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Abstract: We study the existence of weak solutions to a Cahn-Hilliard-Darcy system coupled with
a convection-reaction-diffusion equation through the fluxes, through the source terms and in Darcy’s
law. The system of equations arises from a mixture model for tumour growth accounting for transport
mechanisms such as chemotaxis and active transport. We prove, via a Galerkin approximation, the
existence of global weak solutions in two and three dimensions, along with new regularity results for
the velocity field and for the pressure. Due to the coupling with the Darcy system, the time derivatives
have lower regularity compared to systems without Darcy flow, but in the two dimensional case we
employ a new regularity result for the velocity to obtain better integrability and temporal regularity
for the time derivatives. Then, we deduce the global existence of weak solutions for two variants
of the model; one where the velocity is zero and another where the chemotaxis and active transport
mechanisms are absent.
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1. Introduction

In recent years there has been an increased focus on the mathematical modelling and analysis of
tumour growth. Many new models have been proposed and numerical simulations have been carried
out to provide new and important insights on cancer research, see for instance [8] and [13, Chap. 3].
In this work we analyse a diffuse interface model proposed in [20], which models a mixture of tumour
cells and healthy cells in the presence of an unspecified chemical species acting as a nutrient. More
precisely, for a bounded domain Ω ⊂ Rd where the cells reside and T > 0, we consider the following
set of equations,

div v = Γv in Ω × (0,T ) =: Q, (1.1a)
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v = −K(∇p − (µ + χσ)∇φ) in Q, (1.1b)
∂tφ + div (φv) = div (m(φ)∇µ) + Γφ in Q, (1.1c)

µ = AΨ′(φ) − B∆φ − χσ in Q, (1.1d)
∂tσ + div (σv) = div (n(φ)(D∇σ − χ∇φ)) − S in Q. (1.1e)

Here, v denotes the volume-averaged velocity of the mixture, p denotes the pressure, σ denotes the
concentration of the nutrient, φ ∈ [−1, 1] denotes the difference in volume fractions, with {φ = 1}
representing the unmixed tumour tissue, and {φ = −1} representing the surrounding healthy tissue, and
µ denotes the chemical potential for φ.

The model treats the tumour and healthy cells as inertia-less fluids, leading to the appearance of
a Darcy-type subsystem with a source term Γv. The order parameter φ satisfies a convective Cahn–
Hilliard type equation with additional source term Γφ, and similarly, the nutrient concentration σ satis-
fies a convection-reaction-diffusion equation with a non-standard flux and a source termS. We refer the
reader to [20, §2] for the derivation from thermodynamic principles, and to [20, §2.5] for a discussion
regarding the choices for the source terms Γφ,Γv and S.

The positive constants K and D denote the permeability of the mixture and the diffusivity of the
nutrient, m(φ) and n(φ) are positive mobilities for φ and σ, respectively. The parameter χ ≥ 0 regulates
the chemotaxis effect (see [20] for more details), Ψ(·) is a potential with two equal minima at ±1, A and
B denote two positive constants related to the thickness of the diffuse interface and the surface tension.

We supplement the above with the following boundary and initial conditions

∂nφ = ∂nµ = 0 on ∂Ω × (0,T ) =: Σ, (1.2a)
v · n = ∂np = 0 on Σ, (1.2b)
n(φ)D∂nσ = b(σ∞ − σ) on Σ, (1.2c)

φ(0) = φ0, σ(0) = σ0 on Ω. (1.2d)

Here φ0, σ0 and σ∞ are given functions and b > 0 is a constant. We denote ∂n f := ∇ f · n as the normal
derivative of f at the boundary ∂Ω, where n is the outer unit normal. Associated to (1.1) is the free
energy density N(φ, σ) for the nutrient, which is defined as

N(φ, σ) :=
D
2
|σ|2 + χσ(1 − φ). (1.3)

Note that

N,σ :=
∂N
∂σ
= Dσ + χ(1 − φ), N,φ :=

∂N
∂φ
= −χσ,

so that (1.1) may also be written as

div v = Γv, (1.4a)
v = −K(∇p − µ∇φ + N,φ∇φ), (1.4b)

∂tφ + div (φv) = div (m(φ)∇µ) + Γφ, (1.4c)
µ = AΨ′(φ) − B∆φ + N,φ, (1.4d)

∂tσ + div (σv) = div (n(φ)∇N,σ) − S, (1.4e)
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which is the general phase field model proposed in [20]. In this work we do not aim to analyse such a
model with a general free energy density N(φ, σ), but we will focus solely on the choice (1.3) and the
corresponding model (1.1)-(1.2).

Our goal in this work is to prove the existence of weak solutions (see Definition 2.1 below) of (1.1)-
(1.2) in two and three dimensions. Moreover, one might expect that by setting Γv = 0 and then sending
b → 0 and K → 0, the weak solutions to (1.1)-(1.2) will converge (in some appropriate sense) to the
weak solutions of

∂tφ = div (m(φ)∇µ) + Γφ in Q, (1.5a)
µ = AΨ′(φ) − B∆φ − χσ in Q, (1.5b)

∂tσ = div (n(φ)(D∇σ − χ∇φ)) − S in Q, (1.5c)
0 = ∂nφ = ∂nµ = ∂nσ on Σ. (1.5d)

We denote (1.5) as the limit system of vanishing permeability, where the effects of the volume-averaged
velocity are neglected. By substituting

Γφ = S = f (φ)(Dσ + χ(1 − φ) − µ) (1.6)

for some non-negative function f (φ) leads to the model derived in [21]. The specific choices for Γφ
and S in (1.6) are motivated by linear phenomenological laws for chemical reactions. The analysis of
(1.5) with the parameters

D = 1, χ = 0, n(φ) = m(φ) = 1

has been the subject of study in [5, 6, 7, 16], where well-posedness and long-time behaviour have been
established for a large class of functions Ψ(φ) and f (φ). Alternatively, one may consider the following
choice of source terms

Γφ = h(φ)(λpσ − λa), S = λch(φ)σ, (1.7)

where λp, λa, λc are non-negative constants representing the tumour proliferation rate, the apoptosis
rate, and the nutrient consumption rate, respectively, and h(φ) is a non-negative interpolation function
such that h(−1) = 0 and h(1) = 1. The above choices for Γφ and S are motivated from the modelling
of processes experienced by a young tumour.

The well-posedness of model (1.5) with the choice (1.7) has been studied by the authors in [17] and
[18] with the boundary conditions (1.2) (neglecting (1.2b)) in the former and for non-zero Dirichlet
boundary conditions in the latter. It has been noted in [17] that the well-posedness result with the
boundary conditions (1.2) requires Ψ to have at most quadratic growth, which is attributed to the
presence of the source term Γφµ = h(φ)µ(λpσ−λa) when deriving useful a priori estimates. Meanwhile
in [18] the Dirichlet boundary conditions and the application of the Poincaré inequality allows us to
overcome this restriction and allow for Ψ to be a regular potential with polynomial growth of order less
than 6, and by a Yosida approximation, the case where Ψ is a singular potential is also covered.

We also mention the work of [19] that utilises a Schauder’s fixed point argument to show existence
of weak solutions for Ψ with quartic growth and Γφ,S as in (1.7). This is based on first deducing that
σ is bounded by a comparison principle, leading to Γφ ∈ L∞(Ω). Then, the standard a priori estimates
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are derived for a Cahn–Hilliard equation with bounded source terms. The difference between [19] and
[17, 18] is the absence of the chemotaxis and active transport mechanisms, i.e., χ = 0, so that the
comparison principle can be applied to the nutrient equation. We refer to [9] for the application of a
similar procedure to a multi-species tumour model with logarithmic potentials.

On the other hand, by sending b→ 0 and χ→ 0 in (1.1), we should obtain weak solutions of

div v = Γv in Q, (1.8a)
v = −K(∇p − µ∇φ) in Q, (1.8b)

∂tφ + div (φv) = div (m(φ)∇µ) + Γφ in Q, (1.8c)
µ = AΨ′(φ) − B∆φ in Q, (1.8d)

∂tσ + div (σv) = div (n(φ)D∇σ) − S in Q, (1.8e)
0 = ∂nφ = ∂nµ = ∂nσ = v · n on Σ. (1.8f)

We denote (1.8) as the limit system of vanishing chemotaxis. If the source terms Γv and Γφ are inde-
pendent of σ, then (1.8) consists of an independent Cahn–Hilliard–Darcy system and an equation for
σ which is advected by the volume-averaged velocity field v. In the case where there is no nutrient
and source terms, i.e., σ = Γv = Γφ = 0, global existence of weak solutions in two and three dimen-
sions has been established in [14] via the convergence of a fully discrete and energy stable implicit
finite element scheme. For the well-posedness and long-time behaviour of strong solutions, we refer
to [25]. Meanwhile, in the case where Γv = Γφ is prescribed, global weak existence and local strong
well-posedness for (1.8) without nutrient is shown in [22].

We also mention the work of [3] on the well-posedness and long-time behaviour of a related system
also used in tumour growth, known as the Cahn–Hilliard–Brinkman system, where in (1.8) without
nutrient an additional viscosity term is added to the left-hand side of the velocity equation (1.8b) and
the mass exchange terms Γv and Γφ are set to zero. The well-posedness of a nonlocal variant of the
Cahn–Hilliard–Brinkman system has been investigated in [10]. Furthermore, when K is a function
depending on φ, the model (1.8) with σ = Γv = Γφ = 0 is also referred to as the Hele–Shaw–Cahn–
Hilliard model (see [23, 24]). In this setting, K(φ) represents the reciprocal of the viscosity of the fluid
mixture. We refer to [30] concerning the strong well-posedness globally in time for two dimensions
and locally in time for three dimensions when Ω is the d-dimensional torus. Global well-posedness
in three dimensions under additional assumptions and long-time behaviour of solutions to the Hele–
Shaw–Cahn–Hilliard model are investigated in [29].

We point out that from the derivation of (1.1) in [20], the source terms Γv and Γφ are connected in
the sense that Γv is related to sum of the mass exchange terms for the tumour and healthy cells, and Γφ
is related to the difference between the mass exchange terms. Thus, if Γφ would depend on the primary
variables φ, σ or µ, then one expects that Γv will also depend on the primary variables. Here, we are
able to prove existence of weak solutions for Γφ of the form (2.1), which generalises the choices (1.6)
and (1.7), but in exchange Γv has to be considered as a prescribed function. This is attributed to the
presence of the source term Γv

(
φµ + D

2 |σ|
2
)

when deriving useful a priori estimates. We see that if Γv

depends on the primary variables, we obtain triplet products which cannot be controlled by the usual
regularity of φ, µ and σ in the absence of a priori estimates.

In this work we attempt to generalise the weak existence results for the models studied in [5, 16,
17, 18, 22, 25] by proving that the weak solutions of (1.1) with Γv = 0 converge (in some appropriate
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sense) to the weak solutions of (1.5) as b→ 0 and K → 0, and the weak solutions of (1.1) converge to
the weak solutions of (1.8) as b→ 0 and χ→ 0.

This paper is organised as follows. In Section 2 we state the main assumptions and the main results.
In Section 3 we introduce a Galerkin procedure and derive some a priori estimates for the Galerkin
ansatz in Section 4 for the case of three dimensions. We then pass to the limit in Section 5 to deduce
the existence result for three dimensions, while in Section 6 we investigate the asymptotic behaviour
of solutions to (1.1) as K → 0 and χ → 0. In Section 7, we outline the a priori estimates for two
dimensions and show that the weak solutions for two dimensions yields better temporal regularity
than the weak solutions for three dimensions. In Section 8 we discuss some of the issues present in
the analysis of (1.1) using different formulations of Darcy’s law and the pressure, and with different
boundary conditions for the velocity and the pressure.

Notation. For convenience, we will often use the notation Lp := Lp(Ω) and Wk,p := Wk,p(Ω) for any
p ∈ [1,∞], k > 0 to denote the standard Lebesgue spaces and Sobolev spaces equipped with the norms
∥ · ∥Lp and ∥ · ∥Wk,p . In the case p = 2 we use Hk := Wk,2 and the norm ∥ · ∥Hk . For the norms of Bochner
spaces, we will use the notation Lp(X) := Lp(0,T ; X) for Banach space X and p ∈ [1,∞]. Moreover,
the dual space of a Banach space X will be denoted by X∗, and the duality pairing between X and X∗ is
denoted by ⟨·, ·⟩X,X∗ . For d = 2 or 3, letHd−1 denote the (d− 1) dimensional Hausdorff measure on ∂Ω,
and we denote Rd-valued functions and any function spaces consisting of vector-valued/tensor-valued
functions in boldface. We will use the notation D f to denote the weak derivative of the vector function
f .

Useful preliminaries. For convenience, we recall the Poincaré inequality: There exists a positive
constant Cp depending only on Ω such that, for all f ∈ H1,∥∥∥∥ f − f

∥∥∥∥
L2
≤ Cp∥∇ f ∥L2 , (1.9)

where f := 1
|Ω|

∫
Ω

f dx denotes the mean of f . The Gagliardo–Nirenberg interpolation inequality in
dimension d is also useful (see [15, Thm. 10.1, p. 27], [11, Thm. 2.1] and [1, Thm. 5.8]): Let Ω
be a bounded domain with Lipschitz boundary, and f ∈ Wm,r ∩ Lq, 1 ≤ q, r ≤ ∞. For any integer j,
0 ≤ j < m, suppose there is α ∈ R such that

1
p
=

j
d
+

(
1
r
− m

d

)
α +

1 − α
q

,
j

m
≤ α ≤ 1.

Then, there exists a positive constant C depending only on Ω, m, j, q, r, and α such that

∥D j f ∥Lp ≤ C∥ f ∥αWm,r∥ f ∥1−αLq . (1.10)

We will also use the following Gronwall inequality in integral form (see [17, Lem. 3.1] for a proof):
Let α, β, u and v be real-valued functions defined on [0,T ]. Assume that α is integrable, β is non-
negative and continuous, u is continuous, v is non-negative and integrable. If u and v satisfy the
integral inequality

u(s) +
∫ s

0
v(t) dt ≤ α(s) +

∫ s

0
β(t)u(t) dt for s ∈ (0, T ],

AIMS Mathematics Volume 1, Issue 3, 318-360



323

then it holds that

u(s) +
∫ s

0
v(t) dt ≤ α(s) +

∫ s

0
β(t)α(t) exp

(∫ t

0
β(r) dr

)
dt . (1.11)

To analyse the Darcy system, we introduce the spaces

L2
0 := { f ∈ L2 : f = 0}, H2

N := { f ∈ H2 : ∂n f = 0 on ∂Ω},
(H1)∗0 := { f ∈ (H1)∗ : ⟨ f , 1⟩H1 = 0}.

Then, the Neumann-Laplacian operator −∆N : H1 ∩ L2
0 → (H1)∗0 is positively defined and self-adjoint.

In particular, by the Lax–Milgram theorem and the Poincaré inequality (1.9) with zero mean, the
inverse operator (−∆N)−1 : (H1)∗0 → H1 ∩ L2

0 is well-defined, and we set u := (−∆N)−1 f for f ∈ (H1)∗0
if u = 0 and

−∆u = f in Ω, ∂nu = 0 on ∂Ω.

2. Main results

We make the following assumptions.

Assumption 2.1.

(A1) The constants A, B, K, D, χ and b are positive and fixed.

(A2) The mobilities m, n are continuous on R and satisfy

m0 ≤ m(t) ≤ m1, n0 ≤ n(t) ≤ n1 ∀t ∈ R,

for positive constants m0, m1, n0 and n1.

(A3) Γφ and S are of the form
Γφ(φ, µ, σ) = Λφ(φ, σ) − Θφ(φ, σ)µ,
S(φ, µ, σ) = ΛS (φ, σ) − ΘS (φ, σ)µ,

(2.1)

where Θφ,ΘS : R2 → R are continuous bounded functions with Θφ non-negative, and Λφ,ΛS :
R2 → R are continuous with linear growth

|Θi(φ, σ)| ≤ R0, |Λi(φ, σ)| ≤ R0(1 + |φ| + |σ|) for i ∈ {φ, S }, (2.2)

so that ∣∣∣Γφ∣∣∣ + |S| ≤ R0(1 + |φ| + |µ| + |σ|), (2.3)

for some positive constant R0.

(A4) Γv is a prescribed function belonging to L4(0,T ; L2
0).
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(A5) Ψ ∈ C2(R) is a non-negative function satisfying

Ψ(t) ≥ R1 |t|2 − R2 ∀t ∈ R (2.4)

and either one of the following,

1. if Θφ is non-negative and bounded, then

Ψ(t) ≤ R3(1 + |t|2), |Ψ′(t)| ≤ R4(1 + |t|), |Ψ′′(t)| ≤ R4; (2.5)

2. if Θφ is positive and bounded, that is,

R0 ≥ Θφ(t, s) ≥ R5 > 0 ∀t, s ∈ R, (2.6)

then

|Ψ′′(t)| ≤ R6(1 + |t|q), q ∈ [0, 4), (2.7)

for some positive constants R1,R2,R3,R4,R5,R6. Furthermore we assume that

A >
2χ2

DR1
. (2.8)

(A6) The initial and boundary data satisfy

σ∞ ∈ L2(0,T ; L2(∂Ω)), σ0 ∈ L2, φ0 ∈ H1.

We point out that some of the above assumptions are based on previous works on the well-posedness
of Cahn–Hilliard systems for tumour growth. For instance, (2.5) and (2.8) reflect the situation encoun-
tered in [17], where if Θφ = 0, i.e., Γφ is independent of µ, then the derivation of the a priori estimate
requires a quadratic potential. But in the case where (2.6) is satisfied, we can allow Ψ to be a regular
potential with polynomial growth of order less than 6, and by a Yosida approximation, we can extend
our existence results to the situation where Ψ is a singular potential, see for instance [18]. Moreover,
the condition (2.8) is a technical assumption based on the fact that the second term of the nutrient free
energy χσ(1 − φ) does not have a positive sign.

Meanwhile, the linearity of the source terms Γφ and S with respect to the chemical potential µ
assumed in (2.1) is a technical assumption based on the expectation that, at best, we have weak con-
vergence for Galerkin approximation to µ, which is in contrast with φ and σ where we might expect
a.e convergence and strong convergence for the Galerkin approximations. Moreover, if we consider

Θφ(φ, σ) = ΘS (φ, σ) = f (φ), Λφ(φ, σ) = ΛS (φ, σ) = f (φ)(Dσ + χ(1 − φ)),

for a non-negative function f (φ), then we obtain the source terms in [5, 16, 21].
Compared to the set-up in [22], in (A4) we prescribe a higher temporal regularity for the prescribed

source term Γv. This is needed when we estimate the source term Γv
D
2 |σ|

2 in the absence of a priori
estimates, see Section 4.1.2 for more details. The mean zero condition is a consequence of the no-flux
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boundary condition v · n = 0 on ∂Ω and the divergence equation (1.1a). In particular, we can express
the Darcy subsystem (1.1a)-(1.1b) as an elliptic equation for the pressure p:

−∆p =
1
K
Γv − div ((µ + χσ)∇φ) in Ω, (2.9a)

∂np = 0 on ∂Ω. (2.9b)

Solutions to (2.9) are uniquely determined up to an arbitrary additive function that may only depend
on time, and thus without loss of generality, we impose the condition p = 1

|Ω|

∫
Ω

p dx = 0 to (2.9). We
may then define p as

p = (−∆N)−1
(

1
K
Γv − div ((µ + χσ)∇φ)

)
, (2.10)

if 1
KΓv − div ((µ + χσ)∇φ) ∈ (H1)∗0.

Remark 2.1. In the case Γv = 0, one can also consider the assumption

SN,σ − Γφµ = S(Dσ + χ(1 − φ)) − Γφµ ≥ 0 (2.11)

instead of (2.6), which holds automatically if Γφ and S are chosen to be of the form (1.6). In fact this
property is used in [5, 16].

We make the following definition.

Definition 2.1 (Weak solutions for 3D). We call a quintuple (φ, µ, σ, v, p) a weak solution to (1.1)-(1.2)
if

φ ∈ L∞(0,T ; H1) ∩ L2(0,T ; H3) ∩W1, 8
5 (0,T ; (H1)∗),

σ ∈ L∞(0,T ; L2) ∩ L2(0,T ; H1) ∩W1, 5
4 (0,T ; (W1,5)∗),

µ ∈ L2(0,T ; H1), p ∈ L
8
5 (0,T ; H1 ∩ L2

0), v ∈ L2(0,T ; L2),

such that φ(0) = φ0,

⟨σ0, ζ⟩H1,(H1)∗ = ⟨σ(0), ζ⟩H1,(H1)∗ ∀ζ ∈ H1,

and

⟨∂tφ, ζ⟩H1,(H1)∗ =

∫
Ω

−m(φ)∇µ · ∇ζ + Γφζ + φv · ∇ζ dx , (2.12a)∫
Ω

µζ dx =
∫
Ω

AΨ′(φ)ζ + B∇φ · ∇ζ − χσζ dx , (2.12b)

⟨∂tσ, ϕ⟩W1,5,(W1,5)∗ =

∫
Ω

−n(φ)(D∇σ − χ∇φ) · ∇ϕ − Sϕ + σv · ∇ϕ dx (2.12c)

+

∫
∂Ω

b(σ∞ − σ)ϕ dHd−1 ,∫
Ω

∇p · ∇ζ dx =
∫
Ω

1
K
Γvζ + (µ + χσ)∇φ · ∇ζ dx , (2.12d)∫

Ω

v · ζ dx =
∫
Ω

−K(∇p − (µ + χσ)∇φ) · ζ dx , (2.12e)

for a.e. t ∈ (0,T ) and for all ζ ∈ H1, ϕ ∈ W1,5, and ζ ∈ L2.
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Neglecting the nutrient σ, we observe that our choice of function spaces for (φ, µ, p, v) coincide
with those in [22, Defn. 2.1(i)]. In contrast to the usual L2(0,T ; (H1)∗)-regularity (see [5, 16]) we
obtain a less regular time derivative ∂tφ. The drop in the time regularity from 2 to 8

5 is attributed to
the convection term div (φv) belonging to L

8
5 (0,T ; (H1)∗). The same is true for the regularity for the

time derivative ∂tσ in L
5
4 (0,T ; (W1,5)∗) as the convection term div (σv) lies in the same space. We

refer the reader to the end of Section 4.3 for a calculation motivating the choice of function spaces for
div (σv) and ∂tσ. Furthermore, the embedding of L∞(0, T ; H1) ∩ W1, 8

5 (0,T ; (H1)∗) into C0([0,T ]; L2)
from [28, §8, Cor. 4] guarantees that the initial condition for φ is meaningful. However, for σ we have
the embedding L∞(0, T ; L2) ∩ W1, 5

4 (0,T ; (W1,5)∗) ⊂⊂ C0([0,T ]; (H1)∗), and so σ(0) makes sense as a
function in (H1)∗. Thus, the initial condition σ0 is attained as an equality in (H1)∗. We now state the
existence result for (1.1)-(1.2).

Theorem 2.1 (Existence of weak solutions in 3D and energy inequality). Let Ω ⊂ R3 be a bounded
domain with C3-boundary ∂Ω. Suppose Assumption 2.1 is satisfied. Then, there exists a weak solution
quintuple (φ, µ, σ, v, p) to (1.1)-(1.2) in the sense of Definition 2.1 with

p ∈ L
8
7 (0,T ; H2), v ∈ L

8
7 (0,T ; H1), (2.13)

and in addition satisfies

∥φ∥
L∞(H1)∩L2(H3)∩W1, 85 ((H1)∗)

+ ∥σ∥
L∞(L2)∩W1, 54 ((W1,5)∗))∩L2(H1)

+ ∥µ∥L2(H1) + b
1
2 ∥σ∥L2(L2(∂Ω)) + ∥p∥L 8

5 (H1)∩L
8
7 (H2)

+ K−
1
2

(
∥v∥

L2(L2)∩L
8
7 (H1)
+ ∥ div (φv)∥

L
8
5 ((H1)∗)

+ ∥ div (σv)∥
L

5
4 ((W1,5)∗)

)
≤ C,

(2.14)

where the constant C does not depend on (φ, µ, σ, v, p) and is uniformly bounded for b, χ ∈ (0, 1] and
is also uniformly bounded for K ∈ (0, 1] when Γv = 0.

The regularity result (2.13) is new compared to estimates for weak solutions in [22], which arises
from a deeper study of the Darcy subsystem, and can be obtained even in the absence of the nutri-
ent. We mention that higher regularity estimates for the pressure p in L2(0,T ; H2) and the velocity
v in L2(0,T ; H1) are also established in [22], but these are for strong solutions local in time in three
dimensions and global in time for two dimensions.

We now investigate the situation in two dimensions, where the Sobolev embeddings in two dimen-
sions yields better integrability exponents.

Theorem 2.2 (Existence of weak solutions in 2D). LetΩ ⊂ R2 be a bounded domain with C3-boundary
∂Ω. Suppose Assumption 2.1 is satisfied. Then, there exists a quintuple (φ, µ, σ, v, p) to (1.1)-(1.2) with
the following regularity

φ ∈ L∞(0,T ; H1) ∩ L2(0,T ; H3) ∩W1,w(0,T ; (H1)∗), µ ∈ L2(0,T ; H1),
σ ∈ L2(0,T ; H1) ∩ L∞(0,T ; L2) ∩W1,r(0,T ; (H1)∗),
p ∈ Lk(0,T ; H1 ∩ L2

0) ∩ Lq(0,T ; H2), v ∈ L2(0,T ; L2) ∩ Lq(0, T ; H1),
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for

1 ≤ k < 2, 1 ≤ q <
4
3
, 1 < r <

8
7
,

4
3
≤ w < 2,

such that (2.12a), (2.12b), (2.12d), (2.12e) and

⟨∂tσ, ζ⟩H1,(H1)∗ =

∫
Ω

−n(φ)(D∇σ − χ∇φ) · ∇ζ − Sζ + σv · ∇ζ dx +
∫
∂Ω

b(σ∞ − σ)ζ dHd−1

are satisfied for a.e. t ∈ (0,T ), for all ζ ∈ H1, and all ζ ∈ L2. Furthermore, the initial conditions
φ(0) = φ0 and σ(0) = σ0 are attained as in Definition 2.1, and an analogous inequality to (2.14) also
holds.

The proof of Theorem 2.2 is similar to that of Theorem 2.1, and hence the details are omitted.
In Section 7 we will only present the derivation of a priori estimates. It is due to the better expo-
nents for embeddings in two dimensions and the regularity result for the velocity that we obtain better
regularities for the time derivatives ∂tφ and ∂tσ, namely ∂tσ(t) belongs to the dual space (H1)∗ for
a.e. t ∈ (0,T ). Furthermore, as mentioned in Remark 7.1 below, if we only have v ∈ L2(0,T ; L2),
then the convection term div (σv) and the time derivative ∂tσ would only belong to the dual space
L

4
3 (0,T ; (W1,4)∗). However, even with the improved temporal regularity, as ∂tσ < L2(0,T ; (H1)∗), we

do not have a continuous embedding into the space C0([0,T ]; L2) and so σ(0) may not be well-defined
as an element of L2.

We now state the two asymptotic limits of (1.1) for three dimensions, and note that analogous
asymptotic limits also hold for two dimensions.

Theorem 2.3 (Limit of vanishing permeability). For b,K ∈ (0, 1], we denote a weak solution to (1.1)-
(1.2) with Γv = 0 and initial conditions (φ0, σ0) by (φK , µK , σK , vK , pK). Then, as b→ 0 and K → 0, it
holds that

φK → φ weakly-∗ in L∞(0,T ; H1) ∩ L2(0, T ; H3) ∩W1, 8
5 (0,T ; (H1)∗),

σK → σ weakly-∗ in L2(0,T ; H1) ∩ L∞(0, T ; L2) ∩W1, 5
4 (0,T ; (W1,5)∗),

µK → µ weakly in L2(0,T ; H1),

pK → p weakly in L
8
5 (0,T ; H1) ∩ L

8
7 (0,T ; H2),

vK → 0 strongly in L2(0,T ; L2) ∩ L
8
7 (0,T ; H1),

where (φ, µ, σ, p) satisfies

⟨∂tφ, ζ⟩H1,(H1)∗ =

∫
Ω

−m(φ)∇µ · ∇ζ + Γφ(φ, µ, σ)ζ dx , (2.16a)∫
Ω

µζ dx =
∫
Ω

AΨ′(φ)ζ + B∇φ · ∇ζ − χσζ dx , (2.16b)

⟨∂tσ, ϕ⟩W1,5,(W1,5)∗ =

∫
Ω

−n(φ)(D∇σ − χ∇φ) · ∇ϕ − S(φ, µ, σ)ϕ dx , (2.16c)∫
Ω

∇p · ∇ζ dx =
∫
Ω

(µ + χσ)∇φ · ∇ζ dx , (2.16d)
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for all ζ ∈ H1, ϕ ∈ W1,5 and a.e. t ∈ (0,T ). A posteriori, it holds that

∂tφ, ∂tσ ∈ L2(0,T ; (H1)∗),

and thus φ(0) = φ0 and σ(0) = σ0.

Theorem 2.4 (Limit of vanishing chemotaxis). For b, χ ∈ (0, 1], we denote a weak solution to (1.1)-
(1.2) with corresponding initial conditions (φ0, σ0) by (φχ, µχ, σχ, vχ, pχ). Then, as b → 0 and χ → 0,
it holds that

φχ → φ weakly-∗ in L∞(0,T ; H1) ∩ L2(0,T ; H3) ∩W1, 8
5 (0, T ; (H1)∗),

σχ → σ weakly-∗ in L2(0,T ; H1) ∩ L∞(0,T ; L2) ∩W1, 5
4 (0,T ; (W1,5)∗),

µχ → µ weakly in L2(0,T ; H1),

pχ → p weakly in L
8
5 (0,T ; H1) ∩ L

8
7 (0,T ; H2),

vχ → v weakly in L2(0,T ; L2) ∩ L
8
7 (0, T ; H1),

and

div (φχvχ)→ div (φv) weakly in L
8
5 (0,T ; (H1)∗),

div (σχvχ)→ div (σv) weakly in L
5
4 (0,T ; (W1,5)∗),

where (φ, µ, σ, v, p) satisfies

⟨∂tφ, ζ⟩H1,(H1)∗ =

∫
Ω

−m(φ)∇µ · ∇ζ + Γφ(φ, µ, σ)ζ + φv · ∇ζ dx , (2.19a)∫
Ω

µζ dx =
∫
Ω

AΨ′(φ)ζ + B∇φ · ∇ζ dx , (2.19b)

⟨∂tσ, ϕ⟩W1,5,(W1,5)∗ =

∫
Ω

−n(φ)D∇σ · ∇ϕ − S(φ, µ, σ)ϕ + σv · ∇ϕ dx , (2.19c)∫
Ω

∇p · ∇ζ dx =
∫
Ω

1
K
Γvζ + µ∇φ · ∇ζ dx , (2.19d)∫

Ω

v · ζ dx =
∫
Ω

−K(∇p − µ∇φ) · ζ dx , (2.19e)

for all ζ ∈ H1, ϕ ∈ W1,5, ζ ∈ L2 and a.e. t ∈ (0,T ), with the attainment of initial conditions as in
Definition 2.1.

3. Galerkin approximation

We will employ a Galerkin approximation similar to the one used in [22]. For the approximation, we
use the eigenfunctions of the Neumann–Laplacian operator {wi}i∈N. Recall that the inverse Neumann–
Laplacian operator L := (−∆N)−1|L2

0
: L2

0 → L2
0 is compact, positive and symmetric. Indeed, let

f , g ∈ L2
0 with z = L f , y = Lg. Then,

(L f , f )L2 =

∫
Ω

z f dx =
∫
Ω

|∇z|2 dx ≥ 0, (L f , g)L2 =

∫
Ω

∇z · ∇y dx = ( f ,Lg)L2 .
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Furthermore, let { fn}n∈N ⊂ L2
0 denote a sequence with corresponding solution sequence {zn = L fn}n∈N ⊂

H1 ∩ L2
0. By elliptic regularity theory, we have that zn ∈ H2

N for all n ∈ N. Then, by reflexive
weak compactness theorem and Rellich–Kondrachov theorem, there exists a subsequence such that
zn j → z ∈ H1 ∩ L2

0 as j→ ∞.
Thus, by the spectral theorem, the operator L admits a countable set of eigenfunctions {vn}n∈N that

forms a complete orthonormal system in L2
0. The eigenfunctions of the Neumann–Laplacian operator

is then given by w1 = 1, wi = vi−1 for i ≥ 2, and {wi}i∈N is a basis of L2.
Elliptic regularity theory gives that wi ∈ H2

N and for every g ∈ H2
N , we obtain for gk :=∑k

i=1(g,wi)L2wi that

∆gk =

k∑
i=1

(g,wi)L2∆wi =

k∑
i=1

(g, λiwi)L2wi =

k∑
i=1

(g,∆wi)L2wi =

k∑
i=1

(∆g,wi)L2wi,

where λi is the corresponding eigenvalue to wi. This shows that ∆gk converges strongly to ∆g in L2.
Making use of elliptic regularity theory again gives that gk converges strongly to g in H2

N . Thus the
eigenfunction {wi}i∈N of the Neumann–Laplace operator forms an orthonormal basis of L2 and is also a
basis of H2

N .
Later in Section 5, we will need to use the property that H2

N is dense in H1 and W1,5. We now sketch
the argument for the denseness of H2

N in W1,5 and the argument for H1 follows in a similar fashion.

Lemma 3.1. H2
N is dense in W1,5.

Proof. Take g ∈ W1,5, as Ω has a C3-boundary, by standard results [12, Thm. 3, §5.3.3] there exists a
sequence gn ∈ C∞(Ω) such that gn → g strongly in W1,5. Let ε > 0 be fixed, and define Dε := {x ∈ Ω :
dist(x, ∂Ω) ≤ ε}. Let ζε ∈ C∞c (Ω) be a smooth cut-off function such that ζε = 1 in Ω \ Dε and ζε = 0 in
D ε

2
.
As gn ∈ C∞(Ω), its trace on ∂Ω is well-defined. Choosing ε sufficiently small allows us to use a

classical result from differential geometry about tubular neighbourhoods, i.e., for any z ∈ Tubε(∂Ω) :=
{x ∈ Rd : |dist(z, ∂Ω)| ≤ ε} there exists a unique y ∈ ∂Ω such that

z = y + dist(z, ∂Ω)n(y),

where n is the outer unit normal of ∂Ω. We consider a bounded smooth function fn,ε : Rd → R such
that

fn,ε(z) = gn(y) for all z ∈ Tubε(∂Ω) satisfying z = y + dist(z, ∂Ω)n(y).

We now define the smooth function Gn,ε as

Gn,ε(x) := ζε(x)gn(x) + (1 − ζε(x)) fn,ε(x).

By construction, the values of the function fn,ε in Dε ⊂ Tubε(∂Ω) are constant in the normal direction,
so ∇Gn,ε · n = 0 on ∂Ω and thus Gn,ε ∈ H2

N . Furthermore, we compute that

∥Gn,ε − gn∥L5 = ∥(1 − ζε)( fn,ε − gn)∥L5(Dε),

∥∇(Gn,ε − gn)∥L5 = ∥(gn − fn,ε)∇ζε + (1 − ζε)∇gn + (1 − ζε)∇ fn,ε∥L5 .
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Using that gn, fn,ε are smooth functions on Ω and that the Lebesgue measure of Dε tends to zero as
ε → 0 we have the strong convergence of Gn,ε to gn in L5. For the difference in the gradients, we use
that ζε → 1 a.e. in Ω, Lebesgue’s dominated convergence theorem and the boundedness of ∇gn and
∇ fn,ε to deduce that

∥(1 − ζε)∇gn∥L5 + ∥(1 − ζε)∇ fn,ε∥L5 → 0 as ε→ 0.

For the remaining term ∥(gn − fn,ε)∇ζε∥L5 we use that the support of ∇ζε lies in Dε \ D ε
2

and for any
z ∈ Dε \ D ε

2
, ∣∣∣ fn,ε(z) − gn(z)

∣∣∣ = |gn(y) − gn(y + dist(z, ∂Ω)n(y))|

≤
∫ dist(z,∂Ω)

0
|∇gn(y + ξn(y))| d ξ ≤ ∥∇gn∥L∞dist(z, ∂Ω) ≤ Cε.

That is, fn,ε converges uniformly to gn in Dε \ D ε
2
. Furthermore, using ∥∇ζε∥L∞ ≤ C

ε
in Dε \ D ε

2
and∣∣∣Dε \ D ε

2

∣∣∣ ≤ Cε we obtain ∥(gn − fε,n)∇ζε∥L5 ≤ Cε
1
5 → 0 as ε → 0. This shows that Gn,ε converges

strongly to gn in W1,5.
�

We denote

Wk := span{w1, . . . ,wk}

as the finite dimensional space spanned by the first k basis functions and consider

φk(t, x) =
k∑

i=1

αk
i (t)wi(x), µk(t, x) =

k∑
i=1

βk
i (t)wi(x), σk(t, x) =

k∑
i=1

γk
i (t)wi(x), (3.1a)

and the following Galerkin ansatz: For 1 ≤ j ≤ k,∫
Ω

∂tφkw j dx =
∫
Ω

−m(φk)∇µk · ∇w j + Γφ,kw j + φkvk · ∇w jdx, (3.2a)∫
Ω

µkw j dx =
∫
Ω

AΨ′(φk)w j + B∇φk · ∇w j − χσkw j dx , (3.2b)∫
Ω

∂tσkw j dx =
∫
Ω

−n(φk)(D∇σk − χ∇φk) · ∇w j − Skw j + σkvk · ∇w j dx (3.2c)

+

∫
∂Ω

b(σ∞ − σk)w j dHd−1 ,

where we define the Galerkin ansatz for the pressure pk and the velocity field vk by

pk = (−∆N)−1
(

1
K
Γv − div ((µk + χσk)∇φk)

)
, (3.3)

vk = −K(∇pk − (µk + χσk)∇φk), (3.4)
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and we set

Γφ,k := Γφ(φk, µk, σk), Sk := S(φk, µk, σk).

Note that in (3.3), the properties Γv ∈ L2
0 and ∇φk · n = 0 on ∂Ω show that the term inside the bracket

belongs to L2
0 and hence pk is well-defined. Let M and S denote the following mass and stiffness

matrices, respectively: For 1 ≤ i, j ≤ k,

Mi j =

∫
Ω

wiw j dx , Si j :=
∫
Ω

∇wi · ∇w j dx .

Thanks to the orthonormality of {wi}i∈N in L2, we see that M is the identity matrix. It is convenient to
define the following matrices with components

(Ck) ji :=
∫
Ω

wivk · ∇w j dx , (M∂Ω) ji :=
∫
∂Ω

wiw j dHd−1 ,

(Sk
m) ji :=

∫
Ω

m(φk)∇wi · ∇w j dx , (Sk
n) ji :=

∫
Ω

n(φk)∇wi · ∇w j dx ,

for 1 ≤ i, j ≤ k. Furthermore, we introduce the notation

Rk
φ, j :=

∫
Ω

Γφ,kw j dx , Rk
S , j :=

∫
Ω

Skw j dx , ψk
j :=

∫
Ω

Ψ′(φk)w j dx , Σk
j :=

∫
∂Ω

σ∞w j dHd−1 ,

for 1 ≤ i, j ≤ k, and denote

Rk
φ := (Rk

φ,1, . . . ,R
k
φ,k)
⊤, Rk

S := (Rk
S ,1, . . . ,R

k
S ,k)
⊤, ψk := (ψk

1, . . . , ψ
k
k)
⊤, Σk := (Σk

1, . . . ,Σ
k
k)
⊤,

as the corresponding vectors, so that we obtain an initial value problem for a system of equations for
αk := (αk

1, . . . α
k
k)
⊤, βk := (βk

1, . . . , β
k
k)
⊤, and γk := (γk

1, . . . , γ
k
k)⊤ as follows,

d
dt
αk = −Sk

mβk + Rk
φ + Ckαk, (3.5a)

βk = Aψk + BSαk − χγk, (3.5b)
d
dt
γk = −Sk

n(Dγk − χαk) − Rk
S + Ckγk − bM∂Ωγk + bΣk, (3.5c)

pk = (−∆N)−1
(

1
K
Γv − div ((µk + χσk)∇φk)

)
, (3.5d)

vk = −K(∇pk − (µk + χσk)∇φk), (3.5e)

and we supplement (3.5) with the initial conditions

(αk) j(0) =
∫
Ω

φ0w j dx , (γk) j(0) =
∫
Ω

σ0w j dx , (3.6)

for 1 ≤ j ≤ k, which satisfy∥∥∥∥∥∥∥
k∑

i=1

(αk)i(0)wi

∥∥∥∥∥∥∥
H1

≤ C∥φ0∥H1 ,

∥∥∥∥∥∥∥
k∑

j=1

(γk)i(0)wi

∥∥∥∥∥∥∥
L2

≤ ∥σ0∥L2 ∀k ∈ N, (3.7)
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for some constant C not depending on k.
We can substitute (3.5b), (3.5d) and (3.5e) into (3.5a) and (3.5c), and obtain a coupled system of

ordinary differential equations for αk and γk, where Sk
m, Ck and Sk

n depend on the solutions αk and γk in
a non-linear manner. Continuity of m(·), n(·), Ψ′(·) and the source terms, and the stability of (−∆N)−1

under perturbations imply that the right-hand sides of (3.5) depend continuously on (αk,γk). Thus, we
can appeal to the theory of ODEs (via the Cauchy–Peano theorem [4, Chap. 1, Thm. 1.2]) to infer that
the initial value problem (3.5)-(3.6) has at least one local solution pair (αk,γk) defined on [0, tk] for
each k ∈ N.

We may define βk via the relation (3.5b) and hence the Galerkin ansatz φk, µk and σk can be con-
structed from (3.1). Then, we can define pk and vk via (3.3) and (3.4), respectively. Furthermore, as
the basis function w j belongs to H2 for each j ∈ N, by the Sobolev embedding H2 ⊂ L∞, we obtain
that div (wi∇w j) ∈ L2 for i, j ∈ N and hence the function div ((µk + χσk)∇φk) belongs to L2. Then, by
elliptic regularity theory, we find that pk(t) ∈ H2

N ∩ L2
0 for all t ∈ [0, tk]. This in turn implies that

vk(t) ∈ { f ∈ H1 : div f = Γv, f · n = 0 on ∂Ω} for all t ∈ [0, tk]. (3.8)

Next, we show that the Galerkin ansatz can be extended to the interval [0,T ] using a priori estimates.

4. A priori estimates

In this section, the positive constants C are independent of k, Γv, K, b and χ, and may change from
line to line. We will denote positive constants that are uniformly bounded for b, χ ∈ (0, 1] and are also
uniformly bounded for K ∈ (0, 1] when Γv = 0 by the symbol E.

We first state the energy identity satisfied by the Galerkin ansatz. Let δi j denote the Kronecker delta.
Multiplying (3.2a) with βk

j, (3.2b) with d
dt α

k
j, (3.2c) with Nk

,σ := Dγk
j + χ(δ1 j − αk

j), and then summing
the product from j = 1 to k lead to∫

Ω

∂tφkµk dx =
∫
Ω

−m(φk) |∇µk|2 + Γφ,kµk + φkvk · ∇µk dx ,∫
Ω

µk∂tφk dx =
d
dt

∫
Ω

AΨ′(φk) +
B
2
|∇φk|2 dx −

∫
Ω

χσk∂tφk dx ,∫
Ω

∂tσkNk
,σ dx =

∫
Ω

−n(φk)
∣∣∣∇Nk

,σ

∣∣∣2 − SkNk
,σ + σkvk · ∇Nk

,σ dx

+

∫
∂Ω

b(σ∞ − σk)Nk
,σ dHd−1 .

Here, we used that w1 = 1 and ∇w1 = 0. Then, summing the three equations leads to

d
dt

∫
Ω

AΨ(φk) +
B
2
|∇φk|2 + N(φk, σk) dx

+

∫
Ω

m(φk) |∇µk|2 + n(φk)
∣∣∣∇Nk

,σ

∣∣∣2 dx +
∫
∂Ω

Db |σk|2 dHd−1

=

∫
Ω

Γφ,kµk − SkNk
,σ + (φkvk · ∇µk + σkvk · ∇Nk

,σ) dx

+

∫
∂Ω

b(σ∞Nk
,σ − σkχ(1 − φk)) dHd−1 .

(4.2)
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Next, multiplying (3.4) with 1
K vk, integrating over Ω and integrating by parts gives∫

Ω

1
K
|vk|2 dx =

∫
Ω

−∇pk · vk + (µk + χσk)∇φk · vk dx

=

∫
Ω

Γv pk + (µk + χσk)∇φk · vk dx ,

where we used that div vk = Γv and vk · n = 0 on ∂Ω. Similarly, we see that∫
Ω

(φk∇µk + σk∇Nk
,σ) · vk dx =

∫
Ω

φkvk · ∇µk + σkvk · ∇(Dσk + χ(1 − φk)) dx

= −
∫
Ω

φkΓvµk + (µk + χσk)vk · ∇φk − D
2 vk · ∇ |σk|2 dx

= −
∫
Ω

Γv

(
φkµk +

D
2 |σk|2

)
+ (µk + χσk)∇φk · vk dx .

In particular, we have∫
Ω

1
K
|vk|2 dx =

∫
Ω

Γv

(
pk − µkφk −

D
2
|σk|2

)
− (φk∇µk + σk∇Nk

,σ) · vk dx . (4.3)

Adding (4.3) to (4.2) leads to

d
dt

∫
Ω

AΨ(φk) +
B
2
|∇φk|2 + N(φk, σk) dx

+

∫
Ω

m(φk) |∇µk|2 + n(φk)
∣∣∣∇Nk

,σ

∣∣∣2 + 1
K
|vk|2 dx +

∫
∂Ω

Db |σk|2 dHd−1

=

∫
Ω

Γφ,kµk − SkNk
,σ + Γv

(
pk − µkφk −

D
2
|σk|2

)
dx

+

∫
∂Ω

b(σ∞(Dσk + χ(1 − φk)) − σkχ(1 − φk)) dHd−1 .

(4.4)

To derive the first a priori estimate for the Galerkin ansatz, it suffices to bring (4.4) into a form where
we can apply Gronwall’s inequality. We start with estimating the boundary term on the right-hand side
of (4.4). By Hölder’s inequality and Young’s inequality,∣∣∣∣∣∫

∂Ω

b(σ∞(Dσk + χ(1 − φk)) − σkχ(1 − φk)) dHd−1
∣∣∣∣∣

≤ b
(
∥σ∞∥L2(∂Ω)∥Dσk + χ(1 − φk)∥L2(∂Ω) + χ∥σk∥L2(∂Ω)

(
|∂Ω| 12 + ∥φk∥L2(∂Ω)

))
≤ Db

2
∥σk∥2L2(∂Ω) + b

(
1 +

χ2

D

)
∥φk∥2L2(∂Ω) + bC

(
χ + (1 + χ2)∥σ∞∥2L2(∂Ω)

)
.

By the trace theorem and the growth condition (2.4), we have

∥φ∥2L2(∂Ω) ≤ C2
tr

(
∥φ∥2L2 + ∥∇φ∥2L2

)
≤ C2

tr

(
1
R1
∥Ψ(φ)∥L1 + ∥∇φ∥2L2

)
+C(R2, |Ω| ,Ctr),

(4.5)
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where the positive constant Ctr from the trace theorem only depends on Ω, and so∣∣∣∣∣∫
∂Ω

b(σ∞(Dσk + χ(1 − φk)) − σkχ(1 − φk)) dHd−1
∣∣∣∣∣

≤ Db
2
∥σk∥2L2(∂Ω) +Cb

(
1 + χ2

) (
∥Ψ(φk)∥L1 + ∥∇φk∥2L2

)
+Cb

(
1 + χ2

)
+ bC

(
χ + (1 + χ2)∥σ∞∥2L2(∂Ω)

)
.

(4.6)

4.1. Estimation of the source terms

For the source term ∫
Ω

Γφ,kµk − SkNk
,σ + Γv

(
pk − µkφk −

D
2
|σk|2

)
dx

that appears on the right-hand side of (4.4) we will divide its analysis into two parts. We first analyse
the part involving Γv, which will involve a closer look at the Darcy subsystem to deduce an estimate on
∥pk∥L2 . For the remainder Γφ,kµk − SkNk

,σ term we will estimate it differently based on the assumptions
on Θφ.

4.1.1. Pressure estimates

Before we estimate the source terms involving Γv, we look at the Darcy subsystem, which can be
expressed as an elliptic equation for the pressure (we will drop the subscript k for clarity)

−∆p =
1
K
Γv − div ((µ + χσ)∇φ) in Ω, with p = 0, (4.7a)

∂np = 0 on ∂Ω. (4.7b)

The following lemma is similar to [22, Lem. 3.1], and the hypothesis is fulfilled by the Galerkin ansatz.

Lemma 4.1. Let Ω ⊂ R3 be a bounded domain with C3-boundary. Given φ ∈ H2
N , µ, σ ∈ H1, the

source term Γv ∈ L2
0, and the function p satisfying the above elliptic equation (4.7). Then, the following

estimate hold

∥p∥L2 ≤ C
K
∥Γv∥L2 +C (∥∇µ∥L2 + χ∥σ∥L6) ∥∇φ∥

L
3
2
+Cµ∥∇φ∥L2 , (4.8)

for some positive constant C depending only on Ω.

Proof. We first recall some properties of the inverse Neumann-Laplacian operator. Suppose for g ∈ L2
0,

f = (−∆N)−1g ∈ H1 ∩ L2
0 solves

−∆ f = g in Ω, ∂n f = 0 on ∂Ω. (4.9)

Then, testing with f and integrating over Ω, applying integration by parts and the Poincaré inequality
(1.9) leads to

∥ (−∆N)−1 g∥H1 = ∥ f ∥H1 ≤ c∥∇ f ∥L2 ≤ C∥g∥L2 , (4.10)
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for positive constants c and C depending only on Cp. Elliptic regularity theory then gives that f ∈ H2
N

with

∥ f ∥H2 ≤ C (∥ f ∥H1 + ∥g∥L2) ≤ C∥g∥L2 , (4.11)

with a positive constant C depending only on Ω. Returning to the pressure system, we observe from
(2.10) and the above that

∥p∥L2 ≤ 1
K
∥ (−∆N)−1 Γv∥L2 + ∥ (−∆N)−1 ( div ((µ + χσ)∇φ)) ∥L2

≤ C
K
∥Γv∥L2 + ∥ (−∆N)−1 ( div ((µ − µ + χσ)∇φ)) ∥L2

+ ∥ (−∆N)−1 ( div (µ∇φ))∥L2 ,

(4.12)

for some positive constant C depending only on Cp. Note that the third term on the right-hand side can
be estimated as

µ∥ (−∆N)−1 div∇(φ − φ)∥L2 = µ∥φ − φ∥L2 ≤ Cpµ∥∇φ∥L2 . (4.13)

We now consider estimating the second term on the right-hand side of (4.12). By assumption µ, σ ∈ H1

and φ ∈ H2
N , we have that

∥(µ − µ + χσ)∇φ∥L2 ≤ ∥µ − µ + χσ∥L6∥∇φ∥L3 , (4.14)

and so if we consider the function h := (−∆N)−1( div ((µ − µ + χσ)∇φ)), then we obtain that∫
Ω

∇h · ∇ζ dx =
∫
Ω

−(µ − µ + χσ)∇φ · ∇ζ dx ∀ζ ∈ H1 (4.15)

must hold, and by (4.14) and the Poincaré inequality (1.9) with zero mean it holds that h ∈ H1 ∩ L2
0.

We now define f := (−∆N)−1(h) ∈ H2
N , and consider testing with ζ = f in (4.15), leading to∫

Ω

|h|2 dx =
∫
Ω

∇h · ∇ f dx =
∫
Ω

−(µ − µ + χσ)∇φ · ∇ f dx .

Since f ∈ H2
N , elliptic regularity theory and Hölder’s inequality gives

∥h∥2L2 ≤ ∥(µ − µ + χσ)∇φ∥
L

6
5
∥∇ f ∥L6 ≤ C∥(µ − µ + χσ)∇φ∥

L
6
5
∥ f ∥H2

≤ C∥(µ − µ + χσ)∇φ∥
L

6
5
∥h∥L2 ,

where the constant C depends on Ω and the constant in (4.11). Thus we obtain

∥ (−∆N)−1 ( div ((µ − µ + χσ)∇φ)) ∥L2 ≤ C∥(µ − µ + χσ)∇φ∥
L

6
5

≤ C (∥µ − µ∥L6 + χ∥σ∥L6) ∥∇φ∥
L

3
2

(4.16)

for some constant C depending only on Ω. By the Sobolev embedding H1 ⊂ L6 (with constant CSob

that depends only on Ω) and the Poincaré inequality, we find that

∥µ − µ∥L6 ≤ CSob∥µ − µ∥H1 ≤ c(CSob,Cp)∥∇µ∥L2 . (4.17)

Substituting the above elements into (4.12) yields (4.8). �
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Remark 4.1. We choose not to use the estimate

c∥h∥L2 ≤ ∥∇h∥L2 ≤ ∥(µ − µ + χσ)∇φ∥L2 (4.18)

obtained from substituting ζ = h in (4.15), where c is a positive constant depending only on Cp, since
by (4.14) we require control of ∇φ in the L3(Ω)-norm and this is not available when deriving the first a
priori estimate. Thus, we make use of the auxiliary problem f = (−∆N)−1(h) to derive another estimate
on ∥h∥L2 that involves controlling ∇φ in the weaker L 3

2 (Ω)-norm.

Next, we state regularity estimates for the pressure and the velocity field. The hypothesis will be
fulfilled for the Galerkin ansatz once we derived the a priori estimates in Section 4. Note that in
Lemma 4.2 below, we consider a source term Γv ∈ L2(0,T ; L2

0), so that our new regularity results for
the pressure and the velocity is also applicable to the setting considered in [22].

Lemma 4.2. Let φ ∈ L∞(0,T ; H1) ∩ L2(0,T ; H2
N ∩ H3), σ ∈ L2(0, T ; H1), µ ∈ L2(0,T ; H1), the source

term Γv ∈ L2(0,T ; L2
0), and the function p satisfying (4.7). Then,

∥p∥
8
5

L
8
5 (H1)
≤ C1∥φ∥

6
5

L∞(H1)∥µ + χσ∥
8
5

L2(H1)∥φ∥
2
5

L2(H3) +
C1

K
T

1
5 ∥Γv∥

8
5

L2(L2), (4.19)

for some positive constant C1 depending only on Ω, and

∥p∥
8
7

L
8
7 (H2)
≤ C2T

3
7 K−

8
7 ∥Γv∥

8
7

L2(L2) +C2T
2
7 ∥p∥

8
7

L
8
5 (H1)

+C2∥φ∥
2
7

L∞(H1)∥µ + χσ∥
8
7

L2(H1)∥φ∥
6
7

L2(H3),

(4.20)

for some positive constant C2 depending only on Ω. Moreover, if we have the relation

v = −K (∇p − (µ + χσ)∇φ) ,

then
∥Dv∥

8
7

L
8
7 (L2)
≤ C3K∥p∥

8
7

L
8
7 (H2)
+C3K∥µ + χσ∥

8
7

L2(H1)∥φ∥
6
7

L2(H3)∥φ∥
2
7

L∞(H1), (4.21)

for some positive constant C3 depending only on Ω.

Proof. From (4.7) we see that p satisfies p = 0 and∫
Ω

∇p · ∇ζ dx =
∫
Ω

(µ + χσ)∇φ · ∇ζ + 1
K
Γvζ dx ∀ζ ∈ H1(Ω).

Testing with ζ = p and applying the Hölder’s inequality and the Poincaré inequality (1.9) gives

∥∇p∥L2 ≤ ∥(µ + χσ)∇φ∥L2 +
Cp

K
∥Γv∥L2 . (4.22)

Applying Hölder’s inequality and the Sobolev embedding H1 ⊂ L6 yields that

∥(µ + χσ)∇φ∥L2 ≤ ∥µ + χσ∥L6∥∇φ∥L3 ≤ CSob∥µ + χσ∥H1∥∇φ∥L3 . (4.23)
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By the Gagliardo–Nirenberg inequality (1.10) with parameters j = 0, p = 3, r = 2, m = 2, d = 3 and
q = 2,

∥∇φ∥L3 ≤ C∥∇φ∥
1
4
H2∥∇φ∥

3
4
L2 ≤ C∥φ∥

1
4
H3∥φ∥

3
4
H1 , (4.24)

where C > 0 is a constant depending only on Ω. Then, the boundedness of µ, σ in L2(0,T ; H1) and φ
in L2(0,T ; H3) ∩ L∞(0,T ; H1) leads to∫ T

0
∥(µ + χσ)∇φ∥

8
5

L2 dt ≤ C
∫ T

0
∥µ + χσ∥

8
5

H1∥φ∥
2
5

H3∥φ∥
6
5

H1 dt

≤ C∥φ∥
6
5

L∞(H1)∥µ + χσ∥
8
5

L2(H1)∥φ∥
2
5

L2(H3).

By (4.22) we find that∫ T

0
∥∇p∥

8
5

L2 dt ≤
∫ T

0
∥(µ + χσ)∇φ∥

8
5

L2 +
C
K
∥Γv∥

8
5

L2 dt

≤ C∥φ∥
6
5

L∞(H1)∥µ + χσ∥
8
5

L2(H1)∥φ∥
2
5

L2(H3) +
C
K

T
1
5 ∥Γv∥

8
5

L2(L2),

where the positive constant C depends only on Ω. As p = 0, by the Poincaré inequality (1.9), we see
that

∥p∥
8
5

L
8
5 (H1)
≤ C∥φ∥

6
5

L∞(H1)∥µ + χσ∥
8
5

L2(H1)∥φ∥
2
5

L2(H3) +
C
K

T
1
5 ∥Γv∥

8
5

L2(L2),

for some positive constant C depending only on Ω. Next, we see that

∥ div ((µ + χσ)∇φ)∥L2 ≤ ∥(µ + χσ)∆φ∥L2 + ∥∇(µ + χσ) · ∇φ∥L2

≤ ∥µ + χσ∥L6∥∆φ∥L3 + ∥∇(µ + χσ)∥L2∥∇φ∥L∞ .

By the Gagliardo–Nirenberg inequality (1.10), we find that

∥D2φ∥L3 ≤ C∥φ∥
3
4
H3∥φ∥

1
4

L6 ≤ C∥φ∥
3
4
H3∥φ∥

1
4
H1 ,

∥∇φ∥L∞ ≤ C∥φ∥
3
4
H3∥φ∥

1
4

L6 ≤ C∥φ∥
3
4
H3∥φ∥

1
4
H1 ,

(4.25)

and so, we have
∥ div ((µ + χσ)∇φ)∥L2 ≤ C∥µ + χσ∥H1∥φ∥

3
4
H3∥φ∥

1
4
H1 . (4.26)

That is, div ((µ + χσ)∇φ) ∈ L2. Since by assumption Γv ∈ L2
0, using elliptic regularity theory, we find

that p(t, ·) ∈ H2 for a.e. t and there exists a constant C depending only on Ω, such that

∥p∥H2 ≤ C
(
∥p∥H1 + ∥ div ((µ + χσ)∇φ)∥L2 + K−1∥Γv∥L2

)
. (4.27)

Furthermore, from (4.26), we see that∫ T

0
∥ div ((µ + χσ)∇φ)∥

8
7

L2 dt ≤ C∥φ∥
2
7

L∞(H1)

∫ T

0
∥µ + χσ∥

8
7

H1∥φ∥
6
7

H3 dt
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≤ C∥φ∥
2
7

L∞(H1)∥µ + χσ∥
8
7

L2(H1)∥φ∥
6
7

L2(H3),

and so for some positive constant C depending only on Ω, it holds that∫ T

0
∥p∥

8
7

H2 dt ≤ CT
3
7 K−

8
7 ∥Γv∥

8
7

L2(L2) +CT
2
7 ∥p∥

8
7

L
8
5 (H1)

+C∥φ∥
2
7

L∞(H1)∥µ + χσ∥
8
7

L2(H1)∥φ∥
6
7

L2(H3).

(4.28)

For the velocity field v we estimate as follows. Let 1 ≤ i, j ≤ 3 be fixed, we obtain from (4.25),

∥Div j∥L2 = K∥DiD j p − Di(µ + χσ)D jφ − (µ + χσ)DiD jφ∥L2

≤ K
(
∥p∥H2 + ∥∇(µ + χσ)∥L2∥∇φ∥L∞ + ∥µ + χσ∥L6∥D2φ∥L3

)
≤ K

(
∥p∥H2 +C∥µ + χσ∥H1∥φ∥

3
4
H3∥φ∥

1
4
H1

)
.

(4.29)

Applying the same calculation as in (4.28) yields∫ T

0
∥Dv∥

8
7

L2 dt ≤ CK
∫ T

0
∥p∥

8
7

H2 + ∥µ + χσ∥
8
7

H1∥φ∥
6
7

H3∥φ∥
2
7

H1 dt

≤ CK
(
∥p∥

8
7

L
8
7 (H2)
+ ∥µ + χσ∥

8
7

L2(H1)∥φ∥
6
7

L2(H3)∥φ∥
2
7

L∞(H1)

)
,

for some positive constant C depending only on Ω. �

4.1.2. Source term from the Darcy system

To estimate the third source term∫
Ω

Γv

(
pk − µkφk −

D
2
|σk|2

)
dx =

∫
Ω

Γv

(
pk − µkφk + (µk − µk)φk −

D
2
|σk|2

)
dx

of the energy equality we use Hölder’s inequality to obtain∣∣∣∣∣∫
Ω

Γv
D
2
|σk|2 + Γvφk(µk − µk) dx

∣∣∣∣∣ ≤ D
2
∥Γv∥L2∥σk∥2L4

+ ∥Γv∥L 3
2
∥µk − µk∥L6∥φk∥L6 .

By the Gagliardo–Nirenberg inequality (1.10) with j = 0, r = 2, m = 1, p = 4, q = 2 and α = 3
4 , we

have

∥σk∥2L4 ≤ C∥σk∥
3
2
H1∥σk∥

1
2
L2 = C

(
∥σk∥2L2 + ∥σk∥

1
2
L2∥∇σk∥

3
2
L2

)
.

By Young’s inequality with Hölder exponents (i.e., ab ≤ ε
pap + ε−q/p

q bq for 1
p +

1
q = 1 and ε > 0), we

find that

D
2
∥Γv∥L2∥σk∥2L4 ≤ C

(
∥Γv∥L2∥σk∥2L2 + ∥Γv∥4L2∥σk∥2L2

)
+

n0D2

4
∥∇σk∥2L2 ,
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for some positive constant C depending only in n0, D and Ω. Then, by (4.17) we have∣∣∣∣∣∫
Ω

Γv
D
2
|σk|2 + Γvφk(µk − µk) dx

∣∣∣∣∣
≤ n0D2

4
∥∇σk∥2L2 +C

(
1 + ∥Γv∥4L2

)
∥σk∥2L2 + ∥Γv∥L 3

2
c(Cp,CSob)∥∇µk∥L2∥φk∥H1

≤ n0D2

4
∥∇σk∥2L2 +C

(
1 + ∥Γv∥4L2

)
∥σk∥2L2 +

m0

8
∥∇µk∥2L2 +C∥Γv∥2L2∥φk∥2H1 ,

where the positive constant C depends only on Ω, m0, n0 and D. Here we point out that the assumption
Γv ∈ L4(0,T ; L2

0) is needed. For the remainder term Γv(pk − µkφk), we find that

pk − µkφk

=

(
(−∆N)−1

(
1
K
Γv − div ((µk − µk + χσk)∇φk) − µk div∇(φk − φk)

))
− µkφk

=

(
(−∆N)−1

(
1
K
Γv − div ((µk − µk + χσk)∇φk)

))
− µk φk,

where we used

(−∆N)−1 (−µk div∇(φk − φk)) = µk(φk − φk).

Then, by ∫
Ω

Γvφk µk dx = µk φk

∫
Ω

Γv dx = 0,

it holds that ∫
Ω

Γv(pk − µkφk) dx =
∫
Ω

Γv

(
(−∆N)−1

(
1
K
Γv − div ((µk − µk + χσk)∇φk)

))
.

Applying the calculations in the proof of Lemma 4.1 (specifically (4.10), (4.16) and (4.17)), Hölder’s
inequality and Young’s inequality, we find that∣∣∣∣∣∫

Ω

Γv(pk − µkφk) dx
∣∣∣∣∣

≤ C
K
∥Γv∥2L2 +C∥Γv∥L2 (∥∇µk∥L2 + χ∥σk∥H1) ∥∇φk∥L 3

2

≤ C
K
∥Γv∥2L2 +

m0

8
∥∇µk∥2L2 +

n0D2

4
∥∇σk∥2L2 + ∥σk∥2L2 +C(1 + χ2)∥Γv∥2L2∥∇φk∥2L2 ,

where C is a positive constant depending only on |Ω|, Cp, CSob, D, n0 and m0. Here we point out that if
we applied (4.18) instead of (4.8) then we obtain a term containing ∥∇φ∥L3 on the right-hand side and
this cannot be controlled by the left-hand side of (4.4). Using (2.4) we have

∥φk∥2L2 ≤
1
R1
∥Ψ(φk)∥L1 +

R2

R1
|Ω| . (4.30)
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Then, we obtain the following estimate∣∣∣∣∣∫
Ω

Γv

(
pk − µkφk −

D
2
|σk|2

)
dx

∣∣∣∣∣
≤ C

(
1
K
∥Γv∥2L2 + 1

)
+

n0D2

2
∥∇σk∥2L2 +

m0

4
∥∇µk∥2L2

+C
(
1 + ∥Γv∥4L2

)
∥σk∥2L2 +C∥Ψ(φk)∥L1 +C(1 + χ2)∥Γv∥2L2∥∇φk∥2L2 ,

(4.31)

for some positive constant C depending only on R1, R2, Ω, m0, n0 and D. Here we point out that it is
crucial for the source term Γv to be prescribed and is not a function of φ, µ and σ, otherwise the product
term ∥Γv∥4L2∥σk∥2L2 and ∥Γv∥2L2∥∇φk∥2L2 cannot be controlled in the absence of any a priori estimates. For
the remaining source term ∫

Ω

Γφ,kµk − SkNk
,σ dx

we split the analysis into two cases and combine with (4.31) to derive an energy inequality.

4.1.3. Energy inequality for non-negative Θφ

Suppose Θφ is non-negative and bounded, and Ψ is a potential that satisfies (2.5). We will estimate
the mean of µk by setting j = 1 in (3.2b), and using the growth condition (2.5) to obtain∣∣∣∣∣∫

Ω

µk dx
∣∣∣∣∣2 = ∣∣∣∣∣∫

Ω

AΨ′(φk) − χσk dx
∣∣∣∣∣2 ≤ 2A2∥Ψ′(φk)∥2L1 + 2χ2∥σk∥2L1

≤ 2A2R2
4

(
|Ω| + |Ω| 12 ∥φk∥L2

)2
+ 2χ2 |Ω| ∥σk∥2L2

≤ C(A,R4, |Ω|) + 4A2R2
4 |Ω| ∥φk∥2L2 + 2χ2 |Ω| ∥σk∥2L2 .

Then, by the Poincaré inequality (1.9) and the growth condition (2.4), we find that

∥µk∥2L2 ≤ 2C2
P∥∇µk∥2L2 + 2 |Ω| |µk|2

≤ 2C2
p∥∇µk∥2L2 + 8A2R2

4∥φk∥2L2 + 4χ2∥σk∥2L2 +C(A,R4, |Ω|)

≤ 2C2
p∥∇µk∥2L2 +

8A2R2
4

R1
∥Ψ(φk)∥L1 + 4χ2∥σk∥2L2 +C(A,R4,R1,R2, |Ω|).

(4.32)

Note that by the specific form (2.1) for Γφ we have that

Γφ,kµk = Λφ(φk, σk)µk − Θφ(φk, σk) |µk|2 .

Moving the non-negative termΘφ(φk, σk) |µk|2 to the left-hand side of (4.4) and subsequently neglecting
it, we estimate the remainder using the growth condition (2.3) and Hölder’s inequality as follows (here
we use the notation Λφ,k := Λφ(φk, σk)),∣∣∣∣∣∫

Ω

Λφ,kµk − Sk(Dσk + χ(1 − φk)) dx
∣∣∣∣∣

≤ ∥Λφ,k∥L2∥µk∥L2 +
(∥ΛS ,k∥L2 + R0∥µk∥L2

) ∥Dσk + χ(1 − φk)∥L2

≤ C (1 + χ + (1 + χ)∥φk∥L2 + (1 + D)∥σk∥L2) ∥µk∥L2

+C (1 + ∥φk∥L2 + ∥σ∥L2)
(
χ |Ω| 12 + D∥σ∥L2 + χ∥φk∥L2

)
(4.33)
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where C is a positive constant depending only on R0 and |Ω|. By Young’s inequality, (4.32) and (4.30),
we have∣∣∣∣∣∫

Ω

Λφ,kµk − Sk(Dσk + χ(1 − φk)) dx
∣∣∣∣∣

≤ m0

8C2
p
∥µk∥2L2 +C(1 + χ + D + χ2)∥φk∥2L2 +C(1 + χ + D)2∥σk∥2L2 +C(1 + χ + χ2)

≤ m0

4
∥∇µk∥2L2 +C(1 + χ2)∥σk∥2L2 +C(1 + χ2)∥Ψ(φk)∥L1 +C(1 + χ2),

(4.34)

for some positive constant C depending only on |Ω|, R0, R1, R2, R4, A, D, Cp and m0. Using the fact
that

∥D∇σ∥L2 ≤ ∥∇(Dσ + χ(1 − φ))∥L2 + ∥χ∇φ∥L2 ,

we now estimate the right-hand side of (4.4) using (4.6), (4.31) and (4.34), which leads to

d
dt

∫
Ω

AΨ(φk) +
B
2
|∇φk|2 +

D
2
|σk|2 + χσk(1 − φk) dx

+
m0

2
∥∇µk∥2L2 +

n0D2

2
∥∇σk∥2L2 +

1
K
∥vk∥2L2 +

Db
2
∥σk∥2L2(∂Ω)

≤ C(1 + b)(1 + χ2)∥Ψ(φk)∥L1 +C
(
∥Γv∥2L2 + b

)
(1 + χ2)∥∇φk∥2L2

+C
(
1 + χ2 + ∥Γv∥4L2

)
∥σk∥2L2 +C(1 + b)(1 + χ2) +

C
K
∥Γv∥2L2

+ bC(1 + χ2)∥σ∞∥2L2(∂Ω),

(4.35)

for some positive constant C not depending on Γv, K, b and χ. Integrating (4.35) with respect to t from
0 to s ∈ (0,T ] leads to

A∥Ψ(φk(s))∥L1 +
B
2
∥∇φk(s)∥2L2 +

D
2
∥σk(s)∥2L2 +

∫
Ω

χσk(s)(1 − φk(s)) dx

+

∫ s

0

m0

2
∥∇µk∥2L2 +

n0D2

2
∥∇σk∥2L2 +

1
K
∥vk∥2L2 +

Db
2
∥σk∥2L2(∂Ω) dt

≤
∫ s

0
C(1 + b)(1 + χ2)

(
1 + ∥Γv∥4L2

) (
∥Ψ(φk)∥L1 + ∥∇φk∥2L2 + ∥σk∥2L2

)
dt

+C(1 + b)(1 + χ2)T +
C
K
∥Γv∥2L2(0,T ;L2) +Cb(1 + χ2)∥σ∞∥2L2(0,T ;L2(∂Ω))

+C
(
∥Ψ(φ0)∥L1 + ∥φ0∥2H1 + ∥σ0∥2L2

)
,

(4.36)

for some positive constant C independent of Γv, K, χ and b. Here we used σ0 ∈ L2 and φ0 ∈ H1,
which implies by the growth condition (2.5) thatΨ(φ0) ∈ L1. Next, by Hölder’s inequality and Young’s
inequality we have∣∣∣∣∣∫

Ω

χσk(x, s)(1 − φk(x, s)) dx
∣∣∣∣∣ ≤ 2D

8
∥σk(s)∥2L2 +

2χ2 |Ω|
D

+
2χ2

D
∥φk(s)∥2L2

≤ D
4
∥σk(s)∥2L2 +

2χ2

DR1
∥Ψ(φk(s))∥L1 +

2χ2 |Ω|
D

(1 + R2).
(4.37)
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Substituting (4.37) into (4.36) then yields

min
(
A − 2χ2

DR1
,

B
2
,

D
4

) (
∥Ψ(φk(s))∥L1(Ω) + ∥∇φk(s)∥2L2(Ω) + ∥σk(s)∥2L2(Ω)

)
+

∫ s

0
∥∇µk∥2L2 + ∥∇σk∥2L2 +

1
K
∥vk∥2L2 +

b
2
∥σk∥2L2(∂Ω) dt

≤
∫ s

0
C(1 + b)(1 + χ2)

(
1 + ∥Γv∥4L2

) (
∥Ψ(φk)∥L1 + ∥∇φk∥2L2 + ∥σk∥2L2

)
dt

+C(1 + b)(1 + χ2)(1 + T ) +
C
K
∥Γv∥2L2(0,T ;L2),

(4.38)

for some positive constant C independent of Γv, K, b and χ. Setting

α := C(1 + b)(1 + χ2)(1 + T ) +
C
K
∥Γv∥2L2(0,T ;L2),

β := C(1 + b)(1 + χ2)
(
1 + ∥Γv∥4L2

)
∈ L1(0, T ),

(4.39)

and noting that

α

(
1 +

∫ s

0
β(t) exp

(∫ t

0
β(r) dr

)
dt

)
≤ α

(
1 + ∥β∥L1(0,T ) exp

(
∥β∥L1(0,T )

))
< ∞,

we find after applying the Gronwall inequality (1.11) to (4.38) leads to

sup
s∈(0,T ]

(
∥Ψ(φk(s))∥L1 + ∥∇φk(s)∥2L2 + ∥σk(s)∥2L2

)
+

∫ T

0
∥∇µk∥2L2 + ∥∇σk∥2L2 +

1
K
∥vk∥2L2 +

b
2
∥σk∥2L2(∂Ω) dt ≤ E,

(4.40)

where we recall that E denotes a constant that is uniformly bounded for b, χ ∈ (0, 1] and is also
uniformly bounded for K ∈ (0, 1] when Γv = 0.

4.1.4. Energy inequality for positive Θφ

Suppose Θφ satisfies (2.6) and Ψ is a potential satisfying the growth condition (2.7). Similar to the
previous case, we see that the specific form for Γφ leads to

Γφ,kµk = Λφ(φk, σk)µk − Θφ(φk, σk) |µk|2 .

We move the term Θφ(φk, σk) |µk|2 to the left-hand side of (4.4) and estimate the remainder as in (4.33).
Using Young’s inequality differently and also (4.30), we have∣∣∣∣∣∫

Ω

Λφ,kµk − Sk(Dσk + χ(1 − φk)) dx
∣∣∣∣∣

≤ R5

2
∥µk∥2L2 +C(1 + χ + D + χ2)∥φk∥2L2 +C(1 + χ + D)2∥σk∥2L2 +C(1 + χ + χ2)

≤ R5

2
∥µk∥2L2 +C(1 + χ2)∥σk∥2L2 +C(1 + χ2)∥Ψ(φk)∥L1 +C(1 + χ2),

(4.41)
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for some positive constant C depending only on |Ω|, R5, R1, R2, A, D, and Cp. Using (4.6), (4.31),
(4.41) and the lower bound Θφ ≥ R5, instead of (4.35) we obtain from (4.4)

d
dt

∫
Ω

AΨ(φk) +
B
2
|∇φk|2 +

D
2
|σk|2 + χσk(1 − φk) dx

+
R5

2
∥µk∥2L2 +

m0

2
∥∇µk∥2L2(Ω) +

n0D2

2
∥∇σk∥2L2 +

1
K
∥vk∥2L2 +

Db
2
∥σk∥2L2(∂Ω)

≤ C(1 + b)(1 + χ2)∥Ψ(φk)∥L1 +C
(
∥Γv∥2L2 + b

)
(1 + χ2)∥∇φk∥2L2

+C
(
1 + χ2 + ∥Γv∥4L2

)
∥σk∥2L2 +C(1 + b)(1 + χ2) +

C
K
∥Γv∥2L2

+Cb(1 + χ2)∥σ∞∥2L2(∂Ω),

(4.42)

for some positive constant C independent of Γv, K, b and χ. We point out the main difference between
(4.35) and the above is the appearance of the term R5

2 ∥µk∥2L2 on the left-hand side. The positivity of Θφ
allows us to absorb the ∥µk∥2L2 term on the right-hand side of (4.41) and thus we do not need to use
(4.32), which was the main reason why Ψ has to be a quadratic potential for a non-negative Θφ. Then,
applying a similar argument as in Section 4.1.3, we arrive at an analogous energy inequality to (4.40),

sup
s∈(0,T ]

(
∥Ψ(φk(s))∥L1 + ∥∇φk(s)∥2L2 + ∥σk(s)∥2L2

)
+

∫ T

0
∥µk∥2H1 + ∥∇σk∥2L2 +

1
K
∥vk∥2L2 +

b
2
∥σk∥2L2(∂Ω) dt ≤ E.

(4.43)

Using (4.32) and (4.30) applied to (4.40), and similarly using (4.30) applied to (4.43) we obtain

sup
s∈(0,T ]

(
∥Ψ(φk(s))∥L1 + ∥φk(s)∥2H1 + ∥σk(s)∥2L2

)
+

∫ T

0
∥µk∥2H1 + ∥∇σk∥2L2 +

1
K
∥vk∥2L2 +

b
2
∥σk∥2L2(∂Ω) dt ≤ E.

(4.44)

This a priori estimate implies that the Galerkin ansatz φk, µk, σk and vk can be extended to the interval
[0,T ]. To determine if pk can also be extended to the interval [0,T ] we require some higher order
estimates for φk in order to use (4.19).

4.2. Higher order estimates

Let Πk denote the orthogonal projection onto the finite-dimensional subspace Wk. From (3.2b) we
may view φk as the solution to the following elliptic equation

−B∆u + u = µk − AΠk
(
Ψ′(u)

)
+ χσk + u in Ω, (4.45a)

∂nu = 0 on ∂Ω. (4.45b)

For the case where Ψ satisfies (2.5), as {φk}k∈N is bounded in L∞(0,T ; H1), we have that {Ψ′(φk)}k∈N is
also bounded in L∞(0,T ; H1). Using the fact that our basis functions {wi}i∈N are the eigenfunctions of
the inverse Neumann-Laplacian operator and is therefore orthogonal in H1, and the Sobolev embedding
H1 ⊂ Lr for r ∈ [1, 6], there exists a positive constant C independent of φk such that

∥Πk(Ψ′(φk))∥X ≤ C∥Ψ′(φk)∥X for X = H1 or Lr, 1 ≤ r ≤ 6. (4.46)
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Then, this implies that {Πk (Ψ′(φk))}k∈N is also bounded in L∞(0,T ; H1). As the right-hand side of
(4.45a) belongs to H1 for a.e. t ∈ (0,T ), and the boundary ∂Ω is C3, by elliptic regularity theory, we
have

∥φk∥L2(H3) ≤ C
(
1 + ∥φk∥L2(H1) + ∥µk + χσk∥L2(H1)

)
≤ E, (4.47)

for some positive constant C depending only on Ω and R4. For the case where Ψ satisfies (2.7), we
employ a bootstrap argument from [18, §3.3]. The growth assumption (2.7) implies that

|Ψ′(y)| ≤ C (1 + |y|m) , |Ψ′′(y)| ≤ C
(
1 + |y|m−1

)
for m ∈ [1, 5). (4.48)

For fixed m ∈ [1, 5), we define a sequence of positive numbers {l j} j∈N by

l1m ≤ 6, l j+1 =
6l j

6 − (5 − m)l j
.

It can be shown that {l j} j∈N is a strictly increasing sequence such that l j → ∞ as j→ ∞. The Gagliardo–
Nirenberg inequality (1.10) then yields the following continuous embedding

L2(0, T ; W2,l j) ∩ L∞(0,T ; L6) ⊂ L2m(0,T ; Lml j+1). (4.49)

At the first step, the boundedness of {φk}k∈N in L∞(0,T ; H1) yields

∥Πk(Ψ′(φk))∥2Ll1
≤ C

(
1 + ∥φk∥2m

L6

)
,

which implies that {Πk(Ψ′(φk))}k∈N is bounded in L2(0,T ; Ll1). As the other terms on the right-hand
side of (4.45) are bounded in L2(0,T ; H1), elliptic regularity then yields that {φk}k∈N is bounded in
L2(0,T ; W2,l1), and thus in L2m(0,T ; Lml2) by (4.49).

At the j-th step, we have {φk}k∈N is bounded in L2(0,T,W2,l j) ∩ L2m(0,T ; Lml j+1). Then, it holds that

∥Πk(Ψ′(φk))∥2L2(Ll j+1 )
≤ C

(
1 + ∥φk∥2m

L2m(Lml j+1 )

)
,

and so {Πk(Ψ′(φk))}k∈N is bounded in L2(0, T ; Ll j+1). Elliptic regularity then implies that {φk}k∈N is
bounded in L2(0, T ; W2,l j+1).

We terminate the bootstrapping procedure once l j ≥ 6 for some j ∈ N. This occurs after a finite
number of steps as lim j→∞ l j = ∞. Altogether, we obtain that {φk}k∈N is bounded in L2(0,T ; W2,6).
From (4.48) it holds that

|Ψ′′(φk)∇φk|2 ≤ C
(
1 + |φk|2m−2

)
|∇φk|2 for m ∈ [1, 5),

and by the following continuous embeddings obtain from the Gagliardo–Nirenberg inequality (1.10),

L2(0,T ; W2,6) ∩ L∞(0,T ; H1) ⊂ L2m(0, T ; L2m) ∩ L2m−2(0,T ; L∞) for m ∈ [1, 5),

we find that {Πk(Ψ′(φk))}k∈N is bounded in L2(0,T ; H1). Applying elliptic regularity once more leads to
the boundedness of {φk}k∈N in L2(0, T ; H3). Consequently, the hypotheses of Lemma 4.2 are satisfied
and we obtain that

∥pk∥L 8
5 (H1)
≤ E,

which implies that the Galerkin ansatz pk can be extended to the interval [0,T ].
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4.3. Estimates for the convection terms and the time derivatives

By the Gagliardo–Nirenberg inequality (1.10) with j = 0, p = ∞, m = 3, r = 2, q = 2 and d = 3,
we have

∥φk∥L∞ ≤ C∥φk∥
1
4
H3∥φk∥

3
4

L6 ≤ C∥φk∥
1
4
H3∥φk∥

3
4
H1 .

For any ζ ∈ L
8
3 (0,T ; H1) with coefficients {ζk j}1≤ j≤k ⊂ Rk such that Πkζ =

∑k
j=1 ζk jw j, we can estimate∣∣∣∣∣∣

∫ T

0

∫
Ω

φkvk · ∇Πkζ dx dt

∣∣∣∣∣∣ ≤
∫ T

0
∥vk∥L2∥φk∥L∞∥∇Πkζ∥L2 dt

≤ C∥φk∥
3
4
L∞(H1)∥vk∥L2(L2)∥φk∥

1
4
L2(H3)∥ζ∥L 8

3 (H1)
.

(4.50)

Using (4.44) and (4.47), we find that

∥ div (φkvk)∥L 8
5 ((H1)∗)

≤ K
1
2E. (4.51)

Next, multiplying (3.2a) by ζk j, summing from j = 1 to k and then integrating in time from 0 to T leads
to ∣∣∣∣∣∣

∫ T

0

∫
Ω

∂tφkζ dx dt

∣∣∣∣∣∣ ≤
∫ T

0
m1∥∇µk∥L2∥∇Πkζ∥L2 dt

+

∫ T

0
∥Γφ,k∥L2∥Πkζ∥L2 + ∥ div (φkvk)∥(H1)∗∥Πkζ∥H1 dt .

By (2.1), (2.2) and (4.44), we find that

∥Γφ,k∥L2(L2) ≤ C(R0, |Ω| , T )
(
1 + ∥φk∥L2(L2) + ∥µk∥L2(L2) + ∥σk∥L2(L2)

)
≤ E,

and so, by Hölder’s inequality, we find that∣∣∣∣∣∣
∫ T

0

∫
Ω

∂tφkζ dx dt

∣∣∣∣∣∣ ≤ (
ET

1
8 + ∥ div (φkvk)∥L 8

5 ((H1)∗)

)
∥ζ∥

L
8
3 (H1)

.

Taking the supremum over ζ ∈ L
8
3 (0,T ; H1) and using (4.44) and (4.51) yields that

∥∂tφk∥L 8
5 ((H1)∗)

≤ E
(
1 + K

1
2
)
, (4.52)

Similarly, by Hölder’s inequality and the following Gagliardo–Nirenberg inequality (1.10) with j = 0,
r = 2, m = 1, p = 10

3 , q = 2 and d = 3,

∥ f ∥
L

10
3
≤ C∥ f ∥

3
5

H1∥ f ∥
2
5

L2 ,

which in turn implies that {σk}k∈N is bounded uniformly in L
10
3 (Q). Then, we find that for any ζ ∈

L5(0,T ; W1,5), ∣∣∣∣∣∣
∫ T

0

∫
Ω

σkvk · ∇Πkζ dx dt

∣∣∣∣∣∣ ≤
∫ T

0
∥σk∥L 10

3
∥vk∥L2∥∇ζ∥L5 dt

≤ ∥σk∥L 10
3 (Q)
∥vk∥L2(L2)∥∇ζ∥L5(L5),

(4.53)
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and

∥ div (σkvk)∥L 5
4 ((W1,5)∗)

≤ K
1
2E. (4.54)

A similar calculation to (4.52) yields that

∥∂tσk∥L 5
4 ((W1,5)∗)

≤ E
(
1 + K

1
2
)
. (4.55)

Remark 4.2. We may also use the Gagliardo–Nirenberg inequality to deduce that

∥ f ∥Lr ≤ C∥ f ∥
3(r−2)

2r

H1 ∥ f ∥
6−r
2r

L2 for any r ∈ (2, 6).

Then, the computation (4.53) becomes∣∣∣∣∣∣
∫ T

0

∫
Ω

σkvk · ∇Πkζ dx dt

∣∣∣∣∣∣ ≤ C∥vk∥L2(L2)∥σk∥
6−r
2r

L∞(L2)∥σk∥
3(r−2)

2r

L2(H1)∥∇ζ∥L 4r
6−r (L

2r
r−2 )
,

which implies that { div (σkvk)}k∈N and {∂tσk}k∈N are bounded uniformly in

L
4r

5r−6 (0,T ; (W1, 2r
r−2 )∗) for r ∈ (2, 6).

Note that the temporal exponent decreases while the spatial exponent increases as r increases, and
they intersect at the point r = 10

3 .

Here we point out that even with the improved regularity vk ∈ L
8
7 (0,T ; H1), we are unable to show

div (σkvk) is bounded in the dual space (H1)∗. Indeed, let q, r > 1 be constants yet to be determined
such that 1

q +
1
r =

1
2 . Then, from Hölder’s inequality we have∣∣∣∣∣∣

∫ T

0

∫
Ω

σkvk · ∇Πkζ dx dt

∣∣∣∣∣∣ ≤
∫ T

0
∥σk∥Lq∥vk∥Lr∥∇ζ∥L2 dt .

By the Gagliardo–Nirenberg inequality we have for α = 3
2 −

3
q ≤ 1, β = 3

2 −
3
r ≤ 1,∣∣∣∣∣∣

∫ T

0

∫
Ω

σkvk · ∇Πkζ dx dt

∣∣∣∣∣∣ ≤ C
∫ T

0
∥σk∥1−αL2 ∥σk∥αH1∥vk∥βH1∥vk∥1−βL2 ∥∇ζ∥L2 dt

≤ C∥σk∥1−αL∞(L2)

∫ T

0
∥σk∥αH1∥vk∥βH1∥vk∥1−βL2 ∥ζ∥H1 dt

≤ C∥σk∥1−αL∞(L2)∥σk∥αLαx1 (H1)∥vk∥βLβx2 (H1)
∥vk∥1−βL(1−β)x3 (L2)

∥ζ∥Lx4 (H1),

where
1
x1
+

1
x2
+

1
x3
+

1
x4
= 1, αx1 ≤ 2, βx2 ≤

8
7
, (1 − β)x3 ≤ 2. (4.56)

Note that α = 3
2 −

3
q =

3
r , and then substituting into the constraints (4.56) we find that

1
x1
+

1
x2
+

1
x3
≥ α

2
+

7
8
β +

1 − β
2
=

3
2r
+

21
16
− 21

8r
+

3
2r
− 1

4
=

17
16
+

3
8

r > 1. (4.57)

Hence, we cannot find x1, x2, x3 and x4 satisfying (4.56) and we are unable to deduce that div (σkvk)
lies in the dual space (H1)∗ even with the improved regularity vk ∈ L

8
7 (0,T ; H1).
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5. Passing to the limit

From (4.44), (4.47), (4.19), (4.20), (4.21), (4.51), (4.52), (4.54), (4.55), we find that

{φk}k∈N bounded in L∞(0,T ; H1) ∩ L2(0,T ; H3),

{∂tφk}k∈N, { div (φkvk)}k∈N bounded in L
8
5 (0,T ; (H1)∗),

{σk}k∈N bounded in L∞(0,T ; L2) ∩ L2(0,T ; H1) ∩ L2(Σ),

{∂tσk}k∈N, { div (σkvk)}k∈N bounded in L
5
4 (0,T ; (W1,5)∗),

{µk}k∈N bounded in L2(0,T ; H1),

{pk}k∈N bounded in L
8
5 (0,T ; H1) ∩ L

8
7 (0,T ; H2),

{vk}k∈N bounded in L2(0,T ; L2) ∩ L
8
7 (0,T ; H1).

By standard compactness results (Banach–Alaoglu theorem and reflexive weak compactness theorem),
and [28, §8, Cor. 4], and the compact embeddings in dimension 3 (see [1, Thm. 6.3] and [15, Thm.
11.2, p. 31])

H j+1(Ω) = W j+1,2(Ω) ⊂⊂ W j,q(Ω) ∀ j ≥ 0, j ∈ Z, 1 ≤ q < 6,

and the compact embedding L2 ⊂⊂ (H1)∗, we obtain, for a relabelled subsequence, the following
weak/weak-* convergences:

φk → φ weakly-∗ in L∞(0, T ; H1) ∩ L2(0,T ; H3) ∩W1, 8
5 (0,T ; (H1)∗),

σk → σ weakly-∗ in L2(0,T ; H1) ∩ L∞(0,T ; L2) ∩ L2(Σ),

∂tσk → ∂tσ weakly in L
5
4 (0,T ; (W1,5)∗),

µk → µ weakly in L2(0,T ; H1),

pk → p weakly in L
8
5 (0,T ; H1) ∩ L

8
7 (0, T ; H2),

vk → v weakly in L2(0,T ; L2) ∩ L
8
7 (0,T ; H1),

div (φkvk)→ ξ weakly in L
8
5 (0,T ; (H1)∗),

div (σkvk)→ θ weakly in L
5
4 (0,T ; (W1,5)∗),

and the following strong convergences:

φk → φ strongly in C0([0,T ]; Lr) ∩ L2(0,T ; W2,r) and a.e. in Q,

σk → σ strongly in C0([0,T ]; (H1)∗) ∩ L2(0,T ; Lr) and a.e. in Q,

for any r ∈ [1, 6) and some functions ξ ∈ L
8
5 (0,T ; (H1)∗), θ ∈ L

5
4 (0,T ; (W1,5)∗).

For the rest of this section, we fix 1 ≤ j ≤ k and δ ∈ C∞c (0,T ). Then, we have δ(t)w j ∈ C∞(0,T ; H2).
By continuity of m(·), we see that m(φk)→ m(φ) a.e. in Q. Thanks to the boundedness of m(·), applying
Lebesgue’s dominated convergence theorem to (m(φk) − m(φ))2

∣∣∣δ∇w j

∣∣∣2 yields

∥m(φk)δ∇w j − m(φ)δ∇w j∥L2(Q) → 0 as k → ∞.
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Together with the weak convergence µk ⇀ µ in L2(0,T ; H1), we obtain by the product of weak-strong
convergence ∫ T

0

∫
Ω

m(φk)δ∇w j · ∇µk dx dt →
∫ T

0

∫
Ω

m(φ)δ∇w j · ∇µ dx dt as k → ∞.

Terms involving n(·) can be dealt with in a similar fashion. For the source term Γφ,k = Λφ(φk, σk) −
Θφ(φk, σk)µk, by the continuity and boundedness of Θφ, the a.e. convergence of φk → φ and σk → σ

in Q, we may apply Lebesgue’s dominated convergence theorem to deduce that∫ T

0

∫
Ω

∣∣∣δw j(Θφ(φk, σk) − Θφ(φ, σ))
∣∣∣2 dx dt → 0 as k → ∞,

that is, we obtain the strong convergence δw jΘφ(φk, σk) → δw jΘφ(φ, σ) in L2(Q). Hence, the weak
convergence µk ⇀ µ in L2(0,T ; H1) yields∫ T

0

∫
Ω

δw jΘφ(φk, σk)µk dx dt →
∫ T

0

∫
Ω

δw jΘφ(φ, σ)µ dx dt as k → ∞.

Meanwhile, by the triangle inequality ||a| − |b|| ≤ |a − b|, and Hölder’s inequality, we obtain∫ T

0

∫
Ω

∣∣∣(|φk| − |φ|)(δw j)
∣∣∣ dx dt ≤ ∥φk − φ∥L2(0,T ;L2)∥δw j∥L2(0,T ;L2) → 0

and ∫ T

0

∫
Ω

∣∣∣(|σk| − |σ|)(δw j)
∣∣∣ dx dt ≤ ∥σk − σ∥L2(0,T ;L2)∥δw j∥L2(0,T ;L2) → 0

as k → ∞. In particular, we have

(1 + |φk| + |σk|)
∣∣∣δw j

∣∣∣→ (1 + |φ| + |σ|)
∣∣∣δw j

∣∣∣ strongly in L1(Q) as k → ∞.

By the continuity of Λφ we have

Λφ(φk, σk)→ Λφ(φ, σ) a.e. as k → ∞,
∣∣∣Λφ(φk, σk)δw j

∣∣∣ ≤ R0(1 + |φk| + |σk|)
∣∣∣δw j

∣∣∣ .
Then, the generalised Lebesgue dominated convergence theorem (see [27, Thm. 1.9, p. 89], or [2,
Thm. 3.25, p. 60]) yields

Λφ(φk, σk)δw j → Λφ(φ, σ)δw j strongly in L1(Q) as k → ∞,

which leads to∫ T

0

∫
Ω

Γφ(φk, µk, σk)δw j dx dt →
∫ T

0

∫
Ω

Γφ(φ, µ, σ)δw j dx dt as k → ∞. (5.1)

The same arguments can be applied for the source term S and for the derivative Ψ′(φ) satisfying the
linear growth condition (2.5). For potentials satisfying the growth condition (2.7), we refer to the
argument in [18, §3.1.2].
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To identify the limits ξ and θ of the convection terms div (φkvk) and div (σkvk), respectively, we
argue as follows. Since δw j ∈ C∞(0,T ; H2) ⊂ L

8
3 (0,T ; H1), by the weak convergence div (φkvk) ⇀ ξ

in L
8
5 (0,T ; (H1)∗), we have∫ T

0

∫
Ω

div (φkvk)δw j dx dt →
∫ T

0
⟨ξ,w j⟩H1,(H1)∗δ dt as k → ∞.

Next, applying integrating by parts and by the boundary conditions vk · n = 0 on ∂Ω (see (3.8)), we see
that ∫ T

0

∫
Ω

div (φkvk)δw j dx dt = −
∫ T

0

∫
Ω

δφkvk · ∇w j dx dt . (5.2)

Moreover, we claim that δφk∇w j converges strongly to δφ∇w j in L2(0,T ; L2). Indeed, we compute∫ T

0

∫
Ω

|δ|2
∣∣∣∇w j

∣∣∣2 |φk − φ|2 dx dt ≤
∫ T

0
|δ|2 ∥∇w j∥2L6∥φk − φ∥2L3 dt

≤ ∥w j∥2H2∥δ∥2L∞(0,T )∥φk − φ∥2L2(L3) → 0

as k → ∞ by the strong convergence φk → φ in L2(0,T ; Lr) for r ∈ [1, 6). Together with the weak
convergence vk ⇀ v in L2(0,T ; L2), when passing to the limit k → ∞ in (5.2) we find that∫ T

0
⟨ξ,w j⟩H1,(H1)∗δ dt = −

∫ T

0

∫
Ω

δφv · ∇w j dx dt .

Applying integration by parts on the right-hand side shows that ξ = div (φv) in the sense of distribu-
tions.

Now considering δ(t)w j as an element in L5(0,T ; W1,5), a similar argument can be used to show
θ = div (σv) in the sense of distributions using the strong convergence σk → σ in L2(0,T ; Lr) for
r ∈ [1, 6), the weak convergence vk ⇀ v in L2(0,T ; L2), and the weak convergence div (σkvk) ⇀ ϕ in
L

5
4 (0,T ; (W1,5)∗).

For the pressure and the velocity, we apply −∆N to both sides of (3.3) and test with w j, then inte-
grating by parts leads to∫

Ω

∇pk · ∇w j dx =
∫
Ω

1
K
Γvw j + (µk + χσk)∇φk · ∇w j dx .

Multiplying by δ(t), integrating in time and passing to the limit k → ∞, keeping in mind the weak
convergences pk ⇀ p in L

8
5 (0,T ; H1), µk ⇀ µ in L2(0, T ; H1), σk ⇀ σ in L2(0,T ; H1), and the strong

convergence φk → φ in L2(0,T ; W2,r) for r ∈ [1, 6) leads to∫ T

0

∫
Ω

δ(t)∇p · ∇w j dx dt =
∫ T

0

∫
Ω

δ(t)
(

1
K
Γvw j + (µ + χσ)∇φ · ∇w j

)
dx dt . (5.3)

Here we used that w j ∈ H2, and∫ T

0

∫
Ω

|δ|2 |∇φk − ∇φ|2
∣∣∣∇w j

∣∣∣2 dx dt

≤ ∥δ∥2L∞(0,T )∥w j∥2W1,6∥φk − φ∥2L2(W1,3) → 0 as k → ∞,
(5.4)
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to deduce that δ∇φk · ∇w j → δ∇φ · ∇w j in L2(0,T ; L2). Fix 1 ≤ j1, j2, j3 ≤ k, and define ζ =
(w j1 ,w j2 ,w j3)

⊤. Then, we can consider δ(t)ζ as an element in L
8
3 (0,T ; L2) ⊂ L2(0,T ; L2). Taking the

scalar product of (3.4) with δζ, integrating over Ω and in time from 0 to T leads to∫ T

0

∫
Ω

δ(t)(vk + K∇pk) · ζ dx dt =
∫ T

0

∫
Ω

δK(µk + χσk)∇φk · ζ dx dt . (5.5)

By the weak convergences vk ⇀ v in L2(0,T ; L2), µk ⇀ µ in L2(0, T ; H1), σk ⇀ σ in L2(0,T ; H1),
∇pk ⇀ ∇p in L

8
5 (0,T ; L2), and the strong convergence δ∇φk · ζ → δ∇φ · ζ in L2(0, T ; L2) (which is

proved in a similar manner as (5.4)), we find that passing to the limit in (5.5) yields∫ T

0

∫
Ω

δ(t)(v + K∇p) · ζ dx dt =
∫ T

0

∫
Ω

δ(t)K(µ + χσ)∇φ · ζ dx dt . (5.6)

Then, multiplying (3.2) with δ ∈ C∞c (0,T ), integrating with respect to time from 0 to T , and passing to
the limit k → ∞, we obtain∫ T

0
δ(t)⟨∂tφ,w j⟩H1,(H1)∗ dt =

∫ T

0

∫
Ω

δ(t)
(
−m(φ)∇µ · ∇w j + Γφw j + φv · ∇w j

)
dx dt ,∫ T

0

∫
Ω

δ(t)µw j dx dt =
∫ T

0

∫
Ω

δ(t)
(
AΨ′(φ)w j + B∇φ · ∇w j − χσw j

)
dx dt ,∫ T

0
δ(t)⟨∂tσ,w j⟩W1,5,(W1,5)∗ dt =

∫ T

0

∫
Ω

δ(t)
(
−n(φ)(D∇σ − χ∇φ) · ∇w j − Sw j

)
dx dt

+

∫ T

0
δ(t)

(∫
Ω

σv · ∇w j dx +
∫
Γ

b(σ∞ − σ)w j dHd−1
)

dt .

Since the above, (5.3) and (5.6) hold for all δ ∈ C∞c (0,T ), we infer that {φ, µ, σ, p, v} satisfies (2.12)
with ζ = ϕ = w j for a.e. t ∈ (0,T ) and for all j ≥ 1. As {w j} j∈N is a basis for H2

N , and H2
N is dense

in both H1 and W1,5 (see Section 3), we see that {φ, µ, σ, p, v} satisfy (2.12a), (2.12b), (2.12d) for all
ζ ∈ H1, (2.12c) for all ϕ ∈ W1,5, and (2.12e) for all ζ ∈ L2.

Attainment of initial conditions. It remains to show that φ and σ attain their corresponding initial
conditions. Strong convergence of φk to φ in C0([0,T ]; L2), and the fact that φk(0) → φ0 in L2 imply
that φ(0) = φ0. Meanwhile, as the limit function σ belongs to the function space C0([0,T ]; (H1)∗), we
see that σ(0) := σ(·, 0) makes sense as an element of (H1)∗. Let ζ ∈ H1 be arbitrary, then by the strong
convergence σk → σ in C0([0,T ]; (H1)∗) we see that

⟨σk(0), ζ⟩H1,(H1)∗ → ⟨σ(0), ζ⟩H1,(H1)∗ as k → ∞.

On the other hand, by (3.7), we have σk(0)→ σ0 in L2. This yields

⟨σ0, ζ⟩H1,(H1)∗ = lim
k→∞
⟨σk(0), ζ⟩H1,(H1)∗ = ⟨σ(0), ζ⟩H1,(H1)∗ .

Energy inequality. For the energy inequality (2.14) we employ the weak/weak-* lower semiconti-
nuity of the norms and dual norms to (4.44), (4.47), (4.19), (4.20), (4.21), (4.51), (4.52), (4.54), and
(4.55).
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6. Asymptotic limits

6.1. Limit of vanishing permeability

For K, b ∈ (0, 1] let (φK , µK , σK , vK , pK) denote a weak solution to (1.1)-(1.2) with Γv = 0, obtain
from Theorem 2.1. By (2.14) we deduce that, for a relabelled subsequence as b → 0 and K → 0, the
following weak/weak-* convergences:

φK → φ weakly-∗ in L∞(0, T ; H1) ∩ L2(0,T ; H3) ∩W1, 8
5 (0,T ; (H1)∗),

σK → σ weakly-∗ in L2(0,T ; H1) ∩ L∞(0,T ; L2) ∩W1, 5
4 (0,T ; (W1,5)∗),

µK → µ weakly in L2(0,T ; H1),

pK → p weakly in L
8
5 (0,T ; H1) ∩ L

8
7 (0, T ; H2),

and the following strong convergences:

φK → φ strongly in C0([0,T ]; Lr) ∩ L2(0,T ; W2,r) and a.e. in Q,

σK → σ strongly in C0([0,T ]; (H1)∗) ∩ L2(0, T ; Lr) and a.e. in Q,

vK → 0 strongly in L2(0,T ; L2) ∩ L
8
7 (0,T ; H1),

div (φKvK)→ 0 strongly in L
8
5 (0, T ; (H1)∗),

div (σKvK)→ 0 strongly in L
5
4 (0, T ; (W1,5)∗),

for any r ∈ [1, 6). The strong convergence of the velocity and the convection terms to zero follows
from (2.14). Upon multiplying (2.12) by δ ∈ C∞c (0,T ) and passing to the limit b,K → 0, we obtain
that the limit functions (φ, µ, σ, p) satisfy

⟨∂tφ, ζ⟩H1,(H1)∗ =

∫
Ω

−m(φ)∇µ · ∇ζ + Γφ(φ, µ, σ)ζ dx , (6.1a)∫
Ω

µζ dx =
∫
Ω

AΨ′(φ)ζ + B∇φ · ∇ζ − χσζ dx , (6.1b)

⟨∂tσ, ϕ⟩W1,5,(W1,5)∗ =

∫
Ω

−n(φ)(D∇σ − χ∇φ) · ∇ϕ − S(φ, µ, σ)ϕ dx (6.1c)∫
Ω

∇p · ∇ζ dx =
∫
Ω

(µ + χσ)∇φ · ∇ζ dx , (6.1d)

for all ζ ∈ H1 and ϕ ∈ W1,5 and a.e. t ∈ (0,T ).
Note that substituting any ζ ∈ L2(0,T ; H1) into (6.1a), integrating in time from 0 to T , us-

ing Hölder’s inequality and the linear growth condition for Γφ leads to the deduction that ∂tφ ∈
L2(0,T ; (H1)∗). To show that ∂tσ ∈ L2(0,T ; (H1)∗) we argue as follows. For any ξ ∈ L2(0,T ; H1),
we can define

F(ξ) :=
∫ T

0

∫
Ω

−n(φ)(D∇σ − χ∇φ) · ∇ξ − S(φ, µ, σ)ξ dx dt .

By Hölder’s inequality and the growth condition on S, we see that F ∈ L2(0, T ; (H1)∗). It is known
that the set of functions that are finite linear combinations of C1

c (0, T ) · H2
N(Ω) := {δ(t)ϕ(x) : δ ∈
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C1
c (0,T ), ϕ ∈ H2

N(Ω)} is dense in C1
c (0,T ; H1) (see for instance [26, p. 384], and in fact this is what

we use in Section 5). Let ζ ∈ C1
c (0,T ; H1) and let {ζn}n∈N denote a sequence of functions of the above

form such that ζn → ζ in C1
c (0,T ; H1) as n → ∞. Then, substituting ϕ = ζn in (6.1c), integrating over

t from 0 to T , and passing to the limit n→ ∞ yields

lim
n→∞

∫ T

0
⟨∂tσ, ζ

n⟩W1,5,(W1,5)∗ dt = lim
n→∞

F(ζn) = F(ζ).

Moreover, by the definition of the weak time derivative, we have∫ T

0
⟨∂tσ, ζ

n⟩W1,5,(W1,5)∗ dt = −
∫ T

0

∫
Ω

σ∂tζ
n dx dt → −

∫ T

0

∫
Ω

σ∂tζ dx dt as n→ ∞.

Hence, we obtain

−
∫ T

0

∫
Ω

σ∂tζ dx dt = F(ζ) =
∫ T

0

∫
Ω

−n(φ)(D∇σ − χ∇φ) · ∇ζ − S(φ, µ, σ)ζ dx dt

for all ζ ∈ C1
c (0,T ; H1). This implies that the weak time derivative ∂tσ satisfies∫ T

0
⟨∂tσ, ζ⟩H1,(H1)∗ dt = F(ζ) ∀ζ ∈ C1

c (0,T ; H1),

and as F belongs to L2(0,T ; (H1)∗), we find that ∂tσ also belongs to L2(0,T ; (H1)∗). Furthermore, due
to the improved regularity ∂tσ ∈ L2(0,T ; (H1)∗), we use the continuous embedding

L2(0,T ; H1) ∩ H1(0,T ; (H1)∗) ⊂ C0([0,T ]; L2)

to deduce that σ(0) = σ0.

6.2. Limit of vanishing chemotaxis

For χ, b ∈ (0, 1], let (φχ, µχ, σχ, vχ, pχ) denote a weak solution to (1.1)-(1.2) obtain from Theorem
2.1. By (2.14) we deduce that, for a relabelled subsequence as b → 0 and χ → 0, the following
weak/weak-* convergences:

φχ → φ weakly-∗ in L∞(0,T ; H1) ∩ L2(0,T ; H3) ∩W1, 8
5 (0,T ; (H1)∗),

σχ → σ weakly-∗ in L2(0,T ; H1) ∩ L∞(0,T ; L2) ∩W1, 5
4 (0, T ; (W1,5)∗),

µχ → µ weakly in L2(0,T ; H1),

pχ → p weakly in L
8
5 (0, T ; H1) ∩ L

8
7 (0,T ; H2),

vχ → v weakly in L2(0,T ; L2) ∩ L
8
7 (0,T ; H1),

div (φχvχ)→ div (φv) weakly in L
8
5 (0, T ; (H1)∗),

div (σχvχ)→ div (σv) weakly in L
5
4 (0, T ; (W1,5)∗),

and the following strong convergences:

φχ → φ strongly in C0([0,T ]; Lr) ∩ L2(0,T ; W2,r) and a.e. in Q,
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σχ → σ strongly in C0([0,T ]; (H1)∗) ∩ L2(0,T ; Lr) and a.e. in Q,

for any r ∈ [1, 6). For any δ ∈ C∞c (0,T ) and ζ ∈ H1, we have∣∣∣∣∣∣
∫ T

0

∫
Ω

δχσχζ dx dt

∣∣∣∣∣∣ ≤ χ∥σχ∥L2(L2)∥ζ∥L2∥δ∥L2(0,T ) → 0,∣∣∣∣∣∣
∫ T

0

∫
Ω

δn(φχ)χ∇φχ · ∇ζ dx dt

∣∣∣∣∣∣ ≤ n1χ∥∇φχ∥L2(L2)∥∇ζ∥L2∥δ∥L2(0,T ) → 0,∣∣∣∣∣∣
∫ T

0

∫
Ω

δχσχ∇φχ · ∇ζ dx dt

∣∣∣∣∣∣ ≤ χ∥∇ζ∥L2∥σχ∥L2(L4)∥∇φχ∥L2(L4)∥δ∥L∞(0,T ) → 0,

as χ → 0. Thus, multiplying (2.12) with δ ∈ C∞c (0,T ), and then passing to the limit b, χ → 0, we see
that (φ, µ, σ, v, p) satisfies

⟨∂tφ, ζ⟩H1,(H1)∗ =

∫
Ω

−m(φ)∇µ · ∇ζ + Γφ(φ, µ, σ)ζ + φv · ∇ζ dx , (6.2a)∫
Ω

µζ dx =
∫
Ω

AΨ′(φ)ζ + B∇φ · ∇ζ dx , (6.2b)

⟨∂tσ, ϕ⟩W1,5,(W1,5)∗ =

∫
Ω

−n(φ)D∇σ · ∇ϕ − S(φ, µ, σ)ϕ + σv · ∇ϕ dx , (6.2c)∫
Ω

∇p · ∇ζ dx =
∫
Ω

1
K
Γvζ + µ∇φ · ∇ζ dx , (6.2d)∫

Ω

v · ζ dx =
∫
Ω

−K(∇p − µ∇φ) · ζ dx , (6.2e)

for all ζ ∈ H1, ϕ ∈ W1,5, ζ ∈ L2 and a.e. t ∈ (0, T ).

7. Existence in two dimensions

We first derive an analogous result to Lemma 4.2 for two dimensions.

Lemma 7.1. LetΩ ⊂ R2 be a bounded domain with C3-boundary. Let φ ∈ L∞(0, T ; H1)∩L2(0,T ; H2
N∩

H3), σ ∈ L2(0,T ; H1), µ ∈ L2(0,T ; H1), the source term Γv ∈ L2(0,T ; L2
0), and the function p satisfying

(4.7). Then,

p ∈ Lk(0,T ; H1) ∩ Lq(0,T ; H2), v ∈ Lq(0,T ; H1),

for any

1 ≤ k < 2, 1 ≤ q <
4
3
.

Proof. We estimate (4.23) differently than in the proof of Lemma 4.2. By Hölder’s inequality for any
1 ≤ s < ∞ we have

∥(µ + χσ)∇φ∥L2 ≤ ∥µ + χσ∥L2s∥∇φ∥
L

2s
s−1
.

AIMS Mathematics Volume 1, Issue 3, 318-360



354

Then, by the Gagliardo–Nirenberg inequality (1.10) with p = 2s
s−1 , j = 0, r = 2, m = 2, d = 2, q = 2,

and α = 1
2 −

s−1
2s =

1
2s , we find that

∥∇φ∥
L

2s
s−1
≤ C∥∇φ∥

1
2s

H2∥∇φ∥
1− 1

2s

L2 ≤ C∥φ∥
1
2s

H3∥φ∥
1− 1

2s

H1 .

Then, by Hölder’s inequality and the Sobolev embedding H1 ⊂ Lr for 1 ≤ r < ∞ in two dimensions,
we have for w, y ≥ 1, ∫ T

0
∥(µ + χσ)∇φ∥wL2 dt ≤ C

∫ T

0
∥µ + χσ∥wL2s∥∇φ∥w

L
2s

s−1
dt

≤ C∥φ∥w
2s−1

2s

L∞(H1)∥µ + χσ∥
w
Lwy(H1)∥φ∥

w
2s

L
w
2s

y
y−1 (H3)

.

As µ, σ belong to L2(0,T ; H1) and φ belongs to L2(0,T ; H3) ∩ L∞(0,T ; H1), we need

wy = 2,
w
2s

y
y − 1

= 2 =⇒ y =
2s + 1

2s
, w =

4s
1 + 2s

.

Since w = 4s
1+2s < 2 for all s ∈ [1,∞), and Γv ∈ L2(0,T ; L2

0), the computations in the proof of Lemma
4.2 yields that

p ∈ Lk(0,T ; H1) for 1 ≤ k < 2

Next, we see that

∥ div ((µ + χσ)∇φ)∥L2 ≤ ∥(µ + χσ)∆φ∥L2 + ∥∇(µ + χσ) · ∇φ∥L2

≤ ∥µ + χσ∥L2s∥∆φ∥
L

2s
s−1
+ ∥∇(µ + χσ)∥L2∥∇φ∥L∞ .

By the Gagliardo–Nirenberg inequality (1.10) with p = ∞, j = 0, r = 2, m = 2, d = 2, q = 2 and
α = 1

2 , we have

∥∇φ∥L∞ ≤ C∥∇φ∥
1
2
H2∥∇φ∥

1
2
L2 ≤ C∥φ∥

1
2
H3∥φ∥

1
2
H1 , (7.1)

and with p = 2s
s−1 , j = 1, r = 2, m = 2, d = 2, q = 2 and α = s+1

2s ∈ ( 1
2 , 1] for s ∈ [1,∞), we have

∥∆φ∥
L

2s
s−1
≤ C∥∇φ∥

s+1
2s

H2 ∥∇φ∥
s−1
2s

L2 ≤ C∥φ∥
s+1
2s

H3 ∥φ∥
s−1
2s

H1 . (7.2)

Hence, for w, y, z ≥ 1, we find that∫ T

0
∥ div ((µ + χσ)∇φ)∥wL2 dt ≤ C∥φ∥

w
2
L∞(H1)∥µ + χσ∥

w
Lwz(H1)∥φ∥

w
2

L
w
2

z
z−1 (H3)

+C∥φ∥w
s−1
2s

L∞(H1)∥µ + χσ∥
w
Lwy(H1)∥φ∥

w s+1
2s

L
w s+1

2s
y

y−1 (H3)
.

Since s+1
2s ≤ 1 for all s ∈ [1,∞), we require

wy = 2,
wy(s + 1)
2s(y − 1)

= 2 =⇒ y =
3s + 1

2s
, w =

4s
1 + 3s

.
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We choose z = 3s+1
2s ∈ (3

2 , 2] so that

wz = 2,
w
2

z
z − 1

=
2s

1 + 3s
3s + 1
s + 1

=
2s

s + 1
∈ [1, 2),

and thus we obtain∫ T

0
∥ div ((µ + χσ)∇φ)∥

4s
1+3s

L2 dt ≤ C∥φ∥
2s

1+3s

L∞(H1)∥µ + χσ∥
4s

1+3s

L2(H1)∥φ∥
2s

1+3s

L
2s

s+1 (H3)

+C∥φ∥
2s−2
1+3s

L∞(H1)∥µ + χσ∥
4s

1+3s

L2(H1)∥φ∥
2s+2
1+3s

L2(H3).

From (4.27) and using the fact that 4s
1+3s <

4s
1+2s for all s ∈ [1,∞), we see that

p ∈ Lq(0,T ; H2) for 1 ≤ q <
4
3
.

Similarly, from (4.29), (7.1) and (7.2), we obtain for fixed 1 ≤ i, j ≤ 2, and any s ∈ [1,∞),

∥Div j∥L2 = K∥DiD j p − (Di(µ + χσ)D jφ − (µ + χσ)DiD jφ∥L2

≤ K
(
∥p∥H2 + ∥∇(µ + χσ)∥L2∥∇φ∥L∞ + ∥µ + χσ∥L2s∥D2φ∥

L
2s

s−1

)
≤ K

(
∥p∥H2 +C∥µ + χσ∥H1

(
∥φ∥

1
2
H3∥φ∥

1
2
H1 + ∥φ∥

s+1
2s

H3 ∥φ∥
s−1
2s

H1

))
.

(7.3)

Then, a similar calculation shows that the right-hand side is bounded in L
4s

1+3s (0,T ), which in turn
implies that

v ∈ Lq(0, T ; H1) for 1 ≤ q <
4
3
.

�

By the above new estimates we can show that div (φv) and ∂tφ have improved temporal regularity,
and that div (σv) and ∂tσ belong to the dual space (H1)∗.

Lemma 7.2. For dimension d = 2, let (φk, µk, σk, pk, vk) denote the Galerkin ansatz from Section 3
satisfying (4.44). Then, it holds that for 4

3 ≤ w < 2 and 1 < r < 8
7 ,

∥ div (φkvk)∥Lw((H1)∗) + ∥ div (σkvk)∥Lr((H1)∗) ≤ K
1
2E,

∥∂tφk∥Lw((H1)∗) + ∥∂tσk∥Lr((H1)∗) ≤ E
(
1 + K

1
2
)
,

where E denotes positive constants that are uniformly bounded for b, χ ∈ (0, 1] and are also uniformly
bounded for K ∈ (0, 1] when Γv = 0.

Proof. The assertions for ∂tφk and ∂tσk will follow via similar arguments in Section 4.3 once we
establish the assertion for the convection terms. In dimension d = 2, we have the embedding
L2(0,T ; H1) ∩ L∞(0,T ; L2) ⊂ L4(Q), and by the Gagliardo–Nirenberg inequality (1.10) with p = 4,
j = 0, r = 2, d = 2, m = 1, q = 2 and α = 1

2 ,

∥ f ∥L4 ≤ C∥ f ∥
1
2
H1∥ f ∥

1
2
L2 .

AIMS Mathematics Volume 1, Issue 3, 318-360



356

Consider an arbitrary ζ ∈ Ls(0,T ; H1) for some s ≥ 1 yet to be determined. Then, we compute that∣∣∣∣∣∣
∫ T

0

∫
Ω

σkvk · ∇Πkζ dx dt

∣∣∣∣∣∣ ≤
∫ T

0
∥σk∥L4∥vk∥L4∥∇ζ∥L2 dt

≤ C∥σk∥L4(Q)

(∫ T

0
∥vk∥

2
3

H1∥vk∥
2
3

L2∥ζ∥
4
3

H1 dt
) 3

4

≤ C∥σk∥L4(Q)∥vk∥
1
2

L
2
3 x1 (H1)

∥vk∥
1
2

L
2
3 x2 (L2)

∥ζ∥
L

4
3 x3 (H1)

,

where x1, x2, x3 ≥ 1 satisfy

1
x1
+

1
x2
+

1
x3
= 1,

2
3

x1 <
4
3
,

2
3

x2 ≤ 2 =⇒ x3 > 6.

Then, from (4.44) and (7.3), it holds that∣∣∣∣∣∣
∫ T

0

∫
Ω

σkvk · ∇Πkζ dx dt

∣∣∣∣∣∣ ≤ EK
1
2 ∥ζ∥Ls(H1) for s =

4
3

x3 > 8,

that is, { div (σkvk)}k∈N is uniformly bounded in the dual space of Ls(0,T ; H1) for s > 8. Similarly, by
the Gagliardo–Nirenberg inequality (1.10) with p = ∞, j = 0, r = 2, d = 2, m = 3, q ∈ [1,∞) and
α = 1

q+1 ,

∥φk∥L∞ ≤ C∥φk∥
1

q+1

H3 ∥φk∥
q

q+1

Lq ≤ C∥φk∥
1

q+1

H3 ∥φk∥
q

q+1

H1 .

Proceeding as in (4.50), we find that for an arbitrary ζ ∈ Ls(0,T ; H1), where s ≥ 1 is yet to be
determined, ∣∣∣∣∣∣

∫ T

0

∫
Ω

φkvk · ∇Πkζ dx dt

∣∣∣∣∣∣ ≤
∫ T

0
∥vk∥L2∥φk∥L∞∥∇Πkζ∥L2 dt

≤ C∥φk∥
q

q+1

L∞(H1)∥vk∥L2(L2)∥φk∥
1

q+1

L2(H3)∥ζ∥L 2(q+1)
q (H1)

≤ EK
1
2 ∥ζ∥

L
2(q+1)

q (H1)
,

and so { div (φkvk)}k∈N is uniformly bounded in the dual space of Ls(0,T ; H1) for s = 2+ 2
q ∈ (2, 4]. �

Remark 7.1. We point out that in the absence of the regularity result vk ∈ Lq(0,T ; H1) from Lemma
7.1, and if we only have vk ∈ L2(0,T ; L2), then we obtain∣∣∣∣∣∣

∫ T

0

∫
Ω

σkvk · ∇Πkζ dx dt

∣∣∣∣∣∣ ≤ ∥σk∥L4(Q)∥vk∥L2(L2)∥∇ζ∥L4(L4),

and this implies that both { div (σkvk)}k∈N and {∂tσk}k∈N are bounded uniformly only in L
4
3 (0,T ; (W1,4)∗).
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8. Discussion

Reformulations of Darcy’s law and the pressure. Associated to Darcy’s law (1.1b) is the term
λv := p − µφ − D

2 |σ|
2 which will contribute the source term Γvλv in the energy identity (4.4). In [20,

Rmk. 2.1] three other reformulations of Darcy’s law (1.1b) and the pressure are considered:

(R1) Let q := p − AΨ(φ) − B
2 |∇φ|

2 so that

λv = q + AΨ(φ) +
B
2
|∇φ|2 − D

2
|σ|2 + χσ(1 − φ) − µφ, (8.1a)

v = K(∇(−q − B
2 |∇φ|

2) − B∆φ∇φ) = −K(∇q + B div (∇φ ⊗ ∇φ)). (8.1b)

(R2) Let p̂ := p + D
2 |σ|

2 + χσ(1 − φ) so that

λv = p̂ − µφ − D |σ|2 − χσ(1 − φ), (8.2a)
v = −K(∇ p̂ − µ∇φ − (Dσ + χ(1 − φ))∇σ). (8.2b)

(R3) Let p̃ := p − D
2 |σ|

2 − µφ so that

λv = p̃, (8.3a)
v = −K(∇ p̃ + φ∇µ + σ∇(Dσ + χ(1 − φ))). (8.3b)

From the viewpoint of estimating the source term Γvλv, we see that (8.3a) has the advantage of being the
simplest. Meanwhile, for (8.2a) the analysis for Γvλv is similar to that performed in Section 4.1.2, but
for (8.1a) the main difficulty will be to estimate the terms (AΨ(φ) + B

2 |∇φ|
2)Γv and (−D

2 |σ|
2 + χσφ)Γv,

which at first glance would require the assumption that Γv ∈ L∞(Q), and obtaining an L2-estimate for
the pressure q from the Darcy law (8.1b) would be difficult due to the term div (∇φ ⊗ ∇φ).

Other boundary conditions for the pressure and velocity. In [20, §2.4.4] the authors have dis-
cussed possible boundary conditions for the velocity and for the pressure. As discussed in Section 2
following Assumption 2.1, we require the source term Γv to have zero mean due to the no-flux bound-
ary condition v · n = 0 on ∂Ω. The general energy identity (with homogeneous Neumann boundary
conditions for φ and µ) from [20, Equ. (2.27)] reads as

d
dt

∫
Ω

AΨ(φ) +
B
2
|∇φ|2 + D

2
|σ|2 + χσ(1 − φ) dx

+

∫
Ω

m(φ) |∇µ|2 + n(φ) |∇(Dσ + χ(1 − φ))|2 + 1
K
|v|2 dx

=

∫
Ω

Γφµ − S(Dσ + χ(1 − φ)) + Γvλv dx

+

∫
∂Ω

(Dσ + χ(1 − φ))n(φ)(D∂nσ) − (v · n)
(D

2
|σ|2 + χσ(1 − φ) + p

)
dHd−1 ,
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and we see the appearance of an extra boundary source term involving the normal component of the
velocity and the pressure. Here it would be advantageous to use the rescaled pressure p̂ and the Darcy
law (8.2b), as the extra boundary source term will become∫

∂Ω

−(v · n) p̂ dHd−1 ,

which motivates the consideration of a Robin-type boundary condition for p̂:

g = ap̂ − v · n = ap̂ + K∂n p̂ − K(Dσ + χ(1 − φ))∂nσ on ∂Ω,

for some given datum g and positive constant a. On one hand, this would allow us to consider source
terms Γv that need not have zero mean, but on the other hand, the analysis of the Darcy system becomes
more complicated. In particular, the weak formulation of the pressure system now reads as∫

Ω

K∇ p̂ · ∇ζ dx +
∫
∂Ω

ap̂ζ dHd−1 =

∫
Ω

Γvζ + K (µ∇φ + (Dσ + χ(1 − φ))∇σ) · ∇ζ dx

+

∫
∂Ω

gζ dHd−1 ,

and we observe that the term Dσ∇σ on the right-hand side belongs to L1 as σ has at most H1-spatial
regularity from the energy identity. Thus, it is not clear if the pressure system can be solved with
the regularities stated in Lemma 4.1. A deeper study into the theory of linear elliptic equations with
right-hand sides of the form div f where f ∈ L1 is required.
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