In this paper, we obtain a regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows. That is the smooth solution (u,d) can be extended beyond T, provided that ∫T0(||uh||2˙B0∞,∞+||∇d||2˙B0∞,∞)dt<∞.
Citation: Qiang Li, Mianlu Zou. A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows[J]. AIMS Mathematics, 2022, 7(5): 9278-9287. doi: 10.3934/math.2022514
[1] | Qiang Li, Baoquan Yuan . A regularity criterion for liquid crystal flows in terms of the component of velocity and the horizontal derivative components of orientation field. AIMS Mathematics, 2022, 7(3): 4168-4175. doi: 10.3934/math.2022231 |
[2] | Junling Sun, Xuefeng Han . Existence of Sobolev regular solutions for the incompressible flow of liquid crystals in three dimensions. AIMS Mathematics, 2022, 7(9): 15759-15794. doi: 10.3934/math.2022863 |
[3] | Qiang Li, Baoquan Yuan . Blow-up criterion for the 3D nematic liquid crystal flows via one velocity and vorticity components and molecular orientations. AIMS Mathematics, 2020, 5(1): 619-628. doi: 10.3934/math.2020041 |
[4] | Tariq Mahmood, Zhaoyang Shang . Blow-up criterion for incompressible nematic type liquid crystal equations in three-dimensional space. AIMS Mathematics, 2020, 5(2): 746-765. doi: 10.3934/math.2020051 |
[5] | Zhongying Liu, Yang Liu, Yiqi Jiang . Global solvability of 3D non-isothermal incompressible nematic liquid crystal flows. AIMS Mathematics, 2022, 7(7): 12536-12565. doi: 10.3934/math.2022695 |
[6] | Xiufang Zhao . Decay estimates for three-dimensional nematic liquid crystal system. AIMS Mathematics, 2022, 7(9): 16249-16260. doi: 10.3934/math.2022887 |
[7] | Danxia Wang, Ni Miao, Jing Liu . A second-order numerical scheme for the Ericksen-Leslie equation. AIMS Mathematics, 2022, 7(9): 15834-15853. doi: 10.3934/math.2022867 |
[8] | Zhengyan Luo, Lintao Ma, Yinghui Zhang . Optimal decay rates of higher–order derivatives of solutions for the compressible nematic liquid crystal flows in $ \mathbb R^3 $. AIMS Mathematics, 2022, 7(4): 6234-6258. doi: 10.3934/math.2022347 |
[9] | Abdelkader Moumen, Ramsha Shafqat, Azmat Ullah Khan Niazi, Nuttapol Pakkaranang, Mdi Begum Jeelani, Kiran Saleem . A study of the time fractional Navier-Stokes equations for vertical flow. AIMS Mathematics, 2023, 8(4): 8702-8730. doi: 10.3934/math.2023437 |
[10] | Sadek Gala, Maria Alessandra Ragusa . A logarithmically improved regularity criterion for the 3D MHD equations in Morrey-Campanato space. AIMS Mathematics, 2017, 2(1): 16-23. doi: 10.3934/Math.2017.1.16 |
In this paper, we obtain a regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows. That is the smooth solution (u,d) can be extended beyond T, provided that ∫T0(||uh||2˙B0∞,∞+||∇d||2˙B0∞,∞)dt<∞.
In this paper, we consider the following nematic liquid crystal flows in 3-dimensions:
{∂tu+u⋅∇u−μΔu+∇p=−λ∇⋅(∇d⊙∇d),∂td+u⋅∇d=γ(Δd+|∇d|2d),∇⋅u=0,|d|=1,u(x,0)=u0(x),d(x,0)=d0(x), | (1.1) |
here, u=u(x,t)=(u1(x,t),u2(x,t),u3(x,t)) denotes the velocity field, d=d(x,t)=(d1(x,t),d2(x,t),d3(x,t)) denotes the macroscopic average of molecular orientation field and p=p(x,t) is the scalar pressure. And μ, λ, γ are positive constants, which will be assumed to be 1 because their specific values play no roles in our arguments. The notation ∇d⊙∇d represents the 3×3 matrix whose the (i,j)th component is given by ∂idk∂jdk(i,j≤3).
The above system (1.1) is a simplified version of the Ericksen-Leslie equations, which was first introduced by Lin [9] to describe the nematic liquid crystals flows. It is well-known that the system (1.1) has a unique local smooth solution (u,d) provided that initial data u0∈Hs(Rn,Rn) with ∇⋅u0=0 and d0∈Hs+1(Rn,S2) for s≥n. For the regularity criteria readers may refer to [7,8,10,12,14,15,16].
Obviously, the above system (1.1) reduce to the incompressible Navier-Stokes equations when the orientation field d equals a constant. For Navier-Stokes equations, in [2], Dong and Zhang established the following regularity criterion:
∫T0‖∇huh‖˙B0∞,∞dt<∞, | (1.2) |
where ∇h=(∂1,∂2),uh=(u1,u2). And they left a question that had been solved by Gala and Ragusa in [3], which is that whether (1.2) can be replaced by the following condition:
∫T0‖uh‖2˙B0∞,∞dt<∞. | (1.3) |
In this paper, we are aimed to extend the criterion (1.3) to the system (1.1). Our main results are stated as follows:
Theorem 1.1. Let initial data u0∈H3(R3), d0∈H4(R3,S2), ∇⋅u0=0. Suppose(u,d) is a local smooth solution to the equations of (1.1) on [0,T) for some 0<T<∞. If (u,d) satisfies
∫T0(‖uh‖2˙B0∞,∞+‖∇d‖2˙B0∞,∞)dt<∞, | (1.4) |
then (u,d) can be extended beyond T.
Remark 1.1. In [14], Yuan and Wei obtained a regularity condition that is
∫T0(‖ω‖22−r˙B−r∞,∞+||∇d||2˙B0∞,∞)dt<∞, 0<r<2. |
Later, Li and Yuan [7] improved the above regularity condition by
∫T0(||ω3||2p2p−3Lp+||u3||2qq−3Lq+||∇d||2˙B0∞,∞)dt<∞, with 32<p≤∞, 3<q≤∞. |
Compared to the two regularity conditons, (1.4) only contains two components of the velocity field u in Besov spaces, which is an improved result.
In this section, we will give some useful inequalities which play an important role in our proof.
Lemma 2.1. (Page 82 in [1]) Let 1<q<p<∞ and α be a positive real number. Then there exists a constantC such that
‖f‖Lp≤C‖f‖1−θ˙B−α∞,∞‖f‖θ˙Bβq,q,with β=α(pq−1),θ=qp. |
In particular, when β=1, q=2 and p=4, we have α=1 and
‖f‖L4≤C‖f‖12˙B−1∞,∞‖∇f‖12L2. | (2.1) |
Lemma 2.2. (Product and commutator estimate [6,11]) Let s>0, 1<p<∞, and 1p=1p1+1p2=1p3+1p4 with p2, p3∈(1,+∞) and p1, p4∈[1,+∞]. Then,
‖Λs(fg)‖Lp≤C(‖g‖Lp1‖Λsf‖Lp2+‖Λsg‖Lp3‖f‖Lp4), | (2.2) |
‖[Λs,f⋅∇]g‖Lp≤C(‖∇f‖Lp1‖Λsg‖Lp2+‖Λsf‖Lp3‖∇g‖Lp4), | (2.3) |
where [Λs,f]g=Λs(fg)−fΛsg.
Lemma 2.3. ([5], Theorem 2.1) Let s>32, then there exists a constant C such that
‖f‖˙B0∞,2≤C(1+‖f‖˙B0∞,∞log12(1+‖f‖˙Hs)), | (2.4) |
for any f∈˙Hs.
Lemma 2.4. ([13], Lemma 2.3 or page 21 in [17]) Let f∈BMO and g,h∈H1(R3), we have
∫R3f∇(gh)dx≤C‖f‖BMO(‖∇g‖L2‖h‖L2+‖g‖L2‖∇h‖L2). | (2.5) |
Let's recall a result that will be a bridge to prove our conclusion. In [4], Huang and Wang established a BKM type blow-up criterion for the system (1.1). If T is the maximal time, 0<T<∞, one has
∫T0(‖ω‖L∞+||∇d||2L∞)dt=∞, | (3.1) |
where ω=∇×u. Under the conditions (1.4) and (3.1), if we can show
∫T0(||∇Δu||2L2+||Δ2d||2L2)dt<C, | (3.2) |
then Theorem 1.1 is valid by using the Sobolev embedding H2(R3)↪L∞(R3).
Noticing that ∇⋅u=0, we obtain
∫R3(u⋅∇u)⋅udx=0,∫R3∇p⋅udx=0. |
Mutiplying u to Eq (1.1)1 and integrating over R3 yields
12ddt‖u‖2L2+‖∇u‖2L2=−∫R3∇d⋅Δd⋅udx. |
Similarly, multiplying (1.1)2 by −Δd and integrating over R3 one has
12ddt‖∇d‖2L2+‖Δd‖2L2=∫R3u⋅∇d⋅Δd−|∇d|2dΔddx. |
By adding the above equalities and using the facts |d|=1, Δ(|d|2)=0⇒|∇d|2=−d⋅Δd, we have
12ddt(‖u‖2L2+‖∇d‖2L2)+‖∇u‖2L2+‖Δd‖2L2≤||Δd||2L2. | (3.3) |
Integrating (3.3) in time gives
sup0<t<T(||u(t)||2L2+||∇d(t)||2L2)+∫T0||∇u(t)||2L2dt≤C(||u0||2L2+||∇d0||2L2). |
Similarly going on the above process, multiplying (1.1)1 by −Δu and integrating over R3, then applying Δ to Eq (1.1)2, and taking the inner product with Δd, after that adding the resulting equalities, we achieve that
12ddt(||∇u||2L2+||Δd||2L2)+||Δu||2L2+||∇Δd||2L2=∫R3(u⋅∇)u⋅Δudx+∫R3∇⋅(∇d⊙∇d)⋅Δudx−∫R3Δ(u⋅∇d)⋅Δddx+∫R3Δ(|∇d|2d)⋅Δddx:=I1+I2+I3+I4. | (3.4) |
For I1, by the incompressibility condition and integration by parts several times, we conclude that
I1=∫R3(u⋅∇)u⋅Δudx=∫R3(3∑k,j=12∑i=1uj∂jui∂k∂kui+3∑k,j=1uj∂ju3∂k∂ku3)dx=∫R3(3∑k,j=12∑i=1uj∂jui∂k∂kui+3∑k=12∑j=1uj∂ju3∂k∂ku3−123∑k=1∂3u3∂ku3∂ku3)dx=∫R3[(3∑k,j=12∑i=1uj∂jui∂k∂kui+3∑k=12∑j=1uj∂ju3∂k∂ku3+123∑k=1∂ku3(∂1u1+∂2u2)∂ku3]dx=∫R3{3∑k,j=12∑i=1ui∂k(∂kuj∂jui)+3∑k=12∑j=1[−uj∂j(∂ku3∂ku32)+uj∂k(∂ju3∂ku3)]−123∑k=1[u1∂1(∂ku3∂3u3)+u2∂2(∂ku3∂3u3)]}dx≤C∫R3|uh||∇(∇u∇u)|dx. |
With the inequality (2.5), the Sobolev embedding ˙B0∞,2↪BMO and the inequality (2.4), we have
I1≤C‖uh‖BMO‖∇u‖L2‖Δu‖L2≤C‖uh‖2BMO‖∇u‖2L2+14‖Δu‖2L2≤C‖uh‖2˙B0∞,2‖∇u‖2L2+14‖Δu‖2L2≤C[1+||uh||2˙B0∞,∞log(1+‖Δu‖L2)]‖∇u‖2L2+14‖Δu‖2L2. | (3.5) |
Adding I2 and I3 together, it follows by the divergence free condition ∇⋅u=0
I2+I3=∫R33∑i,j,k=1[(∂i∂jdk∂jdk+∂idk∂j∂jdk)Δui−(Δui∂idkΔdk+2∇ui∂i∇dkΔdk+ui∂iΔdkΔdk)]dx=∫R33∑i,j,k=1−2∇ui∂i∇dkΔdkdx≤C∫R3|∇u||∇∇d||Δd|dx. |
Hence, it can be deduced from inequality (2.1) that
I2+I3≤C||∇u||L2||Δd||2L4≤C||∇u||L2||∇d||˙B0∞,∞||∇Δd||L2≤C||∇d||2˙B0∞,∞||∇u||2L2+14||∇Δd||2L2. | (3.6) |
For I4, by the product estimate (2.2) and inequality (2.1), we obtain
I4=∫R3Δ(|∇d|2d)⋅Δddx≤‖Δ(|∇d|2d)‖L43‖Δd‖L4≤C(‖∇Δd‖L2‖∇d‖L4‖d‖L∞+‖Δd‖L4‖∇d‖2L4)‖Δd‖L4≤C‖Δd‖2L4‖∇d‖2L4+18‖∇Δd‖2L2≤C‖∇d‖˙B0∞,∞‖∇Δd‖L2‖d‖L∞‖Δd‖L2+18‖∇Δd‖2L2≤C‖∇d‖2˙B0∞,∞‖Δd‖2L2+14‖∇Δd‖2L2. | (3.7) |
Combining (3.4)–(3.7), one has
ddt(||∇u||2L2+||Δd||2L2)+||Δu||2L2+||∇Δd||2L2≤C(1+||uh||2˙B0∞,∞log(1+‖Δu‖L2)+||∇d||2˙B0∞,∞)(||∇u||2L2+||Δd||2L2). | (3.8) |
Noting (1.4), one concludes that for any small constant ϵ>0, there exists T0<T such that
∫TT0||uh||2˙B0∞,∞dt<ϵ. | (3.9) |
For any T0≤t<T, we set
M(t)=supT0≤s≤t(||Δu(s)||2L2+||∇Δd(s)||2L2). | (3.10) |
Employing Gronwall inequality for (3.8) in the interval [T0,t] and using (3.9), (3.10) yields
||∇u(t)||2L2+||Δd(t)||2L2+∫tT0(||Δu(s)||2L2+||∇Δd(s)||2L2)ds≤(||∇u(T0)||2L2+||Δd(T0)||2L2)exp{C∫tT0(1+||uh||2˙B0∞,∞log(1+‖Δu‖L2)+||∇d||2˙B0∞,∞)ds}≤C0C1exp{C∫tT0||uh||2˙B0∞,∞log(1+‖Δu‖2L2+||∇Δd||2L2)ds}≤C0C1exp{Cϵlog(1+M(t))}≤C0C1(1+M(t))Cϵ, | (3.11) |
where the letter C0 means a constant depending on (||∇u(T0)||2L2+||Δd(T0)||2L2), C1 depends on exp{C∫tT0(1+||∇d||2˙B0∞,∞)ds}, and C is a generic constant which may be different from line to line.
Then we need to bound the norm ‖Δu‖L2 and ‖∇Δd‖L2 so as to confirm the validness of inequality (3.2). Applying Δ and ∇Δ to Eqs (1.1)1 and (1.1)2 respectively, and taking the L2 inner product with (Δu,∇Δd), we obtain that
12ddt(||Δu||2L2+||∇Δd||2L2)+||∇Δu||2L2+||Δ2d||2L2=−∫R3Δ(u⋅∇u)⋅Δudx−∫R3Δ(∇dj⋅Δdj)⋅Δudx−∫R3∇Δ(u⋅∇d)⋅∇Δddx−∫R3∇Δ(|∇d|2d)⋅∇Δddx:=J1+J2+J3+J4. | (3.12) |
According to ∇⋅u=0, H¨older inequality, the commutator estimate (2.3), interpolation inequality and Young inequality, J1 can be estimated by
J1=−∫R3[Δ,u⋅∇]u⋅Δudx≤‖[Δ,u⋅∇]u‖L43‖Δu‖L4≤C(‖∇u‖L2‖Δu‖L4+‖Δu‖L4‖∇u‖L2)‖Δu‖L4≤C‖∇u‖L2‖Δu‖2L4≤C‖∇u‖L2‖∇u‖14L2‖∇Δu‖74L2≤C‖∇u‖10L2+16‖∇Δu‖2L2. | (3.13) |
By the product estimate (2.2), we have
J2=∫R3∂i(∇djΔdj)⋅∂iΔudx≤‖∇(∇dΔd)‖L2‖∇Δu‖L2≤(‖∇d‖L4‖∇Δd‖L4+‖Δd‖L4‖Δd‖L4)‖∇Δu‖L2≤C‖∇d‖2L4‖∇Δd‖2L4+C‖Δd‖4L4+16‖∇Δu‖2L2≤C‖d‖L∞‖Δd‖L2‖Δd‖14L2‖ΔΔd‖74L2+C‖Δd‖52L2‖ΔΔd‖32L2+16‖∇Δu‖2L2≤C‖Δd‖54L2‖Δ2d‖74L2+C‖Δd‖52L2‖Δ2d‖32L2+16‖∇Δu‖2L2≤C‖Δd‖10L2+16‖Δ2d‖2L2+16‖∇Δu‖2L2. | (3.14) |
Similar as (3.13), one may conclude
J3=−∫R3[∇Δ,u⋅∇]d⋅∇Δddx≤‖[∇Δ,u⋅∇]d‖L43‖∇Δd‖L4≤(‖∇u‖L2‖∇Δd‖L4+‖∇d‖L4‖∇Δu‖L2)‖∇Δd‖L4≤C‖∇u‖L2‖∇Δd‖2L4+C‖∇d‖2L4‖∇Δd‖2L4+16‖∇Δu‖2L2≤C‖∇u‖L2‖Δd‖14L2‖ΔΔd‖74L2+C‖d‖L∞‖Δd‖L2‖Δd‖14L2‖ΔΔd‖74L2+16‖∇Δu‖2L2≤C‖∇u‖8L2‖Δd‖2L2+C‖Δd‖10L2+16‖Δ2d‖2L2+16‖∇Δu‖2L2. | (3.15) |
By the product estimate (2.2) and the fact |∇d|2=−d⋅Δd, we infer that
J4=−∫R3∇Δ(|∇d|2d)⋅∇Δddx | (3.16) |
=∫R3Δ(|∇d|2d)⋅(∇∇Δd)dx≤‖Δ(|∇d|2d)‖L2‖∇∇Δd‖L2≤C(‖Δ(|∇d|2)d‖L2+‖|∇d|2Δd‖L2)‖Δ2d‖L2≤C(‖∇d‖L4‖∇Δd‖L4‖d‖L∞+‖d⋅ΔdΔd‖L2)‖Δ2d‖L2 | (3.17) |
≤C(‖∇d‖L4‖∇Δd‖L4+‖Δd‖2L4)‖Δ2d‖L2≤C‖d‖12L∞‖Δd‖12L2||Δd||18L2‖Δ2d‖78L2‖Δ2d‖L2+C‖Δd‖54L2‖Δ2d‖34L2‖Δ2d‖L2≤C‖Δd‖10L2+16‖Δ2d‖2L2. |
Inserting the above estimates (3.13)–(3.16) to (3.12), and combining (3.11), we obtain
ddt(1+‖Δu‖2L2+‖∇Δd‖2L2)+‖∇Δu‖2L2+‖Δ2d‖2L2≤C(‖∇u‖10L2+‖Δd‖10L2+‖∇u‖8L2‖Δd‖2L2)≤CC0C1(1+M(t))5Cϵ. |
Integrating the above inequality with respect to time from T0 to t, T0≤t<T, it follows that
(1+‖Δu(t)‖2L2+‖∇Δd(t)‖2L2)+∫tT0(‖∇Δu‖2L2+‖Δ2d‖2L2)dτ≤1+‖Δu(T0)‖2L2+‖∇Δd(T0)‖2L2+∫tT0CC0C1(1+M(τ))5Cϵdτ=1+‖Δu(T0)‖2L2+‖∇Δd(T0)‖2L2+∫tT0CC0C1(1+M(τ))dτ |
by choosing ϵ=15C. And we can derive from the above inequality and (3.10) that
(1+M(t))+∫tT0(‖∇Δu‖2L2+‖Δ2d‖2L2)dτ≤1+‖Δu(T0)‖2L2+‖∇Δd(T0)‖2L2+∫tT0CC0C1(1+M(τ))dτ. |
Gronwall's inequality implies
(1+M(t))+∫tT0(‖∇Δu‖2L2+‖Δ2d‖2L2)dτ≤(1+‖Δu(T0)‖2L2+‖∇Δd(T0)‖2L2)exp{CC0C1(T−T0)}. |
The proof of Theorem 1.1. is thus completed.
In this paper, we establish a regularity criterion for the 3D nematic liquid crystal flows via velocity component uh and orientation field ∇d in Besov space. Furthermore, there is a lack of references about regularity criterion via component of orientation field d for the system (1.1) and we hope to weaken the condition (1.4) by the components of both u and d in more general spaces in future study.
All authors declare no conflicts of interest in this paper.
[1] | H. Bahouri, J. Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-16830-7 |
[2] |
B. Q. Dong, Z. F. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components, Nonlinear Anal. Real World Appl., 11 (2010), 2415–2421. https://doi.org/10.1016/j.nonrwa.2009.07.013 doi: 10.1016/j.nonrwa.2009.07.013
![]() |
[3] |
S. Gala, M. A. Ragusa, A new regularity criterion for the Navier-Stokes equations in terms of the two components of the velocity, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 1–9. https://doi.org/10.14232/ejqtde.2016.1.26 doi: 10.14232/ejqtde.2016.1.26
![]() |
[4] |
T. Huang, C. Y. Wang, Blow up criterion for nematic liquid crystal flows, Commmun. Part. Differ. Equ., 37 (2012), 875–884. https://doi.org/10.1080/03605302.2012.659366 doi: 10.1080/03605302.2012.659366
![]() |
[5] |
H. Kozono, T. Ogawa, Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251–278. https://doi.org/10.1007/s002090100332 doi: 10.1007/s002090100332
![]() |
[6] |
T. Kato, G. Ponce, Commutator estimates and the Euler and the Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891–907. https://doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704
![]() |
[7] |
Q. Li, B. Q. Yuan, Blow-up criterion for the 3D nematic liquid crystal flows via one velocity and vorticity components and molecular orientations, AIMS Math., 5 (2020), 619–628. https://doi.org/10.3934/math.2020041 doi: 10.3934/math.2020041
![]() |
[8] |
Q. Li, B. Q. Yuan, A regularity criterion for liquid crystal flows in terms of the component of velocity and the horizontal derivative components of orientation field, AIMS Math., 7 (2022), 4168–4175. https://doi.org/10.3934/math.2022231 doi: 10.3934/math.2022231
![]() |
[9] |
F. H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Commun. Pure Appl. Math., 42 (1989), 789–814. https://doi.org/10.1002/cpa.3160420605 doi: 10.1002/cpa.3160420605
![]() |
[10] |
Q. Liu, P. Wang, The 3D nematic liquid crystal equations with blow-up criteria in terms of pressure, Nonlinear Anal. Real World Appl., 40 (2018), 290–306. https://doi.org/10.1016/j.nonrwa.2017.08.008 doi: 10.1016/j.nonrwa.2017.08.008
![]() |
[11] | A. J. Majda, A. L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, Cambridge: Cambridge University Press, 2002. https: //doi.org/10.1115/1.1483363 |
[12] |
B. Q. Yuan, Q. Li, Note on global regular solution to the 3D liquid crystal equations, Appl. Math. Lett., 109 (2020), 106491. https://doi.org/10.1016/j.aml.2020.106491 doi: 10.1016/j.aml.2020.106491
![]() |
[13] |
B. Q. Yuan, X. Li, Regularity of weak solutions to the 3D magneto-micropolar equations in Besov spaces, Acta Appl. Math., 163 (2019), 207–223. https://doi.org/10.1007/s10440-018-0220-z doi: 10.1007/s10440-018-0220-z
![]() |
[14] | B. Q. Yuan, C. Z. Wei, BKM's criterion for the 3D nematic liquid crystal flows in Besov spaces of negative regular index, J. Nonlinear Sci. Appl., 10 (2017), 3030–3037. |
[15] |
B. Q. Yuan, C. Z. Wei, Global regularity of the generalized liquid crystal model with fractional diffusion, J. Math. Anal. Appl., 467 (2018), 948–958. https://doi.org/10.1016/j.jmaa.2018.07.047 doi: 10.1016/j.jmaa.2018.07.047
![]() |
[16] |
J. H. Zhao, BKM's criterion for the 3D nematic liquid crystal flows via two velocity components and molecular orientations, Math. Method. Appl. Sci., 40 (2016), 871–882. https://doi.org/10.1002/mma.4014 doi: 10.1002/mma.4014
![]() |
[17] |
X. X. Zheng, A regularity criterion for the tridimensional Navier-Stokes equations in term of one velocity component, J. Differ. Equ., 256 (2014), 283–309. https://doi.org/10.1016/j.jde.2013.09.002 doi: 10.1016/j.jde.2013.09.002
![]() |
1. | Ruirui Wang, Qiang Mu, Yulei Wang, Qiang Li, Yongqiang Fu, Two Logarithmically Improved Regularity Criteria for the 3D Nematic Liquid Crystal Flows, 2022, 2022, 2314-4785, 1, 10.1155/2022/4454497 | |
2. | Jae-Myoung Kim, Blow-up criteria for the full compressible Navier-Stokes equations involving temperature in Vishik Spaces, 2022, 7, 2473-6988, 15693, 10.3934/math.2022859 | |
3. | Ines Ben Omrane, Mourad Ben Slimane, Sadek Gala, Maria Alessandra Ragusa, A new regularity criterion for the 3D nematic liquid crystal flows, 2025, 23, 0219-5305, 287, 10.1142/S0219530524500313 |