Research article Special Issues

A second-order numerical scheme for the Ericksen-Leslie equation

  • Received: 29 March 2022 Revised: 19 June 2022 Accepted: 22 June 2022 Published: 27 June 2022
  • MSC : 35G46

  • In this paper, we consider a finite element approximation for the Ericksen-Leslie model of nematic liquid crystal. Based on a saddle-point formulation of the director vector, a second-order backward differentiation formula (BDF) numerical scheme is proposed, where a pressure-correction strategy is used to decouple the computation of the pressure from that of the velocity. Designing this scheme leads to solving a linear system at each time step. Furthermore, via implementing rigorous theoretical analysis, we prove that the proposed scheme enjoys the energy dissipation law. Some numerical simulations are also performed to demonstrate the accuracy of the proposed scheme.

    Citation: Danxia Wang, Ni Miao, Jing Liu. A second-order numerical scheme for the Ericksen-Leslie equation[J]. AIMS Mathematics, 2022, 7(9): 15834-15853. doi: 10.3934/math.2022867

    Related Papers:

  • In this paper, we consider a finite element approximation for the Ericksen-Leslie model of nematic liquid crystal. Based on a saddle-point formulation of the director vector, a second-order backward differentiation formula (BDF) numerical scheme is proposed, where a pressure-correction strategy is used to decouple the computation of the pressure from that of the velocity. Designing this scheme leads to solving a linear system at each time step. Furthermore, via implementing rigorous theoretical analysis, we prove that the proposed scheme enjoys the energy dissipation law. Some numerical simulations are also performed to demonstrate the accuracy of the proposed scheme.



    加载中


    [1] E. Kirr, M. Wilkinson, A. Zarnescu, Dynamic statistical scaling in the Landau-de Gennes theory of nematic liquid crystals, J. Stat. Phys., 155 (2014), 625–657. https://doi.org/10.1007/s10955-014-0970-6 doi: 10.1007/s10955-014-0970-6
    [2] R. Ignat, L. Nguyen, V. Slastikov, A. Zarnescu, Stability of the melting hedgehog in the landau-de gennes theory of nematic liquid crystals, Arch. Ration. Mech. An., 215 (2015), 633–673. https://doi.org/10.1007/s00205-014-0791-4 doi: 10.1007/s00205-014-0791-4
    [3] J. L. Ericksen, Hydrostatic theory of liquid crystals, Arch. Ration. Mech. An., 9 (1962), 371–378. https://doi.org/10.1007/BF00253358 doi: 10.1007/BF00253358
    [4] F. M. Leslie, Theory of flow phenomena in liquid crystals, Adv. Liq. Cryst., 4 (1979), 1–81. https://doi.org/10.1016/B978-0-12-025004-2.50008-9 doi: 10.1016/B978-0-12-025004-2.50008-9
    [5] J. L. Ericksen, Liquid crystals with variable degree of orientation, Arch. Ration. Mech. An., 113 (1991), 97–120. https://doi.org/10.1007/BF00380413 doi: 10.1007/BF00380413
    [6] F. H. Lin, C. Liu, Existence of solutions for the Ericksen-Leslie system, Arch. Ration. Mech. An., 154 (2000), 135–156. https://doi.org/10.1007/s002050000102 doi: 10.1007/s002050000102
    [7] S. Gala, M. A. Ragusa, A new regularity criterion for strong solutions to the Ericksen-Leslie system, Appl. Math., 43 (2016), 95–103. https://doi.org/10.4064/am2281-1-2016 doi: 10.4064/am2281-1-2016
    [8] D. Coutand, S. Shkoller, Well-posedness of the full Ericksen-Leslie model of nematic liquid crystals, CR Acad. Sci. I-Math., 333 (2001), 919–924. https://doi.org/10.1016/S0764-4442(01)02161-9 doi: 10.1016/S0764-4442(01)02161-9
    [9] A. De Bouard, A. Hocquet, A. Prohl, Existence, uniqueness and regularity for the stochastic Ericksen-Leslie equation, Nonlinearity, 34 (2021), 4057. https://doi.org/10.1088/1361-6544/ac022e doi: 10.1088/1361-6544/ac022e
    [10] S. Bosia, Well-posedness and long term behavior of a simplified Ericksen-Leslie non-autonomous system for nematic liquid crystal flows, Commun. Pure Appl. Anal., 11 (2012), 407. https://doi.org/10.3934/cpaa.2012.11.407 doi: 10.3934/cpaa.2012.11.407
    [11] H. Wu, X. Xu, C. Liu, Asymptotic behavior for a nematic liquid crystal model with different kinematic transport properties, Calc. Var. Partial Dif., 45 (2012), 319–345. https://doi.org/10.1007/s00526-011-0460-5 doi: 10.1007/s00526-011-0460-5
    [12] G. A. Chechkin, T. S. Ratiu, M. S. Romanov, V. N. Samokhin, Existence and uniqueness theorems for the full three-dimensional Ericksen-Leslie system, Math. Mod. Meth. Appl. Sci., 27 (2017), 807–843. https://doi.org/10.1142/S0218202517500178 doi: 10.1142/S0218202517500178
    [13] G. A. Chechkin, T. S. Ratiu, M. S. Romanov, V. N. Samokhin, Existence and uniqueness theorems for the two-dimensional Ericksen-Leslie system, J. Math. Fluid Mech., 18 (2016), 571–589. https://doi.org/10.1007/s00021-016-0250-0 doi: 10.1007/s00021-016-0250-0
    [14] G. A. Chechkin, T. S. Ratiu, M. S. Romanov, V. N. Samokhin, On unique solvability of the full three-dimensional Ericksen-Leslie System, CR Mecanique., 344 (2016), 459–463. https://doi.org/10.1016/j.crme.2016.02.010 doi: 10.1016/j.crme.2016.02.010
    [15] Q. Du, B. Guo, J. Shen, Fourier spectral approximation to a dissipative system modeling the flow of liquid crystals, SIAM J. Numer. Anal., 39 (2002), 735–762. https://doi.org/10.1137/S0036142900373737 doi: 10.1137/S0036142900373737
    [16] V. Girault, F. Guillén-González, Mixed formulation, approximation and decoupling algorithm for a penalized nematic liquid crystals model, Math. Comput., 80 (2011), 781–819. https://doi.org/10.1090/S0025-5718-2010-02429-9 doi: 10.1090/S0025-5718-2010-02429-9
    [17] R. An, J. Su, Optimal error estimates of semi-implicit Galerkin method for time-dependent nematic liquid crystal flows, J. Sci. Comput., 74 (2018), 979–1008. https://doi.org/10.1007/s10915-017-0479-7 doi: 10.1007/s10915-017-0479-7
    [18] R. Becker, X. Feng, A. Prohl, Finite element approximations of the Ericksen-Leslie model for nematic liquid crystal flow, SIAM J. Numer. Anal., 46 (2008), 1704–1731. https://doi.org/10.1137/07068254X doi: 10.1137/07068254X
    [19] K. Cheng, C. Wang, S. M. Wise, An energy stable finite difference scheme for the Ericksen-Leslie system with penalty function and its optimal rate convergence analysis, March 23 (2021).
    [20] R. C. Cabrales, F. Guillén-González, J. V. Gutiérrez-Santacreu, A time-splitting finite-element stable approximation for the Ericksen-Leslie equations, SIAM J. Sci. Comput., 37 (2015), B261–B282. https://doi.org/10.1137/140960979 doi: 10.1137/140960979
    [21] R. Lasarzik, Weak-strong uniqueness for measure-valued solutions to the Ericksen-Leslie model equipped with the Oseen-Frank free energy, J. Math. Anal. Appl., 470 (2019), 36–90. https://doi.org/10.1016/j.jmaa.2018.09.051 doi: 10.1016/j.jmaa.2018.09.051
    [22] W. Wang, P. Zhang, Z. Zhang, The small Deborah Number limit of the Doi-Onsager equation to the Ericksen-Leslie equation, Commun. Pure Appl. Math., 68 (2015), 1326–1398. https://doi.org/10.1002/cpa.21549 doi: 10.1002/cpa.21549
    [23] H. Wu, X. Xu, C. Liu, On the General Ericksen-Leslie System: Parodi's Relation, Well-Posedness and Stability, Arch. Ration. Mech. An., 208 (2013), 59–107. https://doi.org/10.1007/s00205-012-0588-2 doi: 10.1007/s00205-012-0588-2
    [24] P. Lin, C. Liu, H. Zhang, An energy law preserving C0 finite element scheme for simulating the kinematic effects in liquid crystal dynamics, J. Comput. Phys., 227 (2007), 1411–1427. https://doi.org/10.1016/j.jcp.2007.09.005 doi: 10.1016/j.jcp.2007.09.005
    [25] F. M. Guillén-González, J. V. Gutiérrez-Santacreu, A linear mixed finite element scheme for a nematic Ericksen-Leslie liquid crystal model, Esaim-Math. Model. Num., 47 (2013), 1433–1464. https://doi.org/10.1051/m2an/2013076 doi: 10.1051/m2an/2013076
    [26] S. Badia, F. Guillén-González, J. V. Gutiérrez-Santacreu, Finite element approximation of nematic liquid crystal flows using a saddle-point structure, J. Comput. Phys., 230 (2011), 1686–1706. https://doi.org/10.1016/j.jcp.2010.11.033 doi: 10.1016/j.jcp.2010.11.033
    [27] C. Xie, C. J. García-Cervera, C. Wang, Z. Zhou, J. Chen, Second-order semi-implicit projection methods for micromagnetics simulations, J. Comput. Phys., 404 (2020), 109104. https://doi.org/10.1016/j.jcp.2019.109104 doi: 10.1016/j.jcp.2019.109104
    [28] J. Chen, C. Wang, C. Xie, Convergence analysis of a second-order semi-implicit projection method for Landau-Lifshitz equation, Appl. Numer. Math., 168 (2021), 55–74. https://doi.org/10.1016/j.apnum.2021.05.027 doi: 10.1016/j.apnum.2021.05.027
    [29] H. L. Liao, T. Tang, T. Zhou, On Energy Stable, Maximum-Principle Preserving, Second-order BDF scheme with variable steps for the Allen-Cahn Equation, SIAM J. Numer. Anal., 58 (2020), 2294–2314. https://doi.org/10.1137/19M1289157 doi: 10.1137/19M1289157
    [30] W. Chen, X. Wang, Y. Yan, Z. Zhang, A second order BDF numerical scheme with variable steps for the Cahn-Hilliard equation, SIAM J. Numer. Anal., 57 (2019), 495–525. https://doi.org/10.1137/18M1206084 doi: 10.1137/18M1206084
    [31] Y. L. Zhao, M. Li, A. Ostermann, X. M. Gu, An efficient second-order energy stable BDF scheme for the space fractional Cahn-Hilliard equation, BIT., 61 (2021), 1061–1092. https://doi.org/10.1007/s10543-021-00843-6 doi: 10.1007/s10543-021-00843-6
    [32] L. Dong, C. Wang, H. Zhang, Z. Zhang, A positivity-preserving second-order BDF scheme for the Cahn-Hilliard equation with variable interfacial parameters, arXiv preprint arXiv: 2004.03371 (2020). https://doi.org/10.4208/cicp.OA-2019-0037
    [33] Y. Li, Q. Yu, W. Fang, B. Xia, J. Kim, A stable second-order BDF scheme for the three-dimensional Cahn-Hilliard-Hele-Shaw system, Adv. Comput. Math., 47 (2021), 1–18. https://doi.org/10.1007/s10444-020-09835-6 doi: 10.1007/s10444-020-09835-6
    [34] A. M. Alghamdi, S. Gaka, M. A. Ragusa, Beale-Kato-Majda's criterion for magneto-hydrodynamic equations with zero viscosity, Novi Sad J. Math., 50 (2020), 89–97. https://doi.org/10.30755/NSJOM.09142 doi: 10.30755/NSJOM.09142
    [35] J. L. Guermond, P. Minev, S. Jie, An overview of projection methods for incompressible flows, Comput. Method. Appl. M., 195 (2006), 6011–6045. https://doi.org/10.1016/j.cma.2005.10.010 doi: 10.1016/j.cma.2005.10.010
    [36] J. Zhao, X. Yang, J. Li, Q. Wang, Energy stable numerical schemes for a hydrodynamic model of nematic liquid crystals, SIAM J. Sci. Comput., 38 (2016), A3264–A3290. https://doi.org/10.1137/15M1024093 doi: 10.1137/15M1024093
    [37] F. Hecht, O. Pironneau, K. Ohtsuka, FreeFEM++, (2010). http://www.freefem.org/ff++/
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1278) PDF downloads(122) Cited by(0)

Article outline

Figures and Tables

Figures(5)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog