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Abstract: In this paper, we consider a finite element approximation for the Ericksen-Leslie model
of nematic liquid crystal. Based on a saddle-point formulation of the director vector, a second-order
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strategy is used to decouple the computation of the pressure from that of the velocity. Designing this
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1. Introduction

The study of liquid crystal has aroused an increasing interest in biology, physics and engineering
owing to their optical properties. There are different theories to describe the nematic liquid crystal,
including Doi-Onsager theory, Landau-de Gennes theory [1, 2], and Ericksen-Leslie theory [3–5].
Here, we are interested in the Ericksen-Leslie model that simulates the motion of point defects. Let
Ω ∈ Rd (d = 2, 3) be a bounded and open domain with smooth boundary ∂Ω. ΩT = Ω × [0,T ] is
used for all the following equations, where x ∈ Ω, t ∈ [0,T ]. Formulated by a unit director d, the
Ericksen-Leslie model is given as follows:

∂tu + u · ∇u = −∇p + η4u + ∇ ·

(
−

a
2

(dh + hd) +
1
2

(dh − hd)
)
− h∇d,

∂td + u · ∇d −W · d − a (D · d − D : ddd) = γ
(
h+ | ∇d |2 d

)
,

h = 4d, | d |= 1,
∇ · u = 0.

(1.1)
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where u describes the velocity field, d represents the molecular orientation, h describes the molecular

field, W =
1
2

(
∂βuα − ∂αuβ

)
presents the vorticity tensor, D =

1
2

(
∂βuα + ∂αuβ

)
denotes the rate of strain

sensor, a is a geometry parameter of liquid crystal molecules, −
a
2

(dh + hd) +
1
2

(dh − hd) means the
elastic stress tensor associated with liquid crystal dynamics. Some operators are listed as ∇d = ∂ jdi,

4d =
M∑

i=1
∂iid and u · ∇d =

M∑
i=1

ui∂id.

For the Ericksen-Leslie model, some analysis results are pointed out in the literature on the
existence, uniqueness, regularity, and long time asymptotic behavior of the solution [6–14]. There also
exist abundant works on the numerical methods. Spectral method has been discussed in [15]. A linear
fully discrete method and a semi-implicit Euler method are considered for solving a penalized nematic
liquid crystal model in [16]. A linearized semi-implicit Euler finite element method is proposed in [17],
where the temporal and spatial errors are shown by using an error splitting technique. Two fully discrete
finite element methods for the limiting Ericksen-Leslie model are presented in [18]. In addition, the
concave-convex decomposition method of the corresponding energy function is considered in [19]. An
unconditional energy stable time-splitting finite element method for approximating the Ericksen-Leslie
equations is proposed in [20].

From a numerical point of view, the nonconvex constraint | d |= 1 is difficult to achieve at the
discrete level. Then, a penalized version is usually considered, where the constraint | d |= 1 is weakly

performed by adding the Ginzburg-Landau function fε (d) =
1
ε2

(
| d |2 −1

)
d, where ε > 0 is a positive

constant that dictates the interface width. It is convenient to introduce the Lagrange multiplier q =|

d |2 −1, then the penalty function is rewritten by fε (d) =
1
ε2 qd. Therefore, based on a saddle-point

structure of the director vector d, the penalized version of Ericksen-Leslie model reads

∂tu + (u · ∇)u = η4u − ∇p − h∇d + ∇ ·

(
−

a
2

(dh + hd) +
1
2

(dh − hd)
)
,

∂td + (u · ∇)d −W · d − aD · d = γh,

h = 4d −
1
ε2 qd,

1
2
∂tq = d∂td,

∇ · u = 0.

(1.2)

In numerical analysis, we notice that the current numerical analysis are based on the assumption
that the primary component for the time invariant derivative consisting of the term −W · d − aD · d

and −
a
2

(dh + hd) +
1
2

(dh − hd) are neglected due to the complexity of structures. It leads to a much
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simpler version. The model (1.2) is reduced to

∂td + (u · ∇)d = γh,
∂tu + (u · ∇)u = −∇p + η4u − h∇d,

h = 4d −
1
ε2 qd,

1
2
∂tq = d∂td,

∇ · u = 0.

(1.3)

Here, p is the hydrostatic pressure, the relaxation time γ and the fluid viscosity η are the physical
positive constants. The first equation of (1.3) is the Navier-Stokes equation related to the conservation
of the linear momentum. The second equation of (1.3) models the conservation of the angular
momentum. The last equation of (1.3) represents the incompressibility of the liquid.

The boundary conditions are

u(x, t) = 0, ∂nd(x, t) = 0, (x, t) ∈ ∂Ω × (0,T ), (1.4)

where n presents the outward normal vector on the boundary. The initial conditions are

u(x, 0) = u0(x), d(x, 0) = d0(x), x ∈ Ω. (1.5)

Derived from a variational approach coupled with Onsager energy [21,22], the total energy E(u,d)
is the sum of the kinetic energy Ek, the elastic energy Ee and the penalty energy Ep [23]

E (u,d) = Ek + Ee + Eq =

∫
Ω

(
1
2
| u |2 +

1
2
| ∇d |2 +

1
4ε2 | q |

2
)

dx. (1.6)

The penalized version of Ericksen-Leslie model has been extensively investigated. In [24], Lin
introduces an unconditionally stable, nonlinear scheme for the penalized Ericksen-Leslie model. In
[25], based on continuous finite element in space and a semi-implicit integration in time, a fully discrete
scheme is studied to approximate the Ericksen-Leslie model by means of a Ginzburg-Landau penalized
problem. Based on a saddle-point structure of the director vector, Santiago Badia designs a linear semi-
implicit algorithm in [26]. It is noticed that the above papers are first-order numerical schemes in time.
There are few works on the development of high order and energy stable numerical schemes for the
Ericksen-Leslie model.

In recent years, the second-order accurate numerical schemes have attracted more attention, due
to the great advantage over their first-order scheme with regard to numerical accuracy. It is well-
known that the discussion of second-order scheme is more difficult than the first-order one. For these
reasons, second-order energy stable schemes have been highly desirable. The BDF discrete scheme
approximates each term at tn+1. A fully nonlinear scheme is obtained by applying the BDF method
directly. To overcome this difficulty, we propose a semi-implicit scheme, in which the nonlinear terms
are approximated by the second-order extrapolation formula. Such a numerical algorithm leads to
a linear system of equations to solve at each time step. The second-order backward differentiation
formula (BDF) approximation has also been used in many time-dependent problems, such as the

AIMS Mathematics Volume 7, Issue 9, 15834–15853.



15837

Landau-Lifshitz equation [27, 28], Allen-Cahn equation [29], Cahn-Hilliard equation [30–32], and
Cahn-Hilliard-Hele-Shaw equation [33]. But it is still an open question for the Ericksen-Leslie model.
Furthermore, the BDF method can also be used to study magneto-hydrodynamic equations in the
future [34].

In this paper, we propose a second-order scheme to approximate the time derivative for the Ericksen-
Leslie equation. Furthermore, a pressure-correction strategy is used to decouple the computation of
the pressure from that of the velocity [35, 36]. Via implementing rigorous theoretical analysis, we
prove that the proposed scheme enjoys the unconditionally energy stability. Finally, some numerical
simulations are also performed to demonstrate the accuracy of the proposed scheme.

The outline of this article is organized as follows. In Section 2, we give the discrete finite element
scheme; The unconditional stability of proposed numerical scheme is proven rigorously in Section 3;
In Section 4, some numerical simulations are performed to show the accuracy of the scheme; In Section
5, conclusions are drawn.

2. The discrete scheme

2.1. The semi-discrete scheme

In this section, some notations are given in order to prove the following conclusions. The
inner product and its associating norm are denoted by (·, ·) and ‖ · ‖ in L2, respectively. (u, v) =∫

Ω

u (x) v (x) dx, ‖u‖ = ‖u‖L2 , ‖u‖Hm =

∑
|α|≤m

‖Dαu‖2


1
2

.

Then, we introduce the following spaces: Y = H1 (Ω)d , Z = L2 (Ω)d , X = H1
0 (Ω)d = {v ∈

H1 (Ω)d : v∂Ω = 0}, R = L2
0 (Ω) = {r ∈ L2 (Ω) :

∫
Ω

rdx = 0}.
Let N be a positive integer and 0 = t0 < t1 < · · · < tN = T be a uniform partition of [0,T ], where

ti = iτ, τ = ti − ti−1. Let un = u (·, tn), dn = d (·, tn), qn = q (·, tn), pn = p (·, tn). We use a second-order
BDF scheme for n ≥ 1, and use a first-order scheme for n = 1. The semi-discrete numerical scheme
of the penalized Ericksen-Leslie equations can be written as follows. For n ≥ 1, (u,d, v, e, s, b) ∈
X×Z×X×Z×Z×R, given

(
dn−1,un−1, qn−1,dn,un, qn

)
, find

(
ũn+1,dn+1, qn+1,hn+1

)
∈ (X × Y × Z × Z),

such that
Step 1: (

3dn+1 − 4dn + dn−1

2τ
,d

)
+

(
ũn+1 · ∇(2dn − dn−1),d

)
=

(
γhn+1,d

)
,(

3ũn+1 − 4un + un−1

2τ
,u

)
+

(
(2un − un−1) · ∇ũn+1,u

)
= −

(
∇pn,u

)
− η

(
∇ũn+1,∇u

)
−

(
hn+1∇(2dn − dn−1),u

)
,(

hn+1, v
)

+
(
∇dn+1,∇v

)
+

1
ε2

(
qn+1(2dn − dn−1), v

)
= 0,

1
2

(
3qn+1 − 4qn + qn−1

2τ
, e

)
=

((
2dn − dn−1

) 3dn+1 − 4dn + dn−1

2τ
, e

)
,

ũn+1 |∂Ω= 0, ∂ndn+1 |∂Ω= 0.

(2.1)
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Find (un+1, pn+1) as the solution of
Step 2: 3

(
un+1 − ũn+1

)
2τ

, s

 +
(
∇

(
pn+1 − pn

)
, s

)
= 0, (2.2)(

∇ · un+1, b
)

= 0, un+1 · n |∂Ω= 0.

For n = 1, given
(
u0,d0, q0

)
, find

(
u1,d1, q1,h1

)
∈ (X × Y × Z × Z) as the solution of(

d1 − d0

τ
,d

)
+

(
u1 · ∇d0,d

)
=

(
γh1,d

)
,(

u1 − u0

τ
,u

)
+

(
u0 · ∇u1,u

)
= −

(
∇p1, v

)
− η

(
∇u1,∇u

)
−

(
h1∇d0,u

)
,(

h1, v
)

+
(
∇d1,∇v

)
+

1
ε2

(
q1d0, v

)
= 0,

1
2

(
q1 − q0

τ
, e

)
=

(
d0 d1 − d0

τ
, e

)
,(

∇ · u1, b
)

= 0, u1 · n |∂Ω= 0,

u1 |∂Ω= 0, ∂nd1 |∂Ω= 0.

(2.3)

2.2. Fully discrete scheme

Let Πh be a set of triangulations of Ω with Ω = ∪k∈Πhk, where h → 0 is assumed to be uniformly
regular. Here h = sup

k∈Πh

diam (k). We denote the finite element spaces Xh ∈ X,Yh ∈ Y,Zh ∈ Z,Rh ∈ R.

Pressure stability relies on the inf-sup condition. There exists β > 0 with no restriction of the mesh

grid size h such that inf
rh∈Rh

sup
vh∈Xh

(rh,∇ · vh)
‖rh‖0‖vh‖1

≥ β. The strategy of pressure-correction is time-marching

method which is composed of two steps. In the first step, the pressure is treated explicitly. In the
second step, the pressure is projected by the former velocity onto the space Xh. For n ≥ 1, given(
un−1

h ,dn−1
h , qn−1

h ,un
h,d

n
h, q

n
h

)
, find

(
dn+1

h , ũn+1
h , qn+1

h ,hn+1
h

)
∈ (Yh × Xh × Zh × Zh) as the solution of

Step 1: (
3dn+1

h − 4dn
h + dn−1

h

2τ
,dh

)
+

(
ũn+1

h · ∇(2dn
h − dn−1

h ),dh

)
=

(
γhn+1

h ,dh

)
,(

3ũn+1
h − 4un

h + un−1
h

2τ
,uh

)
+

(
(2un

h − un−1
h ) · ∇ũn+1

h ,uh

)
= −

(
∇pn

h,uh
)
− η

(
∇ũn+1

h ,∇uh

)
−

(
hn+1

h ∇
(
2dn

h − dn−1
h

)
,uh

)
,(

hn+1
h , vh

)
+

(
∇dn+1

h ,∇vh

)
+

1
ε2

(
qn+1

h

(
2dn

h − dn−1
h

)
, vh

)
= 0,

1
2

(
3qn+1

h − 4qn
h + qn−1

h

2τ
, eh

)
=

((
2dn

h − dn−1
h

) 3dn+1
h − 4dn

h + dn−1
h

2τ
, eh

)
,

ũn+1
h |∂Ω= 0, ∂ndn+1

h |∂Ω= 0.

(2.4)
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Find un+1
h , pn+1

h as the solution of
Step 2: 3

(
un+1

h − ũn+1
h

)
2τ

, sh

 +
(
∇

(
pn+1

h − pn
h

)
, sh

)
= 0, (2.5)(

∇ · un+1
h , bh

)
= 0, un+1

h · n |∂Ω= 0.

For n=1, given (u0
h,d

0
h, q

0
h), find (u1

h,d
1
h, q

1
h,h

1
h) ∈ (Xh × Yh × Zh × Zh) as the solution of(d1

h − d0
h

τ
,dh

)
+

(
u1

h · ∇d0
h,dh

)
=

(
γh1

h,dh

)
,(u1

h − u0
h

τ
,uh

)
+

(
u0

h · ∇u1
h,uh

)
= −

(
∇p1

h, v
)
− η

(
∇u1

h,∇uh

)
−

(
h1

h∇d0
h,uh

)
,(

h1
h, vh

)
+

(
∇d1

h,∇vh

)
+

1
ε2 (q1

hd0
h, vh) = 0,

1
2

(
q1

h − q0
h

τ
, eh

)
=

(
d0

h

d1
h − d0

h

τ
, eh

)
,(

∇ · u1
h, b

)
= 0, u1

h · n |∂Ω= 0,

u1
h |∂Ω= 0, ∂nd1

h |∂Ω= 0.

(2.6)

3. The analysis of stability

In this section, we prove that the fully discrete scheme is unconditionally energy stable.

Theorem 3.1. For all τ > 0 and 1 ≤ n ≤ N − 1, the numerical scheme (2.4)-(2.5) is unconditionally
energy stable and satisfies the following discrete energy law

Ξn+1,n +
1
2
‖un+1

h − 2un
h + un−1

h ‖
2 +

1
2
‖∇(dn+1

h − 2dn
h + dn−1

h )‖2 +
1

4ε2 ‖q
n+1
h − 2qn

h + qn−1
h ‖

2

+ 2τη‖∇ũn+1
h ‖

2 +
2τ
γ
‖wn+1

h ‖
2 +

3
2
‖ũn+1

h − un+1
h ‖

2 ≤ Ξn,n−1,
(3.1)

where

Ξn+1,n =
1
2
‖un+1

h ‖
2 +

1
2
‖∇dn+1

h ‖
2 +

1
4ε2 ‖q

n+1
h ‖

2 +
1
2
‖2un+1

h − un
h‖

2 +
1
2
‖∇2dn+1

h − ∇dn
h‖

2

+
1

4ε2 ‖2qn+1
h − qn

h‖
2 +

2τ2

3
‖∇pn+1

h ‖
2.

Proof. By denoting auxiliary variable

wn+1
h =

3dn+1
h − 4dn

h + dn−1
h

2τ
+ ũn+1

h · ∇
(
2dn

h − dn−1
h

)
,
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the following identity holds(
ũn+1

h · ∇(2dn
h − dn−1

h ),
3dn+1

h − 4dn
h + dn−1

h

2τ
+ ũn+1

h · ∇
(
2dn

h − dn−1
h

))
=

∫
Ω

ũn+1
h · ∇

(
2dn

h − dn−1
h

)
·

(
3dn+1

h − 4dn
h + dn−1

h

2τ
+ ũn+1

h · ∇
(
2dn

h − dn−1
h

))
=

∫
Ω

ũn+1
h · ∇

(
2dn

h − dn−1
h

)
· wn+1

h

=‖wn+1
h ‖

2 −

(
3dn+1

h − 4dn
h + dn−1

h

2τ
,wn+1

h

)
.

(3.2)

Choosing dh =
3dn+1

h − 4dn
h + dn−1

h

2τ
, we have

(
3dn+1

h − 4dn
h + dn−1

h

2τ
,wn+1

h

)
=

(
γhn+1

h ,
3dn+1

h − 4dn
h + dn−1

h

2τ

)
. (3.3)

Form (3.2)-(3.3), and taking dh = ũn+1
h · ∇

(
2dn

h − dn−1
h

)
, we arrive at

(
ũn+1

h · ∇(2dn
h − dn−1

h ),hn+1
h

)
=

1
γ

(
wn+1

h , ũn+1
h · ∇(2dn

h − dn−1
h )

)
=

1
γ
‖wn+1

h ‖
2 −

1
γ

(
3dn+1

h − 4dn
h + dn−1

h

2τ
,wn+1

h

)
=

1
γ
‖wn+1

h ‖
2 −

(
hn+1

h ,
3dn+1

h − 4dn
h + dn−1

h

2τ

)
.

(3.4)

Using uh = ũn+1
h , we gain(

3ũn+1
h − 4un

h + un−1
h

2τ
, ũn+1

h

)
+

(
∇pn

h, ũ
n+1
h

)
+ η‖∇ũn+1

h ‖
2 +

1
γ
‖wn+1

h ‖
2 −

(
hn+1

h ,
3dn+1

h − 4dn
h + dn−1

h

2τ

)
= 0.

(3.5)

Taking vh =
3dn+1

h − 4dn
h + dn−1

h

2τ
, we obtain

(
hn+1

h ,
3dn+1

h − 4dn
h + dn−1

h

2τ

)
+

(
∇dn+1

h ,∇
3dn+1

h − 4dn
h + dn−1

h

2τ

)
+

1
ε2

(
qn+1

h

(
2dn

h − dn−1
h

)
,

3dn+1
h − 4dn

h + dn−1
h

2τ

)
= 0.

(3.6)

Setting eh =
1
ε2 qn+1

h , we easily get

1
2ε2

(
3qn+1

h − 4qn
h + qn−1

h

2τ
, qn+1

h

)
=

1
ε2

((
2dn

h − dn−1
h

) 3dn+1
h − 4dn

h + dn−1
h

2τ
, qn+1

h

)
. (3.7)
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According to (2.5), we easily obtain
(
ũn+1

h , v
)

=
(
un+1

h , v
)
. Then applying the fact (a − b, a) =

1
2

(
‖a‖2 − ‖b‖2 + ‖a − b‖2

)
, we have

(
3ũn+1

h − 4un
h + un−1

h

2τ
, ũn+1

h

)
=

(
3ũn+1

h − 3un+1
h

2τ
, ũn+1

h

)
+

(
3un+1

h − 4un
h + un−1

h

2τ
,un+1

h

)
=

3
4τ

(
‖ũn+1

h ‖
2 − ‖un+1

h ‖
2 + ‖ũn+1

h − un+1
h ‖

2
)

+

(
3un+1

h − 4un
h + un−1

h

2τ
,un+1

h

)
.

(3.8)

To approach the pressure term, we rewrite (2.5) as

3
2τ

un+1
h + ∇pn+1

h =
3
2τ

ũn+1
h + ∇pn

h. (3.9)

By squaring both sides of the above equation, we can derive

9
4τ2 ‖u

n+1
h ‖

2 + ‖∇pn+1
h ‖

2 =
9

4τ2 ‖ũ
n+1
h ‖

2 + ‖∇pn
h‖

2 +
3
τ

(
ũn+1

h ,∇pn
h

)
. (3.10)

Then, we have
3
4τ

(
‖un+1

h ‖
2 − ‖ũn+1

h ‖
2
)

+
τ

3

(
‖∇pn+1

h ‖
2 − ‖∇pn

h‖
2
)

=
(
ũn+1

h ,∇pn
h

)
. (3.11)

Noticing the fact

(3a − 4b + c, a) =
1
2

(
‖a‖2 − ‖b‖2 + ‖2a − b‖2 − ‖2b − c‖2 + ‖a − 2b + c‖2

)
,

we deduce (
3un+1

h − 4un
h + un−1

h

2τ
,un+1

h

)
=

1
4τ

(
‖un+1

h ‖
2 − ‖un

h‖
2 + ‖2un+1

h − un
h‖

2

−‖2un
h − un−1

h ‖
2 + ‖un+1

h − 2un
h + un−1

h ‖
2
)
.

(3.12)

Similarly, we get(
∇

3dn+1
h − 4dn

h + dn−1
h

2τ
,∇dn+1

h

)
=

1
4τ

(
‖∇dn+1

h ‖
2 − ‖∇dn

h‖
2 + ‖2∇dn+1

h − ∇dn
h‖

2

−‖2∇dn
h − ∇dn−1

h ‖
2 + ‖∇(dn+1

h − 2dn
h + dn−1

h )‖2
)
.

(3.13)

1
2ε2

(
3qn+1

h − 4qn
h + qn−1

h

2τ
, qn+1

h

)
=

1
8τε2

(
‖qn+1

h ‖
2 − ‖qn

h‖
2 + ‖2qn+1

h − qn
h‖

2

−‖2qn
h − qn−1

h ‖
2 + ‖qn+1

h − 2qn
h + qn−1

h ‖
2
)
.

(3.14)
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Combining (3.5)–(3.7) and (3.11), then multiplying both sides by 2τ, we conclude

1
2

(
‖un+1

h ‖
2 + ‖2un+1

h − un
h‖

2 + ‖un+1
h − 2un

h + un−1
h ‖

2
)

+
1
2

(
‖∇dn+1

h ‖
2 + ‖∇(2dn+1

h − dn
h)‖2 + ‖∇(dn+1

h − 2dn
h + dn−1

h )‖2
)

+
1

4ε2

(
‖qn+1

h ‖
2 + ‖2qn+1

h − qn
h‖

2 + ‖qn+1
h − 2qn

h + qn−1
h ‖

2
)

+
3
2
‖ũn+1

h − un+1
h ‖

2 + 2τη‖∇ũn+1
h ‖

2 +
2τ
γ
‖wn+1

h ‖
2 +

2τ2

3
‖∇pn+1

h ‖
2

≤
1
2

(
‖un

h‖
2 + ‖2un

h − un−1
h ‖

2
)

+
1
2

(
‖∇dn

h‖
2 + ‖∇(2dn

h − dn−1
h )‖2

)
+

1
4ε2

(
‖qn

h‖
2 + ‖2qn

h − qn−1
h ‖

2
)

+
2τ2

3
‖∇pn

h‖
2.

(3.15)

Finally, we can deduce the discrete energy law. The proof is complete. �

Corollary 3.1. The following estimates hold for some constant C > 0 independent of τ

max
1≤n≤N−1

(
‖un+1

h ‖
2 + ‖∇dn+1

h ‖
2 + ‖qn+1

h ‖
2
)
≤ C,

N−1∑
n=1

(
‖2un+1

h − un
h‖

2 + ‖∇2dn+1
h − ∇dn

h‖
2 + ‖2qn+1

h − qn
h‖

2
)
≤ C.

(3.16)

Proof. Summing the discrete energy inequality (3.1) from n = 1 to N − 1, we obtain

ΞN,N−1 +

N−1∑
n=1

1
2

(
‖un+1

h − 2un
h + un−1

h ‖
2 + ‖∇

(
dn+1

h − 2dn
h + dn−1

h

)
‖2

)
+

N−1∑
n=1

1
4ε2 ‖q

n+1
h − 2qn

h + qn−1
h ‖

2

+

N−1∑
n=1

(
2τ
γ
‖wn+1

h ‖
2 + 2τη‖∇un+1

h ‖
2 +

3
2
‖ũn+1

h − un+1
h ‖

2
)
≤ Ξ1,0.

(3.17)

The proof is complete. �

The above second order scheme consists of three temporal levels n + 1, n, n− 1. Thus, n ≥ 1. Then,
we have to start with the initial values.

Theorem 3.2. For all τ > 0, the numerical scheme (2.6) is unconditionally energy stable and satisfies
the following discrete energy law

E1 +
1
2
‖u1

h − u0
h‖

2 + τη‖∇u1
h‖

2 +
τ

γ
‖w1

h‖
2 +

1
2
‖∇d1

h − ∇d0
h‖

2 +
1

4ε2 ‖q
1
h − q0

h‖
2 ≤ E0, (3.18)

where

E1 =
1
2
‖u1

h‖
2 +

1
2
‖∇d1

h‖
2 +

1
4ε2 ‖q

1
h‖

2.

AIMS Mathematics Volume 7, Issue 9, 15834–15853.



15843

Proof. By defining auxiliary variable

w1
h =

d1
h − d0

h

τ
+ (u1

h · ∇)d0
h,

the following identity holds (
u1

h · ∇d0
h,

d1
h − d0

h

τ
+ u1

h · ∇d0
h

)
=

∫
Ω

(
u1

h · ∇d0
h,

d1
h − d0

h

τ
+ u1

h · ∇d0
h

)
=

∫
Ω

u1
h · ∇d0

h,w
1
h

=‖w1
h‖

2 −

(d1
h − d0

h

τ
,w1

h

)
.

(3.19)

Choosing dh =
d1

h − d0
h

τ
, we have

(
w1

h,
d1

h − d0
h

τ

)
=

(
γh1

h,
d1

h − d0
h

τ

)
. (3.20)

Setting dh = u1
h · ∇d0

h, we arrive at

(
h1

h,u
1
h · ∇d0

h

)
=

1
γ

(
w1

h,u
1
h · ∇d0

h

)
=

1
γ

(
‖w1

h‖
2 − (

d1
h − d0

h

τ
,w1

h)
)

=
1
γ
‖w1

h‖
2 −

(
h1

h,
d1

h − d0
h

τ

)
. (3.21)

By replacing uh = u1
h, we get(u1
h − u0

h

τ
,u1

h

)
+ η‖∇u1

h‖
2 + (∇p1

h,u
1
h) +

1
γ
‖w1

h‖
2 −

(
h1

h,
d1

h − d0
h

τ

)
= 0. (3.22)

Taking vh =
d1

h − d0
h

τ
, we obtain

(
h1

h,
d1

h − d0
h

τ

)
+

(
∇d1

h,∇
d1

h − d0
h

τ

)
+

1
ε2

(
q1

hd0
h,

d1
h − d0

h

τ

)
= 0. (3.23)

Setting eh =
1
ε2 q1

h, we get

1
2ε2

(
q1

h − q0
h

τ
, q1

h

)
=

1
ε2

(
d0

h

d1
h − d0

h

τ
, q1

h

)
. (3.24)

Noticing the fact

(a − b, a) =
1
2

(
‖a‖2 − ‖b‖2 + ‖a − b‖2

)
, (3.25)
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we deduce (u1
h − u0

h

τ
,u1

h

)
=

1
2τ

(
‖u1

h‖
2 − ‖u0

h‖
2 + ‖u1

h − u0
h‖

2
)
. (3.26)

Similarly, we easily have(
∇

d1
h − d0

h

τ
,∇d1

h

)
=

1
2τ

(
‖∇d1

h‖
2 − ‖∇d0

h‖
2 + ‖∇d1

h − ∇d0
h‖

2
)
, (3.27)

1
2ε2

(
q1

h − q0
h

τ
, q1

h

)
=

1
4τε2

(
‖q1

h‖
2 − ‖q0

h‖
2 + ‖q1

h − q0
h‖

2
)
. (3.28)

Combining (3.22)-(3.24), then multiplying τ at two sides, we obtain

1
2

(
‖u1

h‖
2 + ‖u1

h − u0
h‖

2
)

+
1
2

(
‖∇d1

h‖
2 + ‖∇d1

h − ∇d0
h‖

2
)

+
1

4ε2

(
‖q1

h‖
2 + ‖q1

h − q0
h‖

2
)

+ τη‖∇u1
h‖

2 +
τ

γ
‖w1

h‖
2

≤
1
2
‖u0

h‖
2 +

1
2
‖∇d0

h‖
2 +

1
4ε2 ‖q

0
h‖

2.

(3.29)

Finally, we can deduce the discrete energy law. The proof is complete. �

4. Numerical simulations

In this section, we perform some numerical simulations to show the accuracy and stability for the
proposed scheme. All numerical simulations are carried out by using the Freefem++ package [37].

4.1. The order of convergence

In this subsection, we perform numerical simulations about the spacial and temporal convergence
rates. We use the differences between the solutions on a coarse mesh and a fine mesh to calculate the
error ξh

u = uh(x,T ) − u h
2 (x,T ), ξh

d = dh(x,T ) − d h
2 (x,T ), and obtain the convergence rate log2(ξh

u/ξ
h
2
u ),

log2(ξh
d/ξ

h
2
d ). The problem of Ericksen-Leslie equation is in the domain [−1, 1] × [−1, 1], and fix the

parameter T = 1.
We compute the reference solution. The initial conditions are

u0 = 0, d =
d̃√

| d̃ |2 +ε2
, d̃ = (x2 + y2 − 0.25, y).

Table 1 shows the spacial convergence rates of ‖ξh
u‖H1 and ‖ξh

d‖H1 . Parameters are set as γ = 0.35, η =

0.7, ε = 0.2, h = 0.25, 0.125, 0.0625, 0.03125, 0.015625. The spacial convergence orders computed
from the errors ‖ξh

u‖H1 and ‖ξh
d‖H1 are close to 2. We get the same conclusion in comparison to variable

ε in Tables 2–3, where ε = 0.23, 0.25.
Table 4 shows the temporal convergence rates of ‖ξh

u‖H1 and ‖ξh
d‖H1 . Parameters are set as γ = 0.11,

η = 0.82, ε = 0.197, τ = 0.25, 0.125, 0.0625, 0.03125. The temporal convergence orders computed
from the errors ‖ξh

u‖H1 and ‖ξh
d‖H1 are close to 2. We get the same conclusion in comparison to variable

ε in Tables 5 and 6, where ε = 0.198, 0.2. These numerical results show that our numerical algorithm
is correct.

AIMS Mathematics Volume 7, Issue 9, 15834–15853.



15845

Table 1. The spacial convergence rate.
h ‖ξh

d‖H1 d − rate ‖ξh
u‖H1 u − rate

1
8 0.0052417 0.000554922
1
16 0.00138405 1.92114 3.01391e-005 1.99991
1
32 0.000368093 1.91076 2.07449e-006 1.95378
1
64 9.52752e-005 1.94990 1.41318e-007 1.97836

Table 2. The spacial convergence rate.
h ‖ξh

d‖H1 d − rate ‖ξh
u‖H1 u − rate

1
8 0.00377 0.000263574
1
16 0.000958644 1.9755 1.66206e-005 1.9829
1
32 0.000250082 1.9386 1.11383e-006 1.94807
1
64 6.39005e-005 1.9685 7.59723e-008 1.97425

Table 3. The spacial convergence rate.
h ‖ξh

d‖H1 d − rate ‖ξh
u‖H1 u − rate

1
8 0.00327403 0.000167689
1
16 0.000830768 1.97855 1.15955e-005 1.96774
1
32 0.000215936 1.94384 7.88375e-007 1.93576
1
64 5.49737e-005 1.97379 5.46851e-008 1.96573

Table 4. The temporal convergence rate.

τ ‖ξh
d‖H1 d − rate ‖ξh

u‖H1 u − rate
1
8 0.989335 0.855796
1

16 0.249452 1.98770 0.187965 1.95815
1

32 0.0669388 1.89785 0.0790722 1.98853

Table 5. The temporal convergence rate.

τ ‖ξh
d‖H1 d − rate ‖ξh

u‖H1 u − rate
1
8 0.962704 0.8361
1

16 0.243952 1.98050 0.18507 1.92461
1

32 0.0656995 1.89264 0.0769856 1.99926

Table 6. The temporal convergence rate.

τ ‖ξh
d‖H1 d − rate ‖ξh

u‖H1 u − rate
1
8 0.912725 0.798272
1

16 0.233121 1.96910 0.178551 1.86575
1

32 0.0633654 1.87931 0.0728677 2.02147

4.2. The dissipation of energy

In this part, we perform the energy decay for the proposed scheme. The kinetic energy and elastic
energy of the proposed scheme can be written as

εu(t) =
1
2
‖u‖2, εd(t) =

1
2
‖∇d‖2.

AIMS Mathematics Volume 7, Issue 9, 15834–15853.



15846

The problem Ericksen-Leslie hydrodynamic model is in domain [−1, 1] × [−1, 1], and sets the
parameters T = 0.5, γ = η = 1. The initial conditions are

u0 = 0, d = (sin(2π(cos x − sin y)), cos(2π(cos x − sin y))).

Figure 1 describes the evolution of elasticity and kinetic energy under different values of variable ε,
where ε = 0.09, 0.1, 0.15, 0.2. It indicates that the proposed scheme is unconditionally energy stable.
Furthermore, we find that the energies are not sensitive to ε, The velocity is dissipated, and the elastic
energy shows a linear and slow decay.

We consider problem with γ = 1, 0.5 and n = 16, 32, which are shown in Figure 2. The elastic
energy and kinetic energy are sensitive to γ. With regard to η and τ, we also plot the results for
different values of εd(t) and εu(t) in Figure 3. The decay curves of elastic energy is almost identical in
all cases. As can be seen from the kinetic energy curve, the choice of parameters η and γ has a great
influence on the results.
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Figure 1. The elastic energy εd(t) and the kinetic energy εu(t). The results are shown for
different values of ε.
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Figure 2. The elastic energy εd(t) and the kinetic energy εu(t). The results are shown for
different values of γ and n.
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Figure 3. The elastic energy εd(t) and the kinetic energy εu(t). The results are shown for
different values of η and τ.

4.3. Annihilation and stable defects

The numerical experiments are associated with the annihilation of singularities. We will consider
two numerical simulations consisting of the motions of two singularities. We perform the evolutions
of director field d over time under certain conditions.
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The director field has an influence on the stress tensors that can govern the velocity fluid and the
disappearance of singularity. Thus we can conclude that the director field plays an important role in
the annihilation of singularities. For the different initial values of d, we give the numerical examples
which are related to the annihilation of the singularities. We perform the evolution of the singularities
until the simulation reaches the steady state.

Example 1:

In the test, we will consider numerical experience consisting of the motion of two singularities. We

set the domain as [−1, 1] × [−1, 1], and the parameters are set as τ = 0.0625, h =
1

10
, γ = η = 1. The

initial conditions are

u0 = 0, d =
d̃√

| d̃ |2 +ε2
.

The evolution of singularities is depicted in Figure 4. We present snapshots of the director field d
displayed at times T = 0.001, 0.005, 0.1, 3. It is observed that two singularities would move towards
the origin, meet and annihilation. We observe that the energy starts to have a significant decay with the
annihilation. The energy has no significant change after reaching 1. We find that the energy reaches
the steady state. Furthermore, the annihilation happens later.

In Figure 4, we plot the director field at four different times. The singularities devote to moving
closer with the flow at T = 0.005. The singularities just approach to annihilation at T = 0.1. Finally, a
steady state is reached at T = 3.

Example 2:

Changing the initial directors, we give the annihilation evolution of singularities. A comparison
of the annihilation for two different initial directors can be found. It is computed in the unit circle
(x, y) : x2 + y2 < 1. The parameters are chosen as γ = η = 1. The initial conditions are

u0 = 0, d = (sin(2π(cos x − sin y)), cos(2π(cos x − sin y))).

These singularities annihilate in a short time. Two singularities annihilate roughly after T = 3.
We also find a little difference about the molecule orientation near the boundary. Figure 5 shows the
simulation results. Therefore, these numerical results are performed as expected.
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(a) T = 0.001 (b) T = 0.005

(c) T = 0.1 (d) T = 3

Figure 4. Evolution of the director field: T=0.001 (top left), T= 0.005 (top right),
T=0.1 (bottom left), T=3 (bottom right).
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(a) T = 0.001 (b) T = 0.005

(c) T = 0.2 (d) T = 3

Figure 5. Evolution of the director field: T= 0.001 (top left), T = 0.005 (top right), T
=0.2 (bottom left), T = 3 (bottom right).

5. Conclusions

In this paper, a second order BDF numerical scheme with Lagrange multiplier for the Ericksen-
Leslie equation is presented. In addition, a pressure-correction strategy is used to decouple the
computation of the pressure from that of the velocity. With a plenty of powerful proofs and calculations,
we show that the proposed scheme is unconditionally stable in energy. Furthermore, the convergence
rates of relative error are close to 2 in time and space. The motions of singularities are simulated with
different director values. The results are performed as expected.
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