Citation: Yu Yuan, Chen Chen. Fault detection of rolling bearing based on principal component analysis and empirical mode decomposition[J]. AIMS Mathematics, 2020, 5(6): 5916-5938. doi: 10.3934/math.2020379
[1] | H. Zhao, H. Liu, J. Xu, et al. Performance prediction using high-order differential mathematical morphology gradient spectrum entropy and extreme learning machine, IEEE T. Instrum. Meas., 69 (2020), 4165-4172. doi: 10.1109/TIM.2019.2948414 |
[2] | S. Lu, P. Zheng, Y. Liu, et al. Sound-aided vibration weak signal enhancement for bearing fault detection by using adaptive stochastic resonance, J. Sound Vib., 449 (2019), 18-29. doi: 10.1016/j.jsv.2019.02.028 |
[3] | T. Li, J. Shi, X. Li, et al. Image encryption based on pixel-level diffusion with dynamic filtering and DNA-level permutation with 3D Latin cubes, Entropy, 21 (2019), 1-21. |
[4] | Y. Xu, H. Chen, J. Luo, et al. Enhanced Moth-flame optimizer with mutation strategy for global optimization, Inform. Sciences, 492 (2019), 181-203. doi: 10.1016/j.ins.2019.04.022 |
[5] | H. Zhao, J. Zheng, J. Xu, et al. Fault diagnosis method based on principal component analysis and broad learning system, IEEE Access, 7 (2019), 99263-99272. doi: 10.1109/ACCESS.2019.2929094 |
[6] | H. Pan, Y. Yang, J. Zheng, et al. A noise reduction method of symplectic singular mode decomposition based on Lagrange multiplier, Mech. Syst. Signal Pr., 133 (2019), 1-21. |
[7] | Q. Shu, S. Lu, M. Xia, et al. Enhanced feature extraction method for motor fault diagnosis using low-quality vibration data from wireless sensor networks, Meas. Sci. Technol., 31 (2020), 045016 |
[8] | R. Chen, S. K. Guo, X. Z. Wang, et al. Fusion of multi-RSMOTE with fuzzy integral to classify bug reports with an imbalanced distribution, IEEE T. Fuzzy Syst., 27 (2019), 2406-2420. doi: 10.1109/TFUZZ.2019.2899809 |
[9] | H. Zhao, S. Zuo, M. Hou, et al. A novel adaptive signal processing method based on enhanced empirical wavelet transform technology, Sensors, 18 (2018), 1-17. doi: 10.1109/JSEN.2018.2870228 |
[10] | Y. Liu, X. Wang, Z. Zhai, et al. Timely daily activity recognition from headmost sensor events, ISA T., 94 (2019), 379-390. doi: 10.1016/j.isatra.2019.04.026 |
[11] | H. Zhao, J. Zheng, W. Deng, et al. Semi-supervised broad learning system based on manifold regularization and broad network, IEEE T. Circuits-I., 67 (2020), 983-994. |
[12] | T. Li, Z. Qian, T. He, Short-term load forecasting with improved CEEMDAN and GWO-based multiple kernel ELM, Complexity, 2020 (2020), 1-20. |
[13] | J. Zheng, Z. Dong, H. Pan, et al. Composite multi-scale weighted permutation entropy and extreme learning machine based intelligent fault diagnosis for rolling bearing, Measurement, 143 (2019), 69-80. doi: 10.1016/j.measurement.2019.05.002 |
[14] | G. Xu, D. M. Hou, H. Qi, et al. High-speed train wheel set bearing fault diagnosis and prognostics: A new prognostic model based on extendable useful life, Mech. Syst. Signal Pr., 146 (2020), 1-23. |
[15] | F. Zhang, J. Yan, P. Fu, et al. Ensemble sparse supervised model for bearing fault diagnosis in smart manufacturing, Mech. Syst. Signal Pr., 65 (2020),1-11. |
[16] | R. Liu, B. Yang, E. Zio, et al. Artificial intelligence for fault diagnosis of rotating machinery: A review, Mech. Syst. Signal Pr., 108 (2018), 33-47. doi: 10.1016/j.ymssp.2018.02.016 |
[17] | R. A. Carmona, W. L. Hwang, B. Torresani, Characterization of signals by the ridges of their wavelet transforms, IEEE T. Signal Proces., 45 (1997), 2586-2590. doi: 10.1109/78.640725 |
[18] | W. Deng, H. Liu, J. Xu, et al. An improved quantum-inspired differential evolution algorithm for deep belief network, IEEE T. Instrum. Meas., 2020 (2020), 1-8. |
[19] | H. Li, Y. Zhang, H. Zheng, Hilbert-Huang transform and marginal spectrum for detection and diagnosis of localized defects in roller bearing, J. Mech. Sci. Technol., 23 (2009), 291-301. doi: 10.1007/s12206-008-1110-5 |
[20] | Y. Lei, J. Lin, Z. He, et al. A review on empirical mode decomposition in fault diagnosis of rotating machinery, Mech. Syst. Signal Pr., 35 (2013), 108-126. doi: 10.1016/j.ymssp.2012.09.015 |
[21] | Y. Wang, F. Liu, Z. Jiang, et al. Complex variational mode decomposition for signal processing applications, Mech. Syst. Signal Pr., 86 (2017), 75-85. doi: 10.1016/j.ymssp.2016.09.032 |
[22] | N. Lu, Z. Xiao, O. P. Malik, Feature extraction using adaptive multiwavelets and synthetic detection index for rotor fault diagnosis of rotating machinery, Mech. Syst. Signal Pr., 52 (2015), 393-415. |
[23] | J. Zheng, H. Pan, S. Yang, et al. Adaptive parameterless empirical wavelet transform based time-frequency analysis method and its application to rotor rubbing fault diagnosis, Signal Process., 130 (2017), 305-314. doi: 10.1016/j.sigpro.2016.07.023 |
[24] | F. Cheng, J. Wang, L. Qu, et al. Rotor-current-based fault diagnosis for DFIG wind turbine drivetrain gearboxes using frequency analysis and a deep classifier, IEEE T. Ind. Appl., 54 (2017), 1062-1071. |
[25] | H. Ocak, K. A. Loparo, HMM-based fault detection and diagnosis scheme for rolling element bearings, J. Vib. Acoust., 127 (2005), 299-306. doi: 10.1115/1.1924636 |
[26] | N. Gebraeel, M. Lawley, R. Liu, et al. Residual life predictions from vibration-based degradation signals: A neural network approach, IEEE T. Ind. Electron., 51 (2004), 694-700. doi: 10.1109/TIE.2004.824875 |
[27] | C. Sun, Z. Zhang, Z. He, Rescarch on bearing life prediction based on support vector machine and its application, J. Phys. Conf. Ser., 305 (2011), 1-9. |
[28] | P. J. Vlok, M. Wnek, M. Zygmunt, Utilising statistical residual life estimates of bearings to quantify the influence of preventive maintenance actions, Mech. Syst. Signal Pr., 18 (2004), 833-847. doi: 10.1016/j.ymssp.2003.09.003 |
[29] | X. Zhang, R. Xu, C. Kwan, et al. An integrated approach to bearing fault diagnostics and prognostics, In: Proceedings of the 2005, American Control Conference, 2005, 2750-2755. |
[30] | S. Lu, Q. He, J. Wang, A review of stochastic resonance in rotating machine fault detection, Mech. Syst. Signal Pr., 116 (2019), 230-260. doi: 10.1016/j.ymssp.2018.06.032 |
[31] | H. Zhao, D. Li, W. Deng, et al. Research on vibration suppression method of alternating current motor based on fractional order control strategy, P. I. Mech. Eng. E-J. Pro., 231 (2017), 786-799. doi: 10.1177/0954408916637380 |
[32] | Y. Shao, K. Nezu, Prognosis of remaining bearing life using neural networks, P. I. Mech. Eng-I. Sys., 214 (2000), 217-230. |
[33] | W. Deng, J. Xu, Y. Song, et al. An effective improved co-evolution ant colony optimization algorithm with multi-strategies and its application, Int. J. Bio-Inspired Comput., 2019 (2019),1-10. |
[34] | H. Shao, J. Cheng, H. Jiang, et al. Enhanced deep gated recurrent unit and complex wavelet packet energy moment entropy for early fault prognosis of bearing, Knowl-Based Syst., 188 (2020), 1-14. |
[35] | H. Chen, Q. Zhang, J. Luo, et al. An enhanced Bacterial Foraging Optimization and its application for training kernel extreme learning machine, Appl. Soft Comput., 86 (2020), 1-24. |
[36] | W. Yang, M. Qian, D. Huang, Detection of exons with deletions and insertions by hidden markov models, Prog. Biochem. Biophys., 29 (2002), 56-59. |
[37] | W. Deng, J. Xu, H. Zhao, An improved ant colony optimization algorithm based on hybrid strategies for scheduling problem, IEEE Access, 7 (2019), 20281-20292. doi: 10.1109/ACCESS.2019.2897580 |
[38] | Y. Liu, Y. Mu, K. Chen, et al. Daily activity feature selection in smart homes based on pearson correlation coefficient, Neural Process. Lett., 51 (2020), 1771-1787. doi: 10.1007/s11063-019-10185-8 |
[39] | Z. He, H. Shao, X. Zhang, et al. Improved deep transfer auto-encoder for fault diagnosis of gearbox under variable working conditions with small training samples, IEEE Access, 7 (2019), 115368-115377. doi: 10.1109/ACCESS.2019.2936243 |
[40] | W. Deng, W. Li, X. Yang, A novel hybrid optimization algorithm of computational intelligence techniques for highway passenger volume prediction, Expert Syst. Appl., 38 (2011), 4198-4205. doi: 10.1016/j.eswa.2010.09.083 |
[41] | J. B. Ali, B. Chebel-Morello, L. Saidi, et al. Accurate bearing remaining useful life prediction based on Weibull distribution and artificial neural network, Mech. Syst. Signal Pr., 56 (2015), 150-172. |
[42] | M. Chen, Q. Li, Application of oil pressure curve monitoring in sliding bearing wear diagnosis, Machine Tool & Hydraulics, 21 (2010), 145-148. |
[43] | B. Samanta, K. R. Al-Balushi, Artificial neural network based fault diagnostics of rolling element bearings using time-domain features, Mech. Syst. Signal Pr., 17 (2003), 317-328. |
[44] | Y. Zhang, S. Qin, Fault detection of nonlinear processes using multiway kernel independent component analysis, Ind. Eng. Chem. Res., 46 (2007), 7780-7787. doi: 10.1021/ie070381q |
[45] | A. Hyvärinen, E. Oja, Independent component analysis: Algorithms and applications, Neural Networks, 13 (2000), 411-430. doi: 10.1016/S0893-6080(00)00026-5 |
[46] | R. B. W. Heng, M. J. M. Nor, Statistical analysis of sound and vibration signals for monitoring rolling element bearing condition, Appl. Acoust., 53 (1998), 211-226. doi: 10.1016/S0003-682X(97)00018-2 |
[47] | N. Tandon, A comparison of some vibration parameters for the condition monitoring of rolling element bearings, Measurement, 12 (1994), 285-289. doi: 10.1016/0263-2241(94)90033-7 |
[48] | R. Li, J. Chen, X. Wu, et al. Fault diagnosis of rotating machinery based on SVD, FCM and RST, Int. J. Adv. Manuf. Tech., 27 (2005), 128-135. doi: 10.1007/s00170-004-2140-5 |
[49] | N. Gebraeel, M. Lawley, R. Liu, et al. Vibration-based condition monitoring of thrust bearings for maintenance management, In: Proc. ANNIE 2002 Smart Engineering System Design: Neural Networks, Fuzzy Logic, Evolutionary Programming, Artificial Life and Data Mining, 2002, 543-551. |