In this paper, we are concerned with the existence of positive solutions for boundary value problems of nonlinear fourth-order differential equations
$ \begin{eqnarray*} &&u^{(4)}+c(x)u = \lambda a(x)f(u), \; \; x\in (0,1),\\ &&u(0) = u(1) = u''(0) = u''(1) = 0, \end{eqnarray*} $
where $ a(x) $ may change signs. The proof of main results is based on Leray-Schauder's fixed point theorem and the properties of Green's function of the fourth-order differential operator $ L_cu = u^{(4)}+c(x)u $.
Citation: Yanhong Zhang, Li Chen. Positive solution for a class of nonlinear fourth-order boundary value problem[J]. AIMS Mathematics, 2023, 8(1): 1014-1021. doi: 10.3934/math.2023049
In this paper, we are concerned with the existence of positive solutions for boundary value problems of nonlinear fourth-order differential equations
$ \begin{eqnarray*} &&u^{(4)}+c(x)u = \lambda a(x)f(u), \; \; x\in (0,1),\\ &&u(0) = u(1) = u''(0) = u''(1) = 0, \end{eqnarray*} $
where $ a(x) $ may change signs. The proof of main results is based on Leray-Schauder's fixed point theorem and the properties of Green's function of the fourth-order differential operator $ L_cu = u^{(4)}+c(x)u $.
[1] | O. Abu Arqub, S. Momani, S. Al-Mezel, M. Kutbi, Existence, uniqueness, and characterization theorems for nonlinear fuzzy integrodifferential equations of volterra type, Math. Probl. Eng., 2015 (2015), 835891. https://doi.org/10.1155/2015/835891 doi: 10.1155/2015/835891 |
[2] | S. Momani, O. Abu Arqub, B. Maayah, Piecewise optimal fractional reproducing kernel solution and convergence analysis for the Atangana-Baleanu-Caputo model of the Lienerd's equation, Fractals, 28 (2020), 2040007. https://doi.org/10.1142/S0218348X20400071 doi: 10.1142/S0218348X20400071 |
[3] | O. Abu Arqub, H. Rashaideh, The RKHS method for numerical treatment for integrodifferential algebraic systems of temporal two-point BVPs, Neural. Comput. Appl., 30 (2018), 2595–2606. https://doi.org/10.1007/s00521-017-2845-7 doi: 10.1007/s00521-017-2845-7 |
[4] | O. Abu Arqub, Reproducing kernel algorithm for the analytical-numerical solutions of nonlinear systems of singular periodic boundary value problems, Math. Probl. Eng., 2015 (2015), 518406. https://doi.org/10.1155/2015/518406 doi: 10.1155/2015/518406 |
[5] | H. Y. Wang, On the existence of positive solutions for semilinear elliptic equtions in the annulus, J. Differ. Equations, 109 (1994), 1–7. https://doi.org/10.1006/jdeq.1994.1042 doi: 10.1006/jdeq.1994.1042 |
[6] | L. H. Erbe, H.Y. Wang, On the existence of positive solutions of ordinary differential equations, P. Am. Soc., 120 (1994), 743–748. https://doi.org/10.1090/S0002-9939-1994-1204373-9 doi: 10.1090/S0002-9939-1994-1204373-9 |
[7] | V. Anuradha, D. D. Hai, R. Shivaji, Existence results for superlinear semipositone BVP's, P. Am. Soc., 124 (1996), 757–763. https://doi.org/10.1090/S0002-9939-96-03256-X doi: 10.1090/S0002-9939-96-03256-X |
[8] | D. D. Hai, Positive solutions to a class of elliptic boundary value problems, J. Math. Anal. Appl., 227 (1998), 195–199. https://doi.org/10.1006/jmaa.1998.6095 doi: 10.1006/jmaa.1998.6095 |
[9] | Z. B. Bai, W. Lian, Y. F. Wei, S. J. Sun, Solvability for some fourth order two-point boundary value problems, AIMS Math., 5 (2020), 4983–4994. https://doi.org/10.3934/math.2020319 doi: 10.3934/math.2020319 |
[10] | R. Y. Ma, H. Y. Wang, On the existence of positive solutions of fourth-order ordinary differential equations, Appl. Anal., 59 (1995), 225–231. https://doi.org/10.1080/00036819508840401 doi: 10.1080/00036819508840401 |
[11] | Y. X. Li, Positive solutions of fourth-order boundary value problems with two parameters, J. Math. Anal. Appl., 281 (2003), 477–484. https://doi.org/10.1016/S0022-247X(03)00131-8 doi: 10.1016/S0022-247X(03)00131-8 |
[12] | R. Vrabel, On the lower and upper solutions method for the problem of elastic beam with hinged ends, J. Math. Anal. Appl., 421 (2015), 1455–1468. https://doi.org/10.1016/j.jmaa.2014.08.004 doi: 10.1016/j.jmaa.2014.08.004 |
[13] | P. Drábet, G. Holubová, Positive and negative solutions of one-dimensional beam equation, Appl. Math. Lett., 51 (2016), 1–7. https://doi.org/10.1016/j.aml.2015.06.019 doi: 10.1016/j.aml.2015.06.019 |
[14] | J. R. L. Webb, G. Infante, D. Franco, Positive solutions of nonlinear fourth-order boundary-value problems with local and non-local boundary conditions, P. Roy. So. Edinb. A, 138 (2008), 427–446. https://doi.org/10.1017/S0308210506001041 doi: 10.1017/S0308210506001041 |
[15] | P. K. Wong, On a class of nonlinear fourth order differential equations, Ann. Mat. Pur. Appl., 81 (1969), 331–346. https://doi.org/10.1007/BF02413508 doi: 10.1007/BF02413508 |
[16] | P. Drábet, G. Holubová, On the maximum and antimaximum principles for beam equation, Appl. Math. Lett., 56 (2016), 29–33. https://doi.org/10.1016/j.aml.2015.12.009 doi: 10.1016/j.aml.2015.12.009 |
[17] | W. A. Coppel, Disconjugacy, Berlin: Springer, 1971. https://doi.org/10.1007/BFb0058618 |
[18] | R. Y. Ma, Nonlocal problems of nonlinear ordinary differential equations (in Chinese), Beijing: Science Press, 2004. |
[19] | D. Z. Xu, R. Y. Ma, Nonlinear perturbation of linear differential equations (in Chinese), Beijing: Science Press, 2008. |
[20] | A. Khchine, L. Maniar, M. A. Taoudi, Leray-Schauder-type fixed point theorems in Banach algebras and application to quadratic integral equations, Fixed Point Theory Appl., 2016 (2016), 1–20. https://doi.org/10.1186/s13663-016-0579-3 doi: 10.1186/s13663-016-0579-3 |
[21] | M. Borkowski, D. Bugajewski, On fixed point theorems of Leray-Schauder type, P. Am. Math. Soc., 136 (2008), 973–980. https://doi.org/10.1090/S0002-9939-07-09023-5 doi: 10.1090/S0002-9939-07-09023-5 |