Research article

A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows

  • Received: 07 January 2022 Revised: 19 February 2022 Accepted: 04 March 2022 Published: 09 March 2022
  • MSC : 35B65, 35Q35, 76A15

  • In this paper, we obtain a regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows. That is the smooth solution (u,d) can be extended beyond T, provided that T0(||uh||2˙B0,+||d||2˙B0,)dt<.

    Citation: Qiang Li, Mianlu Zou. A regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows[J]. AIMS Mathematics, 2022, 7(5): 9278-9287. doi: 10.3934/math.2022514

    Related Papers:

    [1] Qiang Li, Baoquan Yuan . A regularity criterion for liquid crystal flows in terms of the component of velocity and the horizontal derivative components of orientation field. AIMS Mathematics, 2022, 7(3): 4168-4175. doi: 10.3934/math.2022231
    [2] Junling Sun, Xuefeng Han . Existence of Sobolev regular solutions for the incompressible flow of liquid crystals in three dimensions. AIMS Mathematics, 2022, 7(9): 15759-15794. doi: 10.3934/math.2022863
    [3] Qiang Li, Baoquan Yuan . Blow-up criterion for the 3D nematic liquid crystal flows via one velocity and vorticity components and molecular orientations. AIMS Mathematics, 2020, 5(1): 619-628. doi: 10.3934/math.2020041
    [4] Tariq Mahmood, Zhaoyang Shang . Blow-up criterion for incompressible nematic type liquid crystal equations in three-dimensional space. AIMS Mathematics, 2020, 5(2): 746-765. doi: 10.3934/math.2020051
    [5] Zhongying Liu, Yang Liu, Yiqi Jiang . Global solvability of 3D non-isothermal incompressible nematic liquid crystal flows. AIMS Mathematics, 2022, 7(7): 12536-12565. doi: 10.3934/math.2022695
    [6] Xiufang Zhao . Decay estimates for three-dimensional nematic liquid crystal system. AIMS Mathematics, 2022, 7(9): 16249-16260. doi: 10.3934/math.2022887
    [7] Danxia Wang, Ni Miao, Jing Liu . A second-order numerical scheme for the Ericksen-Leslie equation. AIMS Mathematics, 2022, 7(9): 15834-15853. doi: 10.3934/math.2022867
    [8] Zhengyan Luo, Lintao Ma, Yinghui Zhang . Optimal decay rates of higher–order derivatives of solutions for the compressible nematic liquid crystal flows in $ \mathbb R^3 $. AIMS Mathematics, 2022, 7(4): 6234-6258. doi: 10.3934/math.2022347
    [9] Abdelkader Moumen, Ramsha Shafqat, Azmat Ullah Khan Niazi, Nuttapol Pakkaranang, Mdi Begum Jeelani, Kiran Saleem . A study of the time fractional Navier-Stokes equations for vertical flow. AIMS Mathematics, 2023, 8(4): 8702-8730. doi: 10.3934/math.2023437
    [10] Sadek Gala, Maria Alessandra Ragusa . A logarithmically improved regularity criterion for the 3D MHD equations in Morrey-Campanato space. AIMS Mathematics, 2017, 2(1): 16-23. doi: 10.3934/Math.2017.1.16
  • In this paper, we obtain a regularity criterion via horizontal components of velocity and molecular orientations for the 3D nematic liquid crystal flows. That is the smooth solution (u,d) can be extended beyond T, provided that T0(||uh||2˙B0,+||d||2˙B0,)dt<.



    In this paper, we consider the following nematic liquid crystal flows in 3-dimensions:

    {tu+uuμΔu+p=λ(dd),td+ud=γ(Δd+|d|2d),u=0,|d|=1,u(x,0)=u0(x),d(x,0)=d0(x), (1.1)

    here, u=u(x,t)=(u1(x,t),u2(x,t),u3(x,t)) denotes the velocity field, d=d(x,t)=(d1(x,t),d2(x,t),d3(x,t)) denotes the macroscopic average of molecular orientation field and p=p(x,t) is the scalar pressure. And μ, λ, γ are positive constants, which will be assumed to be 1 because their specific values play no roles in our arguments. The notation dd represents the 3×3 matrix whose the (i,j)th component is given by idkjdk(i,j3).

    The above system (1.1) is a simplified version of the Ericksen-Leslie equations, which was first introduced by Lin [9] to describe the nematic liquid crystals flows. It is well-known that the system (1.1) has a unique local smooth solution (u,d) provided that initial data u0Hs(Rn,Rn) with u0=0 and d0Hs+1(Rn,S2) for sn. For the regularity criteria readers may refer to [7,8,10,12,14,15,16].

    Obviously, the above system (1.1) reduce to the incompressible Navier-Stokes equations when the orientation field d equals a constant. For Navier-Stokes equations, in [2], Dong and Zhang established the following regularity criterion:

    T0huh˙B0,dt<, (1.2)

    where h=(1,2),uh=(u1,u2). And they left a question that had been solved by Gala and Ragusa in [3], which is that whether (1.2) can be replaced by the following condition:

    T0uh2˙B0,dt<. (1.3)

    In this paper, we are aimed to extend the criterion (1.3) to the system (1.1). Our main results are stated as follows:

    Theorem 1.1. Let initial data u0H3(R3), d0H4(R3,S2), u0=0. Suppose(u,d) is a local smooth solution to the equations of (1.1) on [0,T) for some 0<T<. If (u,d) satisfies

    T0(uh2˙B0,+d2˙B0,)dt<, (1.4)

    then (u,d) can be extended beyond T.

    Remark 1.1. In [14], Yuan and Wei obtained a regularity condition that is

    T0(ω22r˙Br,+||d||2˙B0,)dt<, 0<r<2.

    Later, Li and Yuan [7] improved the above regularity condition by

    T0(||ω3||2p2p3Lp+||u3||2qq3Lq+||d||2˙B0,)dt<, with 32<p, 3<q.

    Compared to the two regularity conditons, (1.4) only contains two components of the velocity field u in Besov spaces, which is an improved result.

    In this section, we will give some useful inequalities which play an important role in our proof.

    Lemma 2.1. (Page 82 in [1]) Let 1<q<p< and α be a positive real number. Then there exists a constantC such that

    fLpCf1θ˙Bα,fθ˙Bβq,q,with β=α(pq1),θ=qp.

    In particular, when β=1, q=2 and p=4, we have α=1 and

    fL4Cf12˙B1,f12L2. (2.1)

    Lemma 2.2. (Product and commutator estimate [6,11]) Let s>0, 1<p<, and 1p=1p1+1p2=1p3+1p4 with p2, p3(1,+) and p1, p4[1,+]. Then,

    Λs(fg)LpC(gLp1ΛsfLp2+ΛsgLp3fLp4), (2.2)
    [Λs,f]gLpC(fLp1ΛsgLp2+ΛsfLp3gLp4), (2.3)

    where [Λs,f]g=Λs(fg)fΛsg.

    Lemma 2.3. ([5], Theorem 2.1) Let s>32, then there exists a constant C such that

    f˙B0,2C(1+f˙B0,log12(1+f˙Hs)), (2.4)

    for any f˙Hs.

    Lemma 2.4. ([13], Lemma 2.3 or page 21 in [17]) Let fBMO and g,hH1(R3), we have

    R3f(gh)dxCfBMO(gL2hL2+gL2hL2). (2.5)

    Let's recall a result that will be a bridge to prove our conclusion. In [4], Huang and Wang established a BKM type blow-up criterion for the system (1.1). If T is the maximal time, 0<T<, one has

    T0(ωL+||d||2L)dt=, (3.1)

    where ω=×u. Under the conditions (1.4) and (3.1), if we can show

    T0(||Δu||2L2+||Δ2d||2L2)dt<C, (3.2)

    then Theorem 1.1 is valid by using the Sobolev embedding H2(R3)L(R3).

    Noticing that u=0, we obtain

    R3(uu)udx=0,R3pudx=0.

    Mutiplying u to Eq (1.1)1 and integrating over R3 yields

    12ddtu2L2+u2L2=R3dΔdudx.

    Similarly, multiplying (1.1)2 by Δd and integrating over R3 one has

    12ddtd2L2+Δd2L2=R3udΔd|d|2dΔddx.

    By adding the above equalities and using the facts |d|=1, Δ(|d|2)=0|d|2=dΔd, we have

    12ddt(u2L2+d2L2)+u2L2+Δd2L2||Δd||2L2. (3.3)

    Integrating (3.3) in time gives

    sup0<t<T(||u(t)||2L2+||d(t)||2L2)+T0||u(t)||2L2dtC(||u0||2L2+||d0||2L2).

    Similarly going on the above process, multiplying (1.1)1 by Δu and integrating over R3, then applying Δ to Eq (1.1)2, and taking the inner product with Δd, after that adding the resulting equalities, we achieve that

    12ddt(||u||2L2+||Δd||2L2)+||Δu||2L2+||Δd||2L2=R3(u)uΔudx+R3(dd)ΔudxR3Δ(ud)Δddx+R3Δ(|d|2d)Δddx:=I1+I2+I3+I4. (3.4)

    For I1, by the incompressibility condition and integration by parts several times, we conclude that

    I1=R3(u)uΔudx=R3(3k,j=12i=1ujjuikkui+3k,j=1ujju3kku3)dx=R3(3k,j=12i=1ujjuikkui+3k=12j=1ujju3kku3123k=13u3ku3ku3)dx=R3[(3k,j=12i=1ujjuikkui+3k=12j=1ujju3kku3+123k=1ku3(1u1+2u2)ku3]dx=R3{3k,j=12i=1uik(kujjui)+3k=12j=1[ujj(ku3ku32)+ujk(ju3ku3)]123k=1[u11(ku33u3)+u22(ku33u3)]}dxCR3|uh||(uu)|dx.

    With the inequality (2.5), the Sobolev embedding ˙B0,2BMO and the inequality (2.4), we have

    I1CuhBMOuL2ΔuL2Cuh2BMOu2L2+14Δu2L2Cuh2˙B0,2u2L2+14Δu2L2C[1+||uh||2˙B0,log(1+ΔuL2)]u2L2+14Δu2L2. (3.5)

    Adding I2 and I3 together, it follows by the divergence free condition u=0

    I2+I3=R33i,j,k=1[(ijdkjdk+idkjjdk)Δui(ΔuiidkΔdk+2uiidkΔdk+uiiΔdkΔdk)]dx=R33i,j,k=12uiidkΔdkdxCR3|u||d||Δd|dx.

    Hence, it can be deduced from inequality (2.1) that

    I2+I3C||u||L2||Δd||2L4C||u||L2||d||˙B0,||Δd||L2C||d||2˙B0,||u||2L2+14||Δd||2L2. (3.6)

    For I4, by the product estimate (2.2) and inequality (2.1), we obtain

    I4=R3Δ(|d|2d)ΔddxΔ(|d|2d)L43ΔdL4C(ΔdL2dL4dL+ΔdL4d2L4)ΔdL4CΔd2L4d2L4+18Δd2L2Cd˙B0,ΔdL2dLΔdL2+18Δd2L2Cd2˙B0,Δd2L2+14Δd2L2. (3.7)

    Combining (3.4)–(3.7), one has

    ddt(||u||2L2+||Δd||2L2)+||Δu||2L2+||Δd||2L2C(1+||uh||2˙B0,log(1+ΔuL2)+||d||2˙B0,)(||u||2L2+||Δd||2L2). (3.8)

    Noting (1.4), one concludes that for any small constant ϵ>0, there exists T0<T such that

    TT0||uh||2˙B0,dt<ϵ. (3.9)

    For any T0t<T, we set

    M(t)=supT0st(||Δu(s)||2L2+||Δd(s)||2L2). (3.10)

    Employing Gronwall inequality for (3.8) in the interval [T0,t] and using (3.9), (3.10) yields

    ||u(t)||2L2+||Δd(t)||2L2+tT0(||Δu(s)||2L2+||Δd(s)||2L2)ds(||u(T0)||2L2+||Δd(T0)||2L2)exp{CtT0(1+||uh||2˙B0,log(1+ΔuL2)+||d||2˙B0,)ds}C0C1exp{CtT0||uh||2˙B0,log(1+Δu2L2+||Δd||2L2)ds}C0C1exp{Cϵlog(1+M(t))}C0C1(1+M(t))Cϵ, (3.11)

    where the letter C0 means a constant depending on (||u(T0)||2L2+||Δd(T0)||2L2), C1 depends on exp{CtT0(1+||d||2˙B0,)ds}, and C is a generic constant which may be different from line to line.

    Then we need to bound the norm ΔuL2 and ΔdL2 so as to confirm the validness of inequality (3.2). Applying Δ and Δ to Eqs (1.1)1 and (1.1)2 respectively, and taking the L2 inner product with (Δu,Δd), we obtain that

    12ddt(||Δu||2L2+||Δd||2L2)+||Δu||2L2+||Δ2d||2L2=R3Δ(uu)ΔudxR3Δ(djΔdj)ΔudxR3Δ(ud)ΔddxR3Δ(|d|2d)Δddx:=J1+J2+J3+J4. (3.12)

    According to u=0, H¨older inequality, the commutator estimate (2.3), interpolation inequality and Young inequality, J1 can be estimated by

    J1=R3[Δ,u]uΔudx[Δ,u]uL43ΔuL4C(uL2ΔuL4+ΔuL4uL2)ΔuL4CuL2Δu2L4CuL2u14L2Δu74L2Cu10L2+16Δu2L2. (3.13)

    By the product estimate (2.2), we have

    J2=R3i(djΔdj)iΔudx(dΔd)L2ΔuL2(dL4ΔdL4+ΔdL4ΔdL4)ΔuL2Cd2L4Δd2L4+CΔd4L4+16Δu2L2CdLΔdL2Δd14L2ΔΔd74L2+CΔd52L2ΔΔd32L2+16Δu2L2CΔd54L2Δ2d74L2+CΔd52L2Δ2d32L2+16Δu2L2CΔd10L2+16Δ2d2L2+16Δu2L2. (3.14)

    Similar as (3.13), one may conclude

    J3=R3[Δ,u]dΔddx[Δ,u]dL43ΔdL4(uL2ΔdL4+dL4ΔuL2)ΔdL4CuL2Δd2L4+Cd2L4Δd2L4+16Δu2L2CuL2Δd14L2ΔΔd74L2+CdLΔdL2Δd14L2ΔΔd74L2+16Δu2L2Cu8L2Δd2L2+CΔd10L2+16Δ2d2L2+16Δu2L2. (3.15)

    By the product estimate (2.2) and the fact  |d|2=dΔd, we infer that

    J4=R3Δ(|d|2d)Δddx (3.16)
    =R3Δ(|d|2d)(Δd)dxΔ(|d|2d)L2ΔdL2C(Δ(|d|2)dL2+|d|2ΔdL2)Δ2dL2C(dL4ΔdL4dL+dΔdΔdL2)Δ2dL2 (3.17)
    C(dL4ΔdL4+Δd2L4)Δ2dL2Cd12LΔd12L2||Δd||18L2Δ2d78L2Δ2dL2+CΔd54L2Δ2d34L2Δ2dL2CΔd10L2+16Δ2d2L2.

    Inserting the above estimates (3.13)–(3.16) to (3.12), and combining (3.11), we obtain

    ddt(1+Δu2L2+Δd2L2)+Δu2L2+Δ2d2L2C(u10L2+Δd10L2+u8L2Δd2L2)CC0C1(1+M(t))5Cϵ.

    Integrating the above inequality with respect to time from T0 to t, T0t<T, it follows that

    (1+Δu(t)2L2+Δd(t)2L2)+tT0(Δu2L2+Δ2d2L2)dτ1+Δu(T0)2L2+Δd(T0)2L2+tT0CC0C1(1+M(τ))5Cϵdτ=1+Δu(T0)2L2+Δd(T0)2L2+tT0CC0C1(1+M(τ))dτ

    by choosing ϵ=15C. And we can derive from the above inequality and (3.10) that

    (1+M(t))+tT0(Δu2L2+Δ2d2L2)dτ1+Δu(T0)2L2+Δd(T0)2L2+tT0CC0C1(1+M(τ))dτ.

    Gronwall's inequality implies

    (1+M(t))+tT0(Δu2L2+Δ2d2L2)dτ(1+Δu(T0)2L2+Δd(T0)2L2)exp{CC0C1(TT0)}.

    The proof of Theorem 1.1. is thus completed.

    In this paper, we establish a regularity criterion for the 3D nematic liquid crystal flows via velocity component uh and orientation field d in Besov space. Furthermore, there is a lack of references about regularity criterion via component of orientation field d for the system (1.1) and we hope to weaken the condition (1.4) by the components of both u and d in more general spaces in future study.

    All authors declare no conflicts of interest in this paper.



    [1] H. Bahouri, J. Y. Chemin, R. Danchin, Fourier analysis and nonlinear partial differential equations, Berlin, Heidelberg: Springer, 2011. https://doi.org/10.1007/978-3-642-16830-7
    [2] B. Q. Dong, Z. F. Zhang, The BKM criterion for the 3D Navier-Stokes equations via two velocity components, Nonlinear Anal. Real World Appl., 11 (2010), 2415–2421. https://doi.org/10.1016/j.nonrwa.2009.07.013 doi: 10.1016/j.nonrwa.2009.07.013
    [3] S. Gala, M. A. Ragusa, A new regularity criterion for the Navier-Stokes equations in terms of the two components of the velocity, Electron. J. Qual. Theory Differ. Equ., 2016 (2016), 1–9. https://doi.org/10.14232/ejqtde.2016.1.26 doi: 10.14232/ejqtde.2016.1.26
    [4] T. Huang, C. Y. Wang, Blow up criterion for nematic liquid crystal flows, Commmun. Part. Differ. Equ., 37 (2012), 875–884. https://doi.org/10.1080/03605302.2012.659366 doi: 10.1080/03605302.2012.659366
    [5] H. Kozono, T. Ogawa, Y. Taniuchi, The critical Sobolev inequalities in Besov spaces and regularity criterion to some semi-linear evolution equations, Math. Z., 242 (2002), 251–278. https://doi.org/10.1007/s002090100332 doi: 10.1007/s002090100332
    [6] T. Kato, G. Ponce, Commutator estimates and the Euler and the Navier-Stokes equations, Commun. Pure Appl. Math., 41 (1988), 891–907. https://doi.org/10.1002/cpa.3160410704 doi: 10.1002/cpa.3160410704
    [7] Q. Li, B. Q. Yuan, Blow-up criterion for the 3D nematic liquid crystal flows via one velocity and vorticity components and molecular orientations, AIMS Math., 5 (2020), 619–628. https://doi.org/10.3934/math.2020041 doi: 10.3934/math.2020041
    [8] Q. Li, B. Q. Yuan, A regularity criterion for liquid crystal flows in terms of the component of velocity and the horizontal derivative components of orientation field, AIMS Math., 7 (2022), 4168–4175. https://doi.org/10.3934/math.2022231 doi: 10.3934/math.2022231
    [9] F. H. Lin, Nonlinear theory of defects in nematic liquid crystals; phase transition and flow phenomena, Commun. Pure Appl. Math., 42 (1989), 789–814. https://doi.org/10.1002/cpa.3160420605 doi: 10.1002/cpa.3160420605
    [10] Q. Liu, P. Wang, The 3D nematic liquid crystal equations with blow-up criteria in terms of pressure, Nonlinear Anal. Real World Appl., 40 (2018), 290–306. https://doi.org/10.1016/j.nonrwa.2017.08.008 doi: 10.1016/j.nonrwa.2017.08.008
    [11] A. J. Majda, A. L. Bertozzi, Vorticity and incompressible flow, Cambridge Texts in Applied Mathematics, Cambridge: Cambridge University Press, 2002. https: //doi.org/10.1115/1.1483363
    [12] B. Q. Yuan, Q. Li, Note on global regular solution to the 3D liquid crystal equations, Appl. Math. Lett., 109 (2020), 106491. https://doi.org/10.1016/j.aml.2020.106491 doi: 10.1016/j.aml.2020.106491
    [13] B. Q. Yuan, X. Li, Regularity of weak solutions to the 3D magneto-micropolar equations in Besov spaces, Acta Appl. Math., 163 (2019), 207–223. https://doi.org/10.1007/s10440-018-0220-z doi: 10.1007/s10440-018-0220-z
    [14] B. Q. Yuan, C. Z. Wei, BKM's criterion for the 3D nematic liquid crystal flows in Besov spaces of negative regular index, J. Nonlinear Sci. Appl., 10 (2017), 3030–3037.
    [15] B. Q. Yuan, C. Z. Wei, Global regularity of the generalized liquid crystal model with fractional diffusion, J. Math. Anal. Appl., 467 (2018), 948–958. https://doi.org/10.1016/j.jmaa.2018.07.047 doi: 10.1016/j.jmaa.2018.07.047
    [16] J. H. Zhao, BKM's criterion for the 3D nematic liquid crystal flows via two velocity components and molecular orientations, Math. Method. Appl. Sci., 40 (2016), 871–882. https://doi.org/10.1002/mma.4014 doi: 10.1002/mma.4014
    [17] X. X. Zheng, A regularity criterion for the tridimensional Navier-Stokes equations in term of one velocity component, J. Differ. Equ., 256 (2014), 283–309. https://doi.org/10.1016/j.jde.2013.09.002 doi: 10.1016/j.jde.2013.09.002
  • This article has been cited by:

    1. Ruirui Wang, Qiang Mu, Yulei Wang, Qiang Li, Yongqiang Fu, Two Logarithmically Improved Regularity Criteria for the 3D Nematic Liquid Crystal Flows, 2022, 2022, 2314-4785, 1, 10.1155/2022/4454497
    2. Jae-Myoung Kim, Blow-up criteria for the full compressible Navier-Stokes equations involving temperature in Vishik Spaces, 2022, 7, 2473-6988, 15693, 10.3934/math.2022859
    3. Ines Ben Omrane, Mourad Ben Slimane, Sadek Gala, Maria Alessandra Ragusa, A new regularity criterion for the 3D nematic liquid crystal flows, 2025, 23, 0219-5305, 287, 10.1142/S0219530524500313
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1555) PDF downloads(74) Cited by(3)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog