d|2dd)Δddx:=I1+I2+I3+I4. (2.2)

    In the following part, we estimate the terms above one by one. For I1 referring to [20,(2.1)–(2.7)], (or see [11]), I1 can be decomposed as follows:

    I1=3i,j,k,l=1R3α11ijkl1u1iujkul+3i,j,k,l=1R3α12ijkl1u2iujkul+3i,j,k,l=1R3α21ijkl2u1iujk+3i,j,k,l=1R3α22ijkl2u2iujk=I11+I12+I13+I14,

    where αmnijkl, 1m,n2, 1i,j,k,l3, are suitable integers. And the purpose is to rewrite mun by u3 and ω3, 1m,n2.

    Denoting by Δh=11+22 the horizontal Laplacian, and m=mΔh the two-dimension Riesz transformation, it was shown in [20,(2.2)–(2.4)], that

    Δhu1=2ω313u3, Δhu2=1ω323u3.
    mu1=2ΔhmΔhω3+1ΔhmΔh3u3=2mω3+1m3u3, (2.3)
    mu2=1mω3+2m3u3, 1m,n2. (2.4)

    The term I11 can be expressed as

    I11=3i,j,k,l=1R3α11ijkl1u1iujkuldx=3i,j,k,l=1R3α11ijkl(21ω3+113u3)iujkuldx=3i,j,k,l=1R3α11ijkl21ω3iujkuldx3i,j,k,l=1R3α11ijkl11u3(3iujkul+iuj3kul)dx,

    by (2.3) and integration by parts. Because the Riesz transformation is bounded from Lp(R2) to Lp(R2) for 1<p<, we have

    I11C||u3||Lp||u||L2pp2||2u||L2+C||ω3||Lq||u||2L2qq1C||u3||Lp||u||p3pL2||2u||p+3pL2+C||ω3||Lq||u||2q3qL2||2u||3qL2C(||u3||2pp3Lp+||ω3||2q2q3Lq)||u||2L2+116||Δu||2L2,

    where p>3,q>32.

    The similar argument as I11 can be used to terms I12,I13,I14, therefore it can be deduced that

    I1C(||u3||2pp3Lp+||ω3||2q2q3Lq)||u||2L2+14||Δu||2L2. (2.5)

    For I2 and I3, by using the fact u=0 and integrating by parts several times, we can rewrite it as follows

    I2+I3=R33i,j,k=1[(ijdkjdk+idkjjdk)Δui(ΔuiidkΔdk+2uiidkΔdk+uiiΔdkΔdk)]dx=R33i,j,k=12uiidkΔdkdx=R323j,k=12i=1juiijdkΔdkdxR323j,k=1ju33jdkΔdkdx=I21+I22.
    I21=R323j,k=12i=1juiidkjΔdkdx+R323j,k=12i=1jjuiidkΔdkdx=I211+I212.

    Next, employing the H¨older inequality, interpolation inequality and Young's inequality, we have

    I211ChdLauL2aa2ΔdL2ChdLaua3aL2Δu3aL2ΔdL2Chd2aa3Lau2L2+18Δu2L2+18Δd2L2, (2.6)
    I212ChdLaΔdL2aa2ΔuL2ChdLaΔda3aL2Δd3aL2ΔuL2Chd2aa3LaΔd2L2+18Δu2L2+18Δd2L2. (2.7)

    In the same way, the term I22 can be bounded as follows

    I22=R323j,k=1(u33jjdkΔdk+u33jdkjΔdkdx)dxCu3LpΔdL2pp2ΔdL2Cu3LpΔdp3pL2Δd3pL2ΔdL2Cu32pp3LpΔd2L2+18Δd2L2. (2.8)

    Adding the above inequalities (2.6)–(2.8) together, one obtains

    I2+I3C(u32pp3Lp+hd2aa3La)(u2L2+Δd2L2)+14Δu2L2+38Δd2L2. (2.9)

    For I4, we have

    I4R3|Δd|2+Δ(|d|2d)Δddx||Δd||2L2+C(||Δ|d|2||L2||d||L6||Δd||L3+||Δd||L3||d||2L6||Δd||L3)||Δd||2L2+C||Δd||L3||d||2L6||Δd||L3||Δd||2L2+C||Δd||L2||Δd||L2C||Δd||2L2+18||Δd||2L2. (2.10)

    Hence, inserting (2.5), (2.9) and (2.10) into (2.2) yields

    ddt(||u||2L2+||Δd||2L2)+||Δu||2L2+||Δd||2L2C(1+u32pp3Lp+||ω3||2q2q3Lq+hd2aa3La)(||u||2L2+||Δd||2L2),

    and it could be derived by Gronwall inequality that

    ||u||2L2+||Δd||2L2+T0(||Δu||2L2+||Δd||2L2)dt(||u0||2L2+||Δd0||2L2)exp{T0C(1+u32pp3Lp+||ω3||2q2q3Lq+hd2aa3La)dt}.

    Then the proof of Theorem 1.1 is completed.

    In this paper, we prove a regular criterion of solution for the 3D nematic liquid crystal flows via velocity component u3, vorticity component ω3 and the horizontal derivative components of the orientation field hd, and we hope that the condition on hd will be removed in future study.

    The authors are appreciated for the helpful suggestions of referees.

    All authors declare no conflict of interest in this paper.



    [1] C. S. Cao, Sufficient conditions for the regularity to the 3D Navier-Stokes equations, Discrete Contin. Dyn. Syst., 26 (2010), 1141–1151. http://dx.doi.org/10.3934/dcds.2010.26.1141 doi: 10.3934/dcds.2010.26.1141
    [2] C. S. Cao, E. S. Titi, Regularity criteria for the three-dimensional Navier-Stokes equations, Indiana Univ. Math. J., 57 (2008), 2643–2661.
    [3] B. Q. Dong, Z. F. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components, Nonlinear Anal.: Real World Appl., 11 (2010), 2415–2421. https://doi.org/10.1016/j.nonrwa.2009.07.013 doi: 10.1016/j.nonrwa.2009.07.013
    [4] J. L. Ericksen, Hydrostatic theory of liquid crystals, Arch. Rational Mech. Anal., 9 (1962), 371–378. https://doi.org/10.1007/BF00253358 doi: 10.1007/BF00253358
    [5] J. S. Fan, B. L. Guo, Regularity criterion to some liquid crystal models and the Landau-Lifshitz equations in R3, Sci. China Ser. A-Math., 51 (2008), 1787–1797. https://doi.org/10.1007/s11425-008-0013-3 doi: 10.1007/s11425-008-0013-3
    [6] W. J. Gu, B. Samet, Y. Zhou, A regularity criterion for a simplified non-isothermal model for nematic liquid crystals, Funkcial. Ekvac., 63 (2020), 247–258.
    [7] X. J. Jia, Y. Zhou, Remarks on regularity criteria for the Navier-Stokes equations via one velocity component, Nonlinear Anal.: Real World Appl., 15 (2014), 239–245. https://doi.org/10.1016/j.nonrwa.2013.08.002 doi: 10.1016/j.nonrwa.2013.08.002
    [8] F. H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Commun. Pure Appl. Math., 42 (1989), 789–814. https://doi.org/10.1002/cpa.3160420605 doi: 10.1002/cpa.3160420605
    [9] F. H. Lin, C. Liu, Nonparabolic dissipative systems modeling the flow of liquid crystals, Commun. Pure Appl. Math., 48 (1995), 501–537. https://doi.org/10.1002/cpa.3160480503 doi: 10.1002/cpa.3160480503
    [10] F. M. Leslie, Some constitutive equations for liquid crystals, Arch. Ration. Mech. Anal., 28 (1968), 265–283. https://doi.org/10.1007/BF00251810 doi: 10.1007/BF00251810
    [11] Q. Li, B. Q. Yuan, Blow-up criterion for the 3D nematic liquid crystal flows via one velocity and vorticity components and molecular orientations, AIMS Math., 5 (2020), 619–628. https://doi.org/10.3934/math.2020041 doi: 10.3934/math.2020041
    [12] Q. Liu, J. H. Zhao, S. B. Cui, A regularity criterion for the three-dimensional nematic liquid crystal flow in terms of one directional derivative of the velocity, J. Math. Phys., 52 (2011), 033102. https://doi.org/10.1063/1.3567170 doi: 10.1063/1.3567170
    [13] C. Y. Qian, Remarks on the regularity criterion for the nematic liquid crystal flows in R3, Appl. Math. Lett., 274 (2016), 679–689. https://doi.org/10.1016/j.amc.2015.11.007 doi: 10.1016/j.amc.2015.11.007
    [14] C. Y. Qian, A remark on the global regularity for the 3D Navier-Stokes equations, Appl. Math. Comput., 57 (2016), 126–131. https://doi.org/10.1016/j.aml.2016.01.016 doi: 10.1016/j.aml.2016.01.016
    [15] C. Y. Qian, A further note on the regularity criterion for the 3D nematic liquid crystal flows, Appl. Math. Comput., 290 (2016), 258–266. https://doi.org/10.1016/j.amc.2016.06.011 doi: 10.1016/j.amc.2016.06.011
    [16] R. Y. Wei, Y. Li, Z. A. Yao, Two new regularity criteria for nematic liquid crystal flows, J. Math. Anal. Appl., 424 (2015), 636–650. https://doi.org/10.1016/j.jmaa.2014.10.089 doi: 10.1016/j.jmaa.2014.10.089
    [17] B. Q. Yuan, Q. Li, Note on global regular solution to the 3D liquid crystal equations, Appl. Math. Lett., 109 (2020), 106491. https://doi.org/10.1016/j.aml.2020.106491 doi: 10.1016/j.aml.2020.106491
    [18] B. Q. Yuan, C. Z. Wei, BKM's criterion for the 3D nematic liquid crystal flows in Besov spaces of negative regular index, J. Nonlinear Sci. Appl., 10 (2017), 3030–3037. http://dx.doi.org/10.22436/jnsa.010.06.17 doi: 10.22436/jnsa.010.06.17
    [19] B. Q. Yuan, C. Z. Wei, Global regularity of the generalized liquid crystal model with fractional diffusion, J. Math. Anal. Appl., 467 (2018), 948–958. https://doi.org/10.1016/j.jmaa.2018.07.047 doi: 10.1016/j.jmaa.2018.07.047
    [20] Z. J. Zhang, Serrin-type regularity criterion for the Navier-Stokes equations involving one velocity and one vorticity component, Czech. Math. J., 68 (2018), 219–225. https://doi.org/10.21136/CMJ.2017.0419-16 doi: 10.21136/CMJ.2017.0419-16
    [21] Z. J. Zhang, F. Alzahrani, T. Hayat, Y. Zhou, Two new regularity criteria for the Navier-Stokes equations via two entries of the velocity Hessian tensor, Appl. Math. Lett., 37 (2014), 124–130. https://doi.org/10.1016/j.aml.2014.06.011 doi: 10.1016/j.aml.2014.06.011
    [22] L. L. Zhao, F. Q. Li, On the regularity criteria for 3-D liquid crystal flows in terms of the horizontal derivative components of the pressure, J. Math. Rese. Appl., 40 (2020), 165–168.
    [23] Y. Zhou, M. Pokorný, On the regularity to the solutions of the Navier-Stokes equations via one velocity component, Nonlinearity, 23 (2010), 1097–1107.
    [24] Z. J. Zhang, W. J. Yuan, Y. Zhou, Some remarks on the Navier-Stokes equations with regularity in one direction, Appl. Math., 64 (2019), 301–308. https://doi.org/10.21136/AM.2019.0264-18 doi: 10.21136/AM.2019.0264-18
  • This article has been cited by:

    1. Qiang Li, Mianlu Zou, A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows, 2022, 7, 2473-6988, 9278, 10.3934/math.2022514
    2. Qiang Li, Baoquan Yuan, Two regularity criteria of solutions to the liquid crystal flows, 2023, 0170-4214, 10.1002/mma.9045
    3. Ruirui Wang, Qiang Mu, Yulei Wang, Qiang Li, Yongqiang Fu, Two Logarithmically Improved Regularity Criteria for the 3D Nematic Liquid Crystal Flows, 2022, 2022, 2314-4785, 1, 10.1155/2022/4454497
    4. Zhong Tan, Xinliang Li, Hui Yang, Energy conservation for the weak solutions to the 3D compressible nematic liquid crystal flow, 2024, 44, 0252-9602, 851, 10.1007/s10473-024-0305-x
    5. Ines Ben Omrane, Mourad Ben Slimane, Sadek Gala, Maria Alessandra Ragusa, A new regularity criterion for the 3D nematic liquid crystal flows, 2025, 23, 0219-5305, 287, 10.1142/S0219530524500313
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2113) PDF downloads(82) Cited by(5)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog