Citation: Harald Garcke, Kei Fong Lam. Global weak solutions and asymptotic limits of a Cahn–Hilliard–Darcy system modelling tumour growth[J]. AIMS Mathematics, 2016, 1(3): 318-360. doi: 10.3934/Math.2016.3.318
[1] | R.A. Adams and J.J.F. Fournier, Sobolev spaces. Pure and applied mathematics, Vol. 140. 2 Ed., Elsevier/Academic Press, Amsterdam, 2003. |
[2] | H.W. Alt, Linear Functional Analysis. An Application-Oriented Introduction. Translated from the German edition by Robert Nürnberg. Universitext. Springer Berlin London, 2016. |
[3] | S. Bosia, M. Conti, and M. Grasselli, On the Cahn-Hilliard-Brinkman system, Commun. Math. Sci., 13 (2015), no. 6, 1541-1567. |
[4] | E.A. Coddington and N. Levinson, Theory of Ordinary Di erential Equations. International series in pure and applied mathematics. Tata McGraw-Hill, New York, 1955. |
[5] | P. Colli, G. Gilardi, and D. Hilhorst, On a Cahn–Hilliard type phase field model related to tumor growth. Discrete Contin. Dyn. Syst., 35 (2015), no. 6, 2423-2442. |
[6] | P. Colli, G. Gilardi, E. Rocca, and J. Sprekels, Vanishing viscosities and error estimate for a Cahn-Hilliard type phase field system related to tumor growth, Nonlinear Anal. Real World Appl., 26 (2015), 93-108. |
[7] | P. Colli, G. Gilardi, E. Rocca, and J. Sprekels, Asymptotic analyses and error estimates for a Cahn-Hilliard type phase field system modelling tumor growth, Discrete Contin. Dyn. Syst. Ser. S., in press (2016). |
[8] | V. Cristini and J. Lowengru, Multiscaled modeling of cancer. An Integrated Experiemental and Mathematical Modeling Approach. Cambridge University Press, 2010. |
[9] | M. Dai, E. Feireisl, E. Rocca, G. Schimperna, and M. Schonbek, Analysis of a di use interface model for multispecies tumor growth, Preprint arXiv:1507.07683 (2015). |
[10] | F. Della Porta and M. Grasselli, On the nonlocal Cahn-Hilliard-Brinkman and Cahn-Hilliard-Hele-Shaw systems, Commun. Pure Appl. Anal., 15 (2016), 299-317. |
[11] | E. DiBenedetto, Degenerate Parabolic Equations. Universitext. Springer–Verlag New York, 1993. |
[12] | L.C. Evans, Partial Differential Equations. Graduate Studies in Mathematics, Volume 19. AMS,Providence, Rhode Island, 2002. |
[13] | A. Fasano, A. Bertuzzi, and A. Gandolfi, Mathematical modeling of tumour growth and treatment.Complex Systems in Biomedicine. Springer Milan, 2006. |
[14] | X. Feng and S.Wise, Analysis of a Darcy-Cahn-Hilliard diffuse interface model for the Hele-Shawflow and its fully discrete finite element approximation, SIAM J. Numer. Anal., 50 (2012), no. 3,1320-1343. |
[15] | A. Friedman, Partial Differential Equations. Holt, Rinehart and Winston, New York, 1969. |
[16] | S. Frigeri, M. Grasselli, and E. Rocca, On a diffuse interface model of tumor growth, European J.Appl. Math., 26 (2015), 215-243. |
[17] | H. Garcke and K.F. Lam, Well-posedness of a Cahn-Hilliard system modelling tumour growth withchemotaxis and active transport, European J. Appl. Math., in press (2016). DOI http://dx.doi.org/10.1017/S0956792516000292. |
[18] | H. Garcke and K.F. Lam, Analysis of a Cahn-Hilliard system with non zero Dirichlet conditionsmodelling tumour growth with chemotaxis, Preprint arXiv:1604.00287 (2016). |
[19] | H. Garcke, K.F. Lam, and E. Rocca, Optimal control of treatment time in a diffuse interface modelfor tumor growth, Preprint arXiv:1608.00488 (2016). |
[20] | H. Garcke, K.F. Lam, E. Sitka, and V. Styles, A Cahn-Hilliard-Darcy model for tumour growth withchemotaxis and active transport, Math. Models Methods Appl. Sci., 26 (2016), no. 6, 1095-1148. |
[21] | A. Hawkins-Daarud, K.G. van der Zee, and J.T. Oden, Numerical simulation of a thermodynamicallyconsistent four-species tumor growth model, Int. J. Numer. Methods Biomed. Eng., 28 (2012),3-24. |
[22] | J. Jiang, H.Wu, and S. Zheng, Well-posedness and long-time behavior of a non-autonomous Cahn-Hilliard-Darcy system with mass source modeling tumor growth, J. Differential Equ., 259 (2015),no. 7, 3032-3077. |
[23] | H. Lee, J. Lowengrub, and J. Goodman, Modeling pinchoff and reconnection in a Hele–Shaw cell.I. The models and their calibration, Phys. Fluids, 14 (2002), no. 2, 492-513. |
[24] | H. Lee, J. Lowengrub, and J. Goodman, Modeling pinchoff and reconnection in a Hele-Shaw cell.II. Analysis and simulation in the nonlinear regime, Phys. Fluids, 14 (2002), no. 2, 514-545. |
[25] | J.S. Lowengrub, E. Titi, and K. Zhao, Analysis of a mixture model of tumor growth, European J.Appl. Math., 24 (2013), 691-734. |
[26] | M. Renardy and R.C. Rogers, An Introduction to Partial Differential Equations. Texts in AppliedMathematics. 2 Eds., Springer-Verlag New York, 2004. |
[27] | H.L. Royden and P. Fitzpatrick, Real Analysis. Featured Titles for Real Analysis Series. 4 Eds.,Pearson Prentice Hall, Boston, 2010. |
[28] | J. Simon, Compact sets in space Lp(0; T; B), Ann. Mat. Pura Appl., 146 (1986), no. 1, 65-96. |
[29] | X. Wang and H. Wu, Long-time behavior for the Hele-Shaw-Cahn-Hilliard system, Asymptot.Anal., 78 (2012), no. 4, 217-245. |
[30] | X. Wang and Z. Zhang, Well-posedness of the Hele-Shaw-Cahn-Hilliard system, Ann. Inst. H. Poincar´e Anal. Non Lin´eaire, 30 (2013), no. 3, 367-384. |