In this study, we utilize the direct method (Hyers approach) to examine the refined stability of the additive, quartic, and sextic functional equations in modular spaces with and without the Δ2-condition. We also use the direct approach to discuss the Ulam stability in 2-Banach spaces. Ultimately, we ensure that stability of above equations does not hold in a particular scenario by utilizing appropriate counter-examples.
Citation: Hasanen A. Hammad, Hassen Aydi, Manuel De la Sen. Refined stability of the additive, quartic and sextic functional equations with counter-examples[J]. AIMS Mathematics, 2023, 8(6): 14399-14425. doi: 10.3934/math.2023736
[1] | Murali Ramdoss, Divyakumari Pachaiyappan, Inho Hwang, Choonkil Park . Stability of an n-variable mixed type functional equation in probabilistic modular spaces. AIMS Mathematics, 2020, 5(6): 5903-5915. doi: 10.3934/math.2020378 |
[2] | K. Tamilvanan, Jung Rye Lee, Choonkil Park . Hyers-Ulam stability of a finite variable mixed type quadratic-additive functional equation in quasi-Banach spaces. AIMS Mathematics, 2020, 5(6): 5993-6005. doi: 10.3934/math.2020383 |
[3] | Vediyappan Govindan, Inho Hwang, Choonkil Park . Hyers-Ulam stability of an n-variable quartic functional equation. AIMS Mathematics, 2021, 6(2): 1452-1469. doi: 10.3934/math.2021089 |
[4] | Bei Wang, Songsong Li, Yi Ouyang, Honggang Hu . Ready-made short basis for GLV+GLS on high degree twisted curves. AIMS Mathematics, 2022, 7(1): 306-314. doi: 10.3934/math.2022021 |
[5] | Zhihua Wang, Choonkil Park, Dong Yun Shin . Additive ρ-functional inequalities in non-Archimedean 2-normed spaces. AIMS Mathematics, 2021, 6(2): 1905-1919. doi: 10.3934/math.2021116 |
[6] | Zhenyu Jin, Jianrong Wu . Ulam stability of two fuzzy number-valued functional equations. AIMS Mathematics, 2020, 5(5): 5055-5062. doi: 10.3934/math.2020324 |
[7] | Cure Arenas Jaffeth, Ferrer Sotelo Kandy, Ferrer Villar Osmin . Functions of bounded (2,k)-variation in 2-normed spaces. AIMS Mathematics, 2024, 9(9): 24166-24183. doi: 10.3934/math.20241175 |
[8] | Jae-Hyeong Bae, Won-Gil Park . Approximate solution of a multivariable Cauchy-Jensen functional equation. AIMS Mathematics, 2024, 9(3): 7084-7094. doi: 10.3934/math.2024345 |
[9] | Kandhasamy Tamilvanan, Jung Rye Lee, Choonkil Park . Ulam stability of a functional equation deriving from quadratic and additive mappings in random normed spaces. AIMS Mathematics, 2021, 6(1): 908-924. doi: 10.3934/math.2021054 |
[10] | Zhihua Wang . Stability of a mixed type additive-quadratic functional equation with a parameter in matrix intuitionistic fuzzy normed spaces. AIMS Mathematics, 2023, 8(11): 25422-25442. doi: 10.3934/math.20231297 |
In this study, we utilize the direct method (Hyers approach) to examine the refined stability of the additive, quartic, and sextic functional equations in modular spaces with and without the Δ2-condition. We also use the direct approach to discuss the Ulam stability in 2-Banach spaces. Ultimately, we ensure that stability of above equations does not hold in a particular scenario by utilizing appropriate counter-examples.
In many different settings, functional equations are essential to the investigation of stability problems. The first in challenging the stability of group homomorphisms was Ulam [1]. His work laid the groundwork for subsequent research on stability phenomena. If an equation allows only one unique solution, we refer to that equation as being stable. Ulam [1] formulated the following Cauchy functional equation:
Ξ(s1+s2)=Ξ(s1)+Ξ(s2). |
In the context of a Banach space, Hyers [2] addressed Cauchy's functional equation in order to resolve this problems. Aoki [3] improved the work of Hyers by taking an unbounded Cauchy difference. Rassias [4] discussed additive mappings in his study, and Găvruţa [5] has already given identical results. For more details about the stability results, see [2,6,7,8,9,10,11,12,13].
In 1950, Nakano [14] investigated the idea of modular linear spaces. Numerous writers have now extensively verified these hypotheses, e.g., Luxemburg [15], Amemiya [16], Musielak [17], Koshi [18], Mazur [19], Turpin [20] and Orlicz [21]. Both Orlicz spaces [22] and the concept of interpolation [17,22] have several applications in the setting of modular spaces.
Several researchers examined stability in modular spaces via a fixed point approach of quasi-contractions without utilizing the Δ2-condition, as suggested by Khamsi [23]. In recent years, Sadeghi [24] produced results on stability of some functional equations combining the Δ2-condition with the Fatou property.
First, we review some terminology, notations, and common characteristics of the theory of given spaces.
Definition 1.1. [24] Let Q be a linear space over k (R or C). A function ϱ:Q→[0,∞) is said to be modular if the hypotheses below hold for all ϖ,ρ∈Q:
(m1) ϱ(ϖ)=0⇔ϖ=0;
(m2) ϱ(aϖ)=ϱ(ϖ) for any scalar a with |a|=1;
(m3) ϱ(a1ϖ+a2ρ)≤ϱ(ϖ)+ϱ(ρ) for any scalar a1,a2≥0 with a1+a2=1.
Also, ϱ is said to be convex modular, if the hypothesis (m3) is replaced by
(m′3) ϱ(a1ϖ+a2ρ)≤a1ϱ(ϖ)+a2ϱ(ρ) for any scalar a1,a2≥0 with a1+a2=1.
Additionally, the vector space induced by a modular ϱ,
Qϱ={ϖ:ϱ(cϖ)→0, as c→∞}, |
is a modular space (MS, for short). Denote by N the set of positive integers.
Definition 1.2. [24] Let {ϖμ} be a sequence in an MS Qϱ.
(i) If ϱ(ϖj−ϖ)→0 as j→∞, then {ϖj} is called ϱ-convergent to a point ϖ and we write ϖj→ϖ as j→∞.
(ii) If ϱ(ϖj−ϖξ)<ϵ for any ϵ>0 and for sufficiently large j,ξ∈N, then {ϖj} is called ϱ-Cauchy.
(iii) K⊆Qϱ is called ρ-complete if any ϱ-Cauchy sequence is ϱ-convergent.
(iv) A modular ϱ is said to satisfy the Δ2-condition if ϱ(2ϖj)→0 as j→∞, whenever ϱ(ϖj)→0 as j→∞.
If ϱ(ϖ)≤liminfμ→∞ϱ(ϖμ), the modular ϱ possesses the Fatou property, whereas the sequence {ϖμ} is ϱ-convergent to ϖ in the MS Qϱ and vice versa.
Proposition 1.1. [25] In MSs,
(1) if ϖα→ϖ and λ is a constant vector, then ϖα+λ→ϖ+λ;
(2) if ϖα→ϖ and ρα→ρ, then a1ϖα+a2ρα→a1ϖ+a2ρ, where a1,a2≥0 and a1+a2≤1.
Remark 1.1. Suppose that ρ is convex and justifies the Δ2-condition with Δ2-constant r>0. If r<2, then ϱ(ϖ)≤rϱ(ϖ2)≤r2ϱ(ϖ), which suggests ϱ=0. Therefore, if ρ is a convex modular, we ought to obtain the Δ2-constant r≥2.
It is clear that if μ is chosen from the analogous scalar field with |μ|>1 in MSs, then the convergence of a sequence {ϖα} to ϖ does not imply that {μϖα} converges to μϖ. This is due to the fact that in MSs, the multiples of the convergent sequence {ϖα} are convergent naturally.
In 1960, the idea of linear 2-normed spaces was created by Gahler [26] as follows:
Definition 1.3. Assume that Λ over R is a linear space with dimΛ>1 and a function ‖.,.‖:Λ×Λ→R is such that for all ϖ,ρ,ℓ∈Λ and ϑ∈R,
(i) ‖ϖ,ρ‖=0 iff ϖ and ρ are linearly dependent;
(ii) ‖ϖ,ρ‖=‖ρ,ϖ‖;
(iii) ‖ϑϖ,ρ‖=|ϑ|‖ϖ,ρ‖;
(iv) ‖ϖ,ℓ+ρ‖≤‖ϖ,ℓ‖+‖ϖ,ρ‖.
Then the function ‖.,.‖ is called a 2-norm on Λ, and (Λ,‖.,.‖) is called a linear 2-normed space (2-NS, for short).
For example of a 2-NS, consider R2 endowed with a 2-norm defined by |ϖ−ρ|=the area of the triangle with vertices 0, ϖ and ρ.
It should be noted that, the assertion (iv) implies that
‖ϖ+ℓ,ρ‖≤‖ϖ,ρ‖+‖ℓ,ρ‖ and |‖ϖ,ρ‖−‖ℓ,ρ‖|≤‖ϖ−ℓ,ρ‖. |
Hence, the mapping ϖ→‖ϖ,ρ‖ is continuous from Λ onto R, for any fixed ρ∈R.
Definition 1.4. Let Λ be a linear 2-NS and {ϖj}j≥1 be a sequence in Λ.
(1) A sequence {ϖj}j≥1 is called convergent if there exists an element ϖ∈Λ such that
limj→∞‖ϖj−ϖ,ℓ‖=0 for every ℓ∈Λ. |
If {ϖj}j≥1 converges to ϖ, then we can write ϖj→ϖ as j→∞ or limj→∞ϖj=ϖ and we say that ϖ is a limit point of {ϖj}j≥1.
(2) Assume that ℓ,ρ∈Λ such that ℓ and ρ are linearly independent. Then {ϖj}j≥1 is called a Cauchy sequence in Λ, if
limj,v→∞‖ϖj−ϖv,ℓ‖=0, |
and
limj,v→∞‖ϖj−ϖv,ρ‖=0. |
Definition 1.5. A linear 2-NS in which every Cauchy sequence is a convergent sequence is called a 2-Banach space (2-BS, for short).
Lemma 1.1. [27] Assume that (Λ,‖.,.‖) is a 2-NS. If ϖ∈Λ and ‖ϖ,ρ‖=0 for each ρ∈Λ, then ρ=0.
Lemma 1.2. [27] Let {ϖj}j≥1 be a convergent sequence in a linear 2-NS Λ, then,
limj→∞‖ϖj,ℓ‖=‖limj→∞ϖj,ℓ‖ for all ℓ∈Λ. |
Sadeghi [24] has confirmed the stability findings of functional equations utilizing the Fatou property and the Δ2-condition in modular spaces. Our paper is aimed to discuss the refined stability of additive, quartic and sextic functional equations
Ω((s1−s2)+(s3−s2)m+s4)+Ω((s2−s3)+(s4−s3)m+s1)+Ω((s3−s4)+(s1−s4)m+s2)+Ω((s4−s1)+(s2−s1)m+s3)=Ω(s1+s2+s3+s4), |
Ω(3s1+s2)+Ω(3s1−s2)=9Ω(s1+s2)+9Ω(s1−s2)+144Ω(s1)−16Ω(s2), |
and
Ω(s1+3s2)−6Ω(s1+2s2)+15Ω(s1+s2)−20Ω(s1)+15Ω(s1−s2)−6Ω(s1−2s2)+Ω(s1−3s2)=720Ω(s2), |
respectively, in MSs with and without the Δ2-condition and by the direct technique. Additionally, the Ulam stability in 2-BSs is examined. Finally, we show that the stability of these equations does not hold in a particular scenario using appropriate counter-examples.
Here, we apply the direct technique to examine the stability theorems of the additive, quartic, and sextic functional equation. These results are considered as an improvement of forms due to Wongkum [28] and Sadeghi [24]. We assume here Λ is a linear space and Qϱ is a complete convex MS.
Kim [29] in 2013 studied the stability of the additive functional equation in fuzzy BSs. Inspired by the technique of Kim [29], we aim to study the stability of the additive functional equation:
Ω((s1−s2)+(s3−s2)m+s4)+Ω((s2−s3)+(s4−s3)m+s1)+Ω((s3−s4)+(s1−s4)m+s2)+Ω((s4−s1)+(s2−s1)m+s3)=Ω(s1+s2+s3+s4) | (2.1) |
for any m>0 in modular spaces by ignoring the conditions of Δ2. For the convenience of notation, define the mapping Ω:Λ→Qϱ as
ΔΩ(s1,s2,s3,s4)=Ω(s1−s2m+s3+s4)+Ω(s2−s3m+s4+s1)+Ω(s3−s4m+s1+s2)+Ω(s4−s1m+s2+s3)−Ω(s1+s2+s3+s4), |
where s1,s2,s3,s4∈Λ, and m is a fixed nonzero integer.
Theorem 2.1. Assume that there is a function Ξ:Λ4→[0,∞) defined by
Ξ(s1,s2,s3,s4)=∞∑μ=114μE(4μ−1s1,4μ−1s2,4μ−1s3,4μ−1s4)<∞, | (2.2) |
such that a mapping Ω:Λ→Qϱ satisfies Ω(0)=0 and for all s1,s2,s3,s4∈Λ,
ϱ(ΔΩ(s1,s2,s3,s4))≤Ξ(s1,s2,s3,s4). | (2.3) |
Then there exists a unique additive mapping (AM) W:Λ→Qϱ fulfilling
ϱ(Ω(s1)−W(s1))≤Ξ(s1,s1,s1,s1) for all s1∈Λ. | (2.4) |
Proof. Putting s1=s2=s3=s4 in (2.3), and setting Ξ(s1,s1,s1,s1)=U(s1), we have
ϱ(4Ω(s1)−Ω(4s1))≤Ξ(s1,s1,s1,s1)=U(s1). | (2.5) |
Hence,
ϱ(Ω(s1)−14Ω(4s1))≤14U(s1). | (2.6) |
Based on a mathematical induction, one can deduce that
ϱ(Ω(s1)−Ω(4μs1)4μ)≤μ∑j=114jU(4j−1s1), | (2.7) |
for all s1∈Λ and all natural numbers μ. Clearly, (2.6) follows immediately form (2.7) if we take μ=1. Assume that the inequality (2.7) is true for μ∈N, then we get
ϱ(Ω(s1)−Ω(4μ+1s1)4μ+1)=ϱ(14(Ω(4s1)−Ω(4μ4s1)4μ)+14(4Ω(s1)−Ω(4s1)))≤14ϱ(Ω(4s1)−Ω(4μ4s1)4μ)+14ϱ(4Ω(s1)−Ω(4s1))≤14μ∑j=114jU(4js1)+14U(s1)=μ∑j=114j+1U(4js1)+14U(s1)=μ+1∑j=114jU(4j−1s1). |
It follows that the inequality (2.7) is true for every μ∈N. Suppose that θ and η are natural numbers with θ<η. Using (2.7), we can write
ϱ(Ω(4ηs1)4η−Ω(4θs1)4θ)=ϱ(14θ(Ω(4η−θs1)4η−θ−Ω(4θs1)))≤14θη−θ∑j=1U(4j−14θs1)4j=η−θ∑j=1U(4θ+j−1s1)4θ+j=η∑μ=θ+1U(4μ−1s1)4μ. | (2.8) |
Inequalities (2.2) and (2.8) illustrate that {Ω(4ηs1)4η} is ϱ-Cauchy sequence in Qϱ. Since Qϱ is ϱ-complete, one can say {Ω(4ηs1)4η} is ϱ-convergent. Now, describe the mapping W:Λ→Qϱ as
W(s1)=limη→∞Ω(4ηs1)4η, s1∈Λ. | (2.9) |
Hence,
ϱ(4W(s1)−W(4s1)44)=ϱ(144(Ω(4η+1s1)4η−W(4s1))+142(14W(s1)−14Ω(4η+1s1)4η+1))≤144ϱ(W(4s1)−Ω(4η+1s1)4η)+143ϱ(Ω(4η+1s1)4η+1−W(s1)), | (2.10) |
for all s1∈Λ. Applying (2.9) in (2.10) after taking the limit as η→∞, we find that the right-hand side of (2.10) tends to 0. Thus, one gets
4W(s1)=W(4s1), for all s1∈Λ. | (2.11) |
Also, for all η∈N, by (2.11), we observe that
ϱ(Ω(s1)−W(s1))=ϱ(η∑μ=14Ω(4μ−1s1)−Ω(4μs1)4μ+(Ω(4ηs1)4η−W(s1)))=ϱ(η∑μ=14Ω(4μ−1s1)−Ω(4μs1)4μ+14(Ω(4η−14s1)4η−1−W(4s1))). | (2.12) |
Since η∑μ=114μ+14<1, by (2.5) and (2.12), one can write
ϱ(Ω(s1)−W(s1))≤η∑μ=114μϱ(4Ω(4μ−1s1)−Ω(4μs1))+14ϱ(Ω(4η−14s1)4η−1−W(4s1))≤η∑μ=114μU(4μ−1s1)+14ϱ(Ω(4η−14s1)4η−1−W(4s1))=η∑μ=114μΞ(4μ−1s1,4μ−1s1,4μ−1s1,4μ−1s1)+14ϱ(Ω(4η−14s1)4η−1−W(4s1)). | (2.13) |
Passing to the limit as η→∞ in (2.13), we have
ϱ(Ω(s1)−W(s1))≤Ξ(s1,s1,s1,s1) for all s1∈Λ. |
Therefore, the inequality (2.4) is true. Now, we shall prove that W is an AM. It is easy to observe that
ϱ(14jΔΩ(4js1,4js2,4js3,4js4))≤14jϱ(ΔΩ(4js1,4js2,4js3,4js4))≤14jΞ(4js1,4js2,4js3,4js4), | (2.14) |
for all s1,s2,s3,s4∈Λ. When j→∞ in (2.14), we get ϱ(ΔW(s1,s2,s3,s4))→0. Hence,
ΔW(s1,s2,s3,s4)=0. |
This implies that W is an additive mapping. For the uniqueness, assume that W1 and W2 are two AMs that satisfy (2.4). Then,
ϱ(W1(s1)−W2(s1)2)=ϱ(12(W1(4μs1)4μ−Ω(4μs1)4μ)+12(Ω(4μs1)4μ−W2(4μs1)4μ))≤12ϱ(W1(4μs1)4μ−Ω(4μs1)4μ)+12ϱ(Ω(4μs1)4μ−W2(4μs1)4μ)≤1214μ[ϱ(W1(4μs1)−Ω(4μs1))+ϱ(W2(4μs1)−Ω(4μs1))]≤14μΞ(4μs1,4μs1,4μs1,4μs1)≤∞∑u=μ+114uE(4u−1s1,4u−1s1,4u−1s1,4u−1s1)→0, as u→∞, |
which yields that W1=W2. This finishes the proof.
The corollaries below follow immediately from Theorem 2.1:
Corollary 2.1. If there exists a mapping Ω:Λ→Qϱ such that Ω(0)=0 and
ϱ(ΔΩ(s1,s2,s3,s4))≤ε, |
for all s1,s2,s3,s4∈Λ, then there exists a unique AM W:Λ→Qϱ satisfying
ϱ(Ω(s1)−W(s1))≤ε2 for all s1∈Λ. |
Corollary 2.2. If there exists a mapping Ω:Λ→Qϱ such that Ω(0)=0 and
ϱ(ΔΩ(s1,s2,s3,s4))≤ξ(‖s1‖p+‖s2‖p+‖s3‖p+‖s4‖p) |
for all s1,s2,s3,s4∈Λ, ξ>0 and p∈(0,1), then there exists a unique AM W:Λ→Qϱ fulfilling
ϱ(Ω(s1)−W(s1))≤4ξ4−4p‖s1‖p for all s1∈Λ. |
In the context of MSs, we present another stability result as in Theorem 2.1 with condition Δ2 as follows:
Theorem 2.2. Let Q be a linear space and Qϱ fulfill the Δ2-condition with the mapping Ω:Λ→Qϱ such that
ϱ(ΔΩ(s1,s2,s3,s4))≤Ξ(s1,s2,s3,s4), |
and
limμ→∞uμΞ(s14μ,s24μ,s34μ,s44μ)=0 and ∞∑j=1(u24)jΞ(s14μ,s14μ,s14μ,s14μ)<∞, |
for all s1,s2,s3,s4∈Λ. Then there exists a unique AM W:Λ→Qϱ, described as
W(s1)=limμ→∞4μΩ(s14μ), |
and
ϱ(Ω(s1)−W(s1))≤α4u∞∑j=1(u24)jΞ(s12j,s12j,s12j,s12j), |
for all s1∈Λ.
Proof. Since ϱ verifies the Δ2-condition with α, Eq (2.3) implies that
ϱ(ΔΩ(s1,s2,s3,s4))≤αΞ(s1,s2,s3,s4) for all s1,s2,s3,s4∈Λ. |
So, the proof of Theorem 2.1 directly leads to the conclusion.
In this part, without using the Fatou property, the refined and Ulam stability of the following quartic functional equation are investigated:
Ω(3s1+s2)+Ω(3s1−s2)=9Ω(s1+s2)+9Ω(s1−s2)+144Ω(s1)−16Ω(s2), | (2.15) |
in modular spaces Qϱ. For ease of notations, we can define a mapping Ω:Λ→Qϱ as
ΔΩ(s1,s2)=Ω(3s1+s2)+Ω(3s1−s2)+16Ω(s2)−144Ω(s1)−9Ω(s1+s2)−9Ω(s1−s2), |
for all s1,s2∈Λ.
Theorem 2.3. Let Q be a linear space and Qϱ fulfill the Δ2-condition with a mapping Ξ:Λ×Λ→[0,∞). Suppose also there exists a mapping Ω:Λ→Qϱ such that
ϱ(ΔΩ(s1,s2))≤Ξ(s1,s2),limμ→∞u4μΞ(s13μ,s23μ)=0 and ∞∑j=1(u43)jΞ(s13j,0)<∞, | (2.16) |
for all s1,s2∈Λ. Then there exists a unique quartic mapping (QM) W:Λ→Qϱ described as
W(s1)=limμ→∞34μΩ(s13μ), |
and
ϱ(Ω(s1)−W(s1))≤12u∞∑j=1(u43)jΞ(s13j,0), | (2.17) |
for all s1∈Λ.
Proof. Consider Ω(0)=0 in view of Ξ(0,0)=0 along the convergence of
∞∑j=1(u43)jΞ(0,0)<∞. |
Letting s2=0 in (2.16), we have
ϱ(2Ω(3s1)−2×34Ω(s1))≤Ξ(s1,0) for all s1∈Λ. |
Since ∞∑j=112j<1, based on Δ2-condition of ϱ, the subsequent functional inequality can be written as
ϱ(Ω(s1)−34μΩ(s13μ))=ϱ(μ∑j=113j(34j−3Ω(s13j−1)−35jΩ(s13j)))≤1u3μ∑j=1(u43)jΞ(s13j,0) for all s1∈Λ. | (2.18) |
Now, in (2.18), replacing s1 with s13μ, we conclude that the series in (2.16) converges, and
ϱ(34θΩ(s13μ)−34(θ+μ)Ω(s13θ+μ))≤u4θϱ(Ω(s13μ)−34μΩ(s13θ+μ))≤u4θ−3μ∑j=1(u43)jΞ(s13j+θ,0)≤3θuθ+3μ+β∑j=θ+1(u43)jΞ(s13j,0), |
for all s1∈Λ. Since 3θuθ+3≤1, the right-hand side of the above inequality tends to 0. This proves that {34μΩ(s13μ)} is a ϱ-Cauchy sequence in Qϱ. Since Qϱ is ϱ-complete, it is ϱ-convergent in Qϱ. Define the mapping W:Λ→Qϱ by
W(s1)=ϱ(limη→∞34μΩ(s13μ)) for all s1∈Λ, |
that is,
limη→∞ϱ(34μΩ(s13μ)−W(s1))=0 for all s1∈Λ. |
Now, consider
ϱ(Ω(s1)−W(s1))≤12ϱ(2Ω(s1)−2(34μ)Ω(s13μ))+12ϱ(2(34μ)Ω(s13μ)−2W(s1))≤u2ϱ(Ω(s1)−(34μ)Ω(s13μ))+u2ϱ((34μ)Ω(s13μ)−W(s1))≤12u2μ∑j=1(u43)jΞ(s13j,0)+u2ϱ((34μ)Ω(s13μ)−W(s1)), |
for all s1∈Λ and all μ>1. Thus, the inequality is founded without utilizing the Fatou property. Letting μ→∞, we have estimate of (2.17) of Ω as W. Replacing (s1,s2) with (s13μ,s23μ) in (2.16), one gets
ϱ(34μΔΩ(s13μ,s23μ))≤u4μΞ(s13μ,s23μ)→0, as μ→∞. |
It follows from the convexity of ϱ that
ϱ(1235W(3s1+s2)+1235W(3s1−s2)+16235W(s2)−9235W(s1+s2)−9235W(s1−s2)−144235W(s1))≤1235ϱ(W(3s1+s2)−34μΩ(3s1+s23μ))+1235ϱ(W(3s1−s2)−34μΩ(3s1−s23μ))+16235ϱ(W(s2)−16(34μ)Ω(s23μ))+9235ϱ(W(s1+s2)−9(34μ)Ω(s1+s23μ))+9235ϱ(W(s1−s2)−9(34μ)Ω(s1−s23μ))+144235ϱ(W(s1)−144(34μ)Ω(s13μ))+1235ϱ(34μΩ(3s1+s23μ)+34μΩ(3s1−s23μ)+16(34μ)Ω(s23μ)+9(34μ)Ω(s1+s23μ)+9(34μ)Ω(s1−s23μ)+144(34μ)Ω(s13μ)), |
for all s1,s2∈Λ. Then the function W is a quartic (it is enough to let μ→∞).
For the uniqueness, suppose that W∗:Λ→Qϱ is a QM such that
ϱ(Ω(s1)−W∗(s1))≤12u∞∑j=1(u43)jΞ(s13j,0) for all s1∈Λ. |
Then, from the equations W(3−μs1)=3−4μW(s1) and W∗(3−μs1)=3−4μW∗(s1), one can write
ϱ(W(s1)−W∗(s1))≤13ϱ(3(34μ)W(s13μ)−3(34μ)Ω(s13μ))+13ϱ(3(34μ)Ω(s13μ)−3(34μ)W∗(s13μ))≤u4μ+13ϱ(W(s13μ)−Ω(s13μ))+u4μ+13ϱ(Ω(s13μ)−W∗(s13μ))≤3μ−12uμ+3μ∑j=1(u43)jΞ(s13j,0), for all s1∈Λ, |
for all sufficiently large integers μ. Letting μ→∞, we conclude that W(s1)=W∗(s1), for all s1∈Λ. This completes the proof.
Corollary 2.3. Suppose that (Λ,‖.‖) is a normed space and Qϱ fulfills Δ2-condition. Assume also there are ξ>0, p>log3u43 and the mapping Ω:Λ→Qϱ such that
ϱ(ΔΩ(s1,s2))≤ξ(‖s1‖p+‖s2‖p) for all s1,s2∈Λ. |
Then there exists a unique QM W:Λ→Qϱ fulfilling
Ω(s1)−W(s1)≤u3ξ3p+1−u4 for all s1∈Λ. |
Without utilizing the Δ2-condition or the Fatou property, we provide another stability result in an MS.
Theorem 2.4. Assume that there are a mapping Ω:Λ→Qϱ that fulfills (2.16) and a function Ξ:Λ×Λ→[0,∞) such that
limμ→∞Ξ(3μs1,3μs2)34μ=0 and ∞∑j=1Ξ(3js1,0)34j<∞ for all s1,s2∈Λ. |
Then there exists a unique QM W:Λ→Qϱ fulfilling
ϱ(Ω(s1)−14Ω(0)−W(s1))≤134∞∑j=1Ξ(3js1,0)34j for all s1∈Λ. |
Proof. Setting s2=0 in (2.16), one can write
ϱ(2Ω(3s1)−2×34Ω(s1))≤Ξ(s1,0), for all s1∈Λ. | (2.19) |
Taking Ω′(s1)=Ω(s1)−14Ω(0), then by the convexity of ϱ and using the fact μ−1∑j=0134(j+1)<1, we get
ϱ(Ω′(s1)−Ω′(3μs1)34μ)≤ϱ(μ−1∑j=0(34Ω′(3js1)−Ω′(3j+1s1)34(j+1)))≤μ−1∑j=0ϱ(34Ω′(3js1)−Ω′(3j+1s1))34(j+1)≤134μ−1∑j=0Ξ(3js1,0)34j for all s1∈Λ, μ∈N. |
Then one gets {34μΩ′(s13μ)} is a ϱ-Cauchy sequence and the mapping W:Λ→Qϱ is defined as
W(s1)=ϱ(limμ→∞Ω′(3μs1)34μ), |
that is
ϱ(limμ→∞Ω′(3μs1)34μ−W(s1))=0 for all s1∈Λ, |
without utilizing the Δ2-condition and the Fatou property. Furthermore, it is clear from the proof used in Theorem 2.3 that the mapping W satisfies the quartic functional equation.
Now, using the Fatou property and the Δ2-condition, we demonstrate that (2.19) is true. According to the convexity of ϱ and using the fact μ−1∑j=0134(j+1)+134<1, we have
ϱ(Ω′(s1)−W(s1))=ϱ(μ−1∑j=1(34Ω′(3js1)−Ω′(3j+1s1)34(j+1))+Ω′(3μs1)34μ−W(3s1)34)≤μ−1∑j=0134(j+1)ϱ(34Ω′(3js1)−Ω′(3j+1s1))+134ϱ(Ω′(3μ−13s1)34(μ−1)−W(3s1))≤134μ−1∑j=0134jΞ(3js1,0)+134ϱ(Ω′(3μ−13s1)34(μ−1)−W(3s1)), |
for all s1∈Λ and all natural number μ>1. Letting μ→∞ in the above inequality, we get our desired result.
Corollary 2.4. Assume that there exists a function Ξ:Λ×Λ→[0,∞) such that
limμ→∞Ξ(3μs1,3μs2)34μ=0 and Ξ(3s1,0)<34MΞ(s1,0) for all s1,s2∈Λ, |
where M∈(0,1). If there exists a mapping Ω:Λ→Qϱ fulfilling (2.16), then there exists a unique QM W:Λ→Qϱ fulfilling
ϱ(Ω(s1)−14Ω(0)−W(s1))≤Ξ(s1,0)34(1−M) for all s1∈Λ. |
Corollary 2.5. Let (Λ,‖.‖) be a normed linear space. If there are the real numbers ξ>0, ε>0 and a mapping Ω:Λ→Qϱ such that
ϱ(ΔΩ(s1,s2))≤ξ(‖s1‖p+‖s2‖p)+ε, |
for all s1,s2∈Λ, then there exists a unique QM W:Λ→Qϱ fulfilling
ϱ(Ω(s1)−14Ω(0)−W(s1))≤3ξ34−3p‖s1‖p+ε4 for all s1,s2∈Λ, |
where s1≠0 if p<0.
Here, without using the Fatou property, the refined Ulam stability of the following sextic functional equation is introduced:
Ω(s1+3s2)−6Ω(s1+2s2)+15Ω(s1+s2)−20Ω(s1)+15Ω(s1−s2)−6Ω(s1−2s2)+Ω(s1−3s2)=720Ω(s2), |
in an MS Qϱ.
Theorem 2.5. Let Q be a linear space and Qϱ fulfilling the Δ2-condition with a mapping Ξ:Λ×Λ→[0,∞). Assume also there is a mapping Ω:Λ→Qϱ such that
ϱ(Ω(s1+3s2)−6Ω(s1+2s2)+15Ω(s1+s2)−20Ω(s1)+15Ω(s1−s2)−6Ω(s1−2s2)+Ω(s1−3s2)−720Ω(s2))}≤Ξ(s1,s2), | (2.20) |
and
limμ→∞u6μΞ(s12μ,s22μ)=0, and ∞∑j=1(u72)jΞ(s12j,0)<∞, |
for all s1,s2∈Λ. Then there exists a unique sextic mapping (SM) W:Λ→Qϱ, described as
W(s1)=limμ→∞26μΩ(s12μ), |
and
ϱ(Ω(s1)−W(s1))≤12u∞∑j=1(u72)jΞ(s12j,s12j), | (2.21) |
for all s1∈Λ.
Proof. Firstly, let Ω(0)=0 in view of Ξ(0,0)=0 along the convergence of
∞∑j=1(u72)jΞ(0,0)<∞. |
Setting s1=s2 in (2.20), we get
ϱ(Ω(4s1)−6Ω(3s1)+15Ω(2s1)−20Ω(s1)−6Ω(−s1)+Ω(−2s1)−720Ω(s1))≤Ξ(s1,s1). |
Since ∞∑j=112j<1, and using Δ2-condition of ϱ, the next functional inequality can be written as
ϱ(Ω(s1)−26μΩ(s13μ))=ϱ(μ∑j=112j(37j−6Ω(s13j−1)−26jΩ(s12j)))≤1u6μ∑j=1(u62)jΞ(s12j,s12j), for all s1∈Λ. | (2.22) |
Replacing s1 with s12μ in (2.22), we see that the series in (2.16) converges, and
ϱ(26θΩ(s12μ)−26(θ+μ)Ω(s16θ+μ))≤u6θϱ(Ω(s12μ)−26μΩ(s12θ+μ))≤u6θ−6μ∑j=1(u72)jΞ(s12j+θ,s12j+θ)≤2θuθ+5μ+β∑j=θ+1(u72)jΞ(s12j,s12j), |
for all s1∈Λ, which goes to 0 as θ→∞ since 2u≤1, then the right-hand side of the above inequality tends to 0. This proves that {26μΩ(s12μ)} is a ϱ-Cauchy sequence for all s1∈Λ and it is ϱ-convergent in Qϱ. Hence, we can define the mapping W:Λ→Qϱ by
W(s1)=ϱ(limη→∞26μΩ(s12μ)), that is, limη→∞ϱ(26μΩ(s12μ)−W(s1))=0, |
for all s1∈Λ. Consequently, without employing the Fatou property from the Δ2-condition, the following inequality
ϱ(Ω(s1)−W(s1))≤12ϱ(2Ω(s1)−2(26μ)Ω(s12μ))+12ϱ(2(26μ)Ω(s12μ)−2W(s1))≤u2ϱ(Ω(s1)−(26μ)Ω(s12μ))+u2ϱ((26μ)Ω(s12μ)−W(s1))≤12uμ∑j=1(u72)jΞ(s12j,s12j)+u2ϱ(26μΩ(s12μ)−W(s1)), |
is true for all s1∈Λ and a nature number μ>1. Letting μ→∞, we have estimate of (2.17) in Ω by W. Replacing (s1,s2) with (s12μ,s22μ) in (2.21), we obtain that
ϱ(26μΩ(s1+3s22μ)−6(26μ)Ω(s1+2s22μ)+15(26μ)Ω(s1+s22μ)−20(26μ)Ω(s12μ)+15(26μ)Ω(s1−s22μ)−6(26μ)Ω(s1−2s22μ)+26μΩ(s1−3s22μ)−720Ω(s22μ))≤u6μΞ(s12μ,s22μ)→0, as μ→∞, for all s1,s2∈Λ. |
It follows from the convexity of ϱ that
ϱ(1784W(s1+3s2)−6784W(s1+2s2)+15784W(s1+s2)−20784W(s1)+15784W(s1−s2)−6784W(s1−2s2)+1784W(s1−3s2)−720784W(s2))≤1784ϱ(W(s1+3s2)−26μΩ(s1+3s23μ))+6784ϱ(W(s1+2s2)−6(26μ)Ω(s1+2s22μ))+15784ϱ(W(s1+s2)−15(26μ)Ω(s1+s22μ))+20784ϱ(W(s1)−20(26μ)Ω(s12μ))+15784ϱ(W(s1−s2)−15(26μ)Ω(s1−s22μ))+6784ϱ(W(s1−2s2)−6(26μ)Ω(s1−2s22μ))+1784ϱ(W(s1−3s2)−126μΩ(s1−3s22μ))+720784ϱ(W(s2)−720(26μ)Ω(s22μ))+1784ϱ(26μΩ(s1+3s23μ)+6(26μ)Ω(s1+2s22μ)+15(26μ)Ω(s1+s22μ)+20(26μ)Ω(s12μ)+15(26μ)Ω(s1−s22μ)+6(26μ)Ω(s1−2s22μ)+126μΩ(s1−3s22μ)+720(26μ)Ω(s22μ)), |
for all s1,s2∈Λ. Therefore, the mapping W is sextic (it is enough to let μ→∞).
For the uniqueness, let W′′:Λ→Qϱ be another SM satisfying
ϱ(Ω(s1)−W′′(s1))≤12u∞∑j=1(u72)jΞ(s12j,s12j), for all s1∈Λ. |
From the equations W(2−μs1)=2−6μW(s1) and W′′(2−μs1)=2−6μW′′(s1), we have
ϱ(W(s1)−W′′(s1))≤12ϱ(2(26μ)W(s12μ)−2(26μ)Ω(s12μ))+12ϱ(2(26μ)Ω(s12μ)−2(26μ)W′′(s12μ))≤u6μ+12ϱ(W(s12μ)−Ω(s12μ))+u6μ+12ϱ(Ω(s12μ)−W′′(s12μ))≤u6μ2∞∑j=1(u72)jΞ(s12j+μ,s12j+μ)≤2μ−1uμ+3μ∑j=1(u72)jΞ(s12j,s12j), |
for all s1∈Λ and for all sufficiently large natural numbers μ. Letting μ→∞, we obtain that W=W′′ and this completes the proof.
Corollary 2.6. Let (Λ,‖.‖) be a normed space and Qϱ fulfill the Δ2-condition. If there exist a real number ξ>0, p>log2u62 and a mapping Ω:Λ→Qϱ such that
ϱ(Ω(s1+3s2)−6Ω(s1+2s2)+15Ω(s1+s2)−20Ω(s1)+15Ω(s1−s2)−6Ω(s1−2s2)+Ω(s1−3s2)−720Ω(s2))}≤ξ(‖s1‖p+‖s2‖p), |
for all s1,s2∈Λ, then there exists a unique SM W:Λ→Qϱ fulfilling
Ω(s1)−W(s1)≤u7ξ2p+1−u8 for all s1∈Λ. |
Now, without employing the Δ2-condition and the Fatou property, the following theorem provides an alternative stability result of Theorem 2.5 in an MS.
Theorem 2.6. If there exist a mapping Ω:Λ→Qϱ, which fulfills (2.20) with the function Ξ:Λ×Λ→[0,∞) satisfying
limμ→∞Ξ(2μs1,2μs2)26μ=0 and ∞∑j=1Ξ(2js1,2js1)26j<∞ for all s1,s2∈Λ, |
then there exists a unique SM W:Λ→Qϱ such that
ϱ(Ω(s1)−17Ω(0)−W(s1))≤126∞∑j=1Ξ(2js1,2js1)26j for all s1∈Λ. | (2.23) |
Proof. Putting s1=s2 in (2.20), we have
ϱ(Ω(4s1)−6Ω(3s1)+15Ω(2s1)−20Ω(s1)−6Ω(−s1)+Ω(−2s1)−720Ω(s1))=ϱ(ˆΩ(4s1)−6ˆΩ(3s1)+15ˆΩ(2s1)−20ˆΩ(s1)−6ˆΩ(−s1)+ˆΩ(−2s1)−720ˆΩ(s1))≤Ξ(s1,s1), |
where ˆΩ(s1)=Ω(s1)−17Ω(0). From the convexity of ϱ and using the fact μ−1∑j=0126(j+1)<1, we get
ϱ(ˆΩ(s1)−ˆΩ(2μs1)26μ)≤ϱ(μ−1∑j=0(26ˆΩ(2js1)−ˆΩ(2j+1s1)26(j+1)))≤μ−1∑j=0ϱ(34ˆΩ(3js1)−ˆΩ(3j+1s1))26(j+1)≤126μ−1∑j=0Ξ(2js1,2js1)26j for all s1∈Λ, μ∈N. |
It follows that the sequence {ˆΩ(2μs1)26μ} is ϱ-Cauchy and the mapping W:Λ→Qϱ is defined by
W(s1)=ϱ(limμ→∞ˆΩ(2μs1)26μ), |
that is,
ϱ(limμ→∞ˆΩ(2μs1)26μ−W(s1))=0 for all s1∈Λ, |
without utilizing the Δ2-condition and the Fatou property. Clearly, from the proof of Theorem 2.5, we conclude that the mapping W satisfies the sextic functional equation.
Now, using the Fatou property and the Δ2-condition, we show that (2.23) holds. From the convexity property of ϱ and since μ−1∑j=0126(j+1)+126<1, we get
ϱ(ˆΩ(s1)−W(s1))=ϱ(μ−1∑j=1(26ˆΩ(3js1)−ˆΩ(2j+1s1)26(j+1))+ˆΩ(2μs1)26μ−W(2s1)26)≤μ−1∑j=0126(j+1)ϱ(26ˆΩ(2js1)−ˆΩ(2j+1s1))+126ϱ(ˆΩ(2μ−12s1)26(μ−1)−W(2s1))≤126μ−1∑j=0126jΞ(2js1,2js1)+126ϱ(ˆΩ(2μ−12s1)26(μ−1)−W(2s1)), |
for all s1∈Λ and all natural number μ>1. As μ→∞ in the above inequality, we obtain our needed result.
Corollary 2.7. Assume that there exists a mapping Ξ:Λ×Λ→[0,∞) satisfying
limμ→∞Ξ(2μs1,2μs2)26μ=0 and Ξ(2s1,2s2)<26M∗Ξ(s1,s2), |
for all s1,s2∈Λ and for some M∗∈(0,1). If there exists a mapping Ω:Λ→Qϱ fulfilling (2.20), then there exists a unique SM W:Λ→Qϱ verifying
ϱ(Ω(s1)−17Ω(0)−W(s1))≤Ξ(s1,s1)26(1−M∗) for all s1∈Λ. |
Corollary 2.8. Let (Λ,‖.‖) be a normed space. Assume that there are ξ>0, ε>0, p∈(−∞,2) and a mapping Ω:Λ→Qϱ such that
ϱ(Ω(s1+3s2)−6Ω(s1+2s2)+15Ω(s1+s2)−20Ω(s1)+15Ω(s1−s2)−6Ω(s1−2s2)+Ω(s1−3s2)−720Ω(s2))}≤ξ(‖s1‖p+‖s2‖p)+ε, |
for all s1,s2∈Λ. Then there exists a unique SM W:Λ→Qϱ fulfilling
ϱ(Ω(s1)−17Ω(0)−W(s1))≤2ξ26−2p‖s1‖p+ε3, |
for all s1∈Λ.
In this section, we discuss the stability of the involved functional equations by considering Λ as a linear normed space and Q as a 2-BS.
For the convenience of notations, define the mapping Ω:Λ→Qϱ as
RΩ(s1,s2,s3,s4)=Ω(s1−s2m+s3+s4)+Ω(s2−s3m+s4+s1)+Ω(s3−s4m+s1+s2)+Ω(s4−s1m+s2+s3)−Ω(s1+s2+s3+s4), |
for each s1,s2,s3,s4∈Λ.
Theorem 3.1. Suppose that there exists a function Ξ:Λ4×Q→[0,∞) such that
limj→∞E(4js1,4js2,4js3,4js4,ℓ)=0, for all s1,s2,s3,s4∈Λ and ℓ∈Q. | (3.1) |
If there is a mapping Ω:Λ→Q with Ω(0)=0 such that
‖RΩ(s1,s2,s3,s4),ℓ‖≤Ξ(s1,s2,s3,s4,ℓ), | (3.2) |
and
ˆΞ(s1,ℓ)=∞∑j=114jE(4js1,4js1,4js1,4js1,ℓ)<∞, |
for all s1,s2,s3,s4∈Λ and ℓ∈Q, then there is a unique AM V:Λ→Q fulfilling
‖Ω(s1)−V(s1),ℓ‖≤ˆΞ(s1,ℓ) for all s1∈Λ and all ℓ∈Q. | (3.3) |
Proof. Setting s1=s2=s3=s4 in (3.2), we get
‖4Ω(s1)−Ω(4s1),ℓ‖≤Ξ(s1,s2,s3,s4,ℓ). | (3.4) |
Replacing s1 with 4js1 in (3.4), and using
‖14j+1Ω(4j+1s1)−14jΩ(4js1),ℓ‖≤14j+1Ξ(4js1,4js1,4js1,4js1,ℓ), |
for all s1∈Λ, ℓ∈Q and all j>0, one writes
‖14j+1Ω(4j+1s1)−14rΩ(4rs1),ℓ‖≤j∑t=r‖14t+1Ω(4t+1s1)−14tΩ(4ts1),ℓ‖≤14j∑t=r14tΞ(4js1,4js1,4js1,4js1,ℓ), | (3.5) |
for all s1∈Λ, ℓ∈Q and all integers j>0 and r>0 with r≤j. It follows from (3.4) and (3.5) that the sequence {Ω(4js1)4j} is a Cauchy sequence in Q. The completeness of Q implies that the sequence {Ω(4js1)4j} converges in Q for all s1∈Λ. Therefore, we can define that mapping V:Λ→Q as
V(s1)=limj→∞Ω(4js1)4j, for all s1∈Λ. | (3.6) |
Hence,
limj→∞‖Ω(4js1)4j−V(s1),ℓ‖=0, for all s1∈Λ and ℓ∈Q. |
Putting t=0 and let j→∞ in (3.5), we have (3.3).
Now, we shall show that V is an AM. Using (3.1), (3.2), (3.6) and Lemma 1.2, one gets
‖RΩ(s1,s2,s3,s4),ℓ‖=limj→∞‖RΩ(4js1,4js1,4js1,4js1),ℓ‖≤limj→∞14jΞ(4js1,4js1,4js1,4js1,ℓ)=0. |
By Lemma 1.1,
‖RV(s1,s2,s3,s4),ℓ‖=0. |
Thus, V is an AM. For the uniqueness, consider another AM V′:Λ→Q fulfilling (3.3). Then,
‖V(s1)−V′(s1),ℓ‖=limj→∞‖V(4js1)−Ω(4js1)+Ω(4js1)−V′(4js1),ℓ‖≤limj→∞14jˆΞ(4js1,ℓ)=0 for all s1∈Λ and all ℓ∈Q. |
Based on Lemma 1.1, we have V(s1)−V′(s1)=0 for all s1∈Λ, which implies that V=V′.
Corollary 3.1. Assume that μ:[0,∞)→[0,∞) is a function such that μ(0)=0 and the following assertions hold:
(a1) μ(ϰω)≤μ(ϰ)μ(ω);
(a2) For all ϰ>1, μ(ϰ)<ϰ.
If there exists a mapping Ω:Λ→Qϱ such that Ω(0)=0 and
‖RΩ(s1,s2,s3,s4),ℓ‖≤μ(‖s1‖+‖s2‖+‖s3‖+‖s4‖)+μ(ℓ), |
for all s1,s2,s3,s4∈Λ and ℓ∈Q, then there is a unique AM V:Λ→Q fulfilling
‖Ω(s1)−V(s1),ℓ‖≤(4μ(‖s1‖)4−μ(4)+μ(ℓ)), for all s1∈Λ and all ℓ∈Q. | (3.7) |
Proof. Consider
Ξ(s1,s2,s3,s4,ℓ)=μ(‖s1‖+‖s2‖+‖s3‖+‖s4‖)+μ(ℓ), |
for all s1,s2,s3,s4∈Λ and ℓ∈Q. Based on condition (a1), we have
μ(4j)=(μ(4))j, |
and
Ξ(4js1,4js2,4js3,4js4,ℓ)≤(μ(4))j[μ(‖s1‖+‖s2‖+‖s3‖+‖s4‖)]+μ(ℓ). |
Using Theorem 3.1, we obtain (3.7).
Corollary 3.2. Assume that ⅁:([0,∞))4→[0,∞) is a homogeneous function with degree q and Ω:Λ→Q is a mapping satisfying Ω(0)=0 and
‖RΩ(s1,s2,s3,s4),ℓ‖≤⅁(‖s1‖,‖s2‖,‖s3‖,‖s4‖)‖ℓ‖, |
for all s1,s2,s3,s4∈Λ and ℓ∈Q. Then there is a unique AM V:Λ→Q fulfilling
‖Ω(s1)−V(s1),ℓ‖≤⅁(‖s1‖,‖s1‖,‖s1‖,‖s1‖)‖ℓ‖4−4p, |
for all s1∈Λ and all ℓ∈Q, where p∈R+ with p<1.
Corollary 3.3. Let c∈R+ with c<1 and ⅁:([0,∞))4→[0,∞) be a homogeneous function with degree a. Assume that Ω:Λ→Q is a mapping satisfying Ω(0)=0 and
‖RΩ(s1,s2,s3,s4),ℓ‖≤⅁(‖s1‖,‖s2‖,‖s3‖,‖s4‖)+‖ℓ‖, |
for all s1,s2,s3,s4∈Λ and ℓ∈Q. Then there is a unique AM V:Λ→Q fulfilling
‖Ω(s1)−V(s1),ℓ‖≤⅁(‖s1‖,‖s1‖,‖s1‖,‖s1‖)+‖ℓ‖4−c, |
for all s1∈Λ and all ℓ∈Q.
Corollary 3.4. Assume that a mapping Ω:Λ→Q satisfies Ω(0)=0 and
‖RΩ(s1,s2,s3,s4),ℓ‖≤‖s1‖b+‖s2‖b+‖s3‖b+‖s4‖b+‖ℓ‖, |
for all s1,s2,s3,s4∈Λ and ℓ∈Q. Then there is a unique AM V:Λ→Q fulfilling
‖Ω(s1)−V(s1),ℓ‖≤2‖s1‖b+‖ℓ‖4−b, |
for all s1∈Λ and all ℓ∈Q, where b∈R+ with b<1.
In this part, we assume that the mapping Ω:Λ→Q is described as
RΩ(s1,s2)=Ω(3s1+s2)+Ω(3s1−s2)+16Ω(s2)−144Ω(s1)−9Ω(s1+s2)−9Ω(s1−s2), |
for all s1,s2∈Λ.
Theorem 3.2. Assume that Ξ:Λ4×Q→[0,∞) is a function such that
limj→∞134jΞ(3js1,3js1,ℓ)=0, | (3.8) |
for all s1,s2∈Λ and ℓ∈Q. If there exists Ω:Λ→Q with Ω(0)=0 such that
‖RΩ(s1,s2),ℓ‖≤2Ξ(s1,s2,ℓ), | (3.9) |
and
ˆΞ(s1,ℓ)=13∞∑j=1134jE(3js1,0,ℓ)<∞, |
for all s1∈Λ and ℓ∈Q, then there exists a unique QM V4:Λ→Q fulfilling
‖Ω(s1)−V4(s1),ℓ‖≤ˆΞ(s1,ℓ) for all s1∈Λ and all ℓ∈Q. | (3.10) |
Proof. Consider s2=0 in (3.9). We have
‖2Ω(3s1)−2×34Ω(s1),ℓ‖≤2Ξ(s1,0,ℓ), |
which implies that
‖Ω(3s1)34−Ω(s1),ℓ‖≤134Ξ(s1,0,ℓ), | (3.11) |
for all s1∈Λ and ℓ∈Q. In (3.11), replace s1 with 3js1, to get
‖134(j+1)Ω(3j+1s1)−134jΩ(3js1),ℓ‖≤134(j+1)Ξ(s1,0,ℓ), |
for all s1∈Λ, ℓ∈Q and all integer j>0. Hence,
‖134(j+1)Ω(3j+1s1)−134mΩ(3ms1),ℓ‖≤j∑r=m‖134(r+1)Ω(3r+1s1)−134rΩ(3rs1),ℓ‖≤13j∑r=m134rE(3js1,0,ℓ), | (3.12) |
for all s1∈Λ, ℓ∈Q and all integers j≥m>0. Therefore, from (3.9) and (3.12), the sequence {Ω(3js1)34j} is a Cauchy sequence in Q. The completeness of Q implies that the sequence {Ω(3js1)3j} converges in Q for all s1∈Λ. Therefore, we can describe the mapping V4:Λ→Q as
V(s1)=limj→∞Ω(3js1)3j for all s1∈Λ. | (3.13) |
Hence,
limj→∞‖Ω(3js1)3j−V4(s1),ℓ‖=0 for all s1∈Λ and ℓ∈Q. |
Letting m=0 and j→∞ in (3.12), we have (3.10).
Now, we shall show that V4 is a QM. Using (3.8), (3.9), (3.13) and Lemma 1.2, one can write
‖RΩ(s1,s2),ℓ‖=limj→∞‖RΩ(3js1,3js1),ℓ‖≤limj→∞134jE(3js1,3js2,ℓ)=0, |
for all s1∈Λ, ℓ∈Q. By Lemma 1.1, we get
‖RV4(s1,s2,s3,s4),ℓ‖=0. |
Thus, V is a QM. For the uniqueness, consider another QM V′4:Λ→Q fulfilling (3.10). Then
‖V4(s1)−V′4(s1),ℓ‖=limj→∞134j‖V4(3js1)−Ω(3js1)+Ω(3js1)−V′4(3js1),ℓ‖≤limj→∞134jˆΞ(3js1,ℓ)=0 for all s1∈Λ and all ℓ∈Q. |
Based on Lemma 1.1, we have V4(s1)−V′4(s1)=0 for all s1∈Λ, which implies that V4=V′4 and this completes the proof.
Corollary 3.5. Let μ:[0,∞)→[0,∞) be a given function with μ(0)=0 and
(i) μ(ϰω)≤μ(ϰ)μ(ω),
(ii) for all ϰ>1, μ(ϰ)<ϰ.
If there exists a mapping Ω:Λ→Qϱ with Ω(0)=0 and
‖RΩ(s1,s2),ℓ‖≤μ(‖s1‖+‖s2‖)+μ(ℓ), |
for all s1,s2∈Λ and ℓ∈Q, then there exists a unique QM V4:Λ→Q fulfilling
‖Ω(s1)−V4(s1),ℓ‖≤(μ(‖s1‖)3−μ(3)+μ(ℓ)), for all s1∈Λ and all ℓ∈Q. | (3.14) |
Proof. Assume that
Ξ(s1,s2,ℓ)=μ(‖s1‖+‖s2‖)+μ(ℓ), |
for all s1,s2∈Λ and ℓ∈Q. From the condition (i), we get
μ(3j)=(μ(3))j, |
and
Ξ(3js1,3js2,ℓ)≤(μ(3))j[μ(‖s1‖+‖s2‖)]+μ(ℓ). |
By utilizing Theorem 3.1, we obtain (3.14).
Corollary 3.6. Assume that ⅁:([0,∞))2→[0,∞) is a homogeneous function with degree q and Ω:Λ→Q is a mapping satisfying Ω(0)=0 and
‖RΩ(s1,s2),ℓ‖≤⅁(‖s1‖,‖s2‖)‖ℓ‖, |
for all s1,s2∈Λ and ℓ∈Q. Then there exists a unique QM V4:Λ→Q fulfilling
‖Ω(s1)−V4(s1),ℓ‖≤⅁(‖s1‖,‖s1‖)‖ℓ‖3−3p, |
for all s1∈Λ and all ℓ∈Q, where p∈R+ with p<1.
Corollary 3.7. Let c∈R+ with c<1 and ⅁:([0,∞))4→[0,∞) be a homogeneous function with degree a. Assume that Ω:Λ→Q is a mapping satisfying Ω(0)=0 and
‖RΩ(s1,s2),ℓ‖≤⅁(‖s1‖,‖s2‖)+‖ℓ‖, |
for all s1,s2∈Λ and ℓ∈Q. Then there exists a unique AM V4:Λ→Q fulfilling
‖Ω(s1)−V4(s1),ℓ‖≤⅁(‖s1‖,‖s1‖)+‖ℓ‖3−c, |
for all s1∈Λ and all ℓ∈Q.
Proof. We obtain the proof immediately, if we take in Theorem 3.2,
Ξ(s1,s2,ℓ)=⅁(‖s1‖+‖s2‖)+⅁(ℓ), |
for all s1,s2∈Λ and ℓ∈Q.
Corollary 3.8. Assume that a mapping Ω:Λ→Q satisfies Ω(0)=0 and
‖RΩ(s1,s2),ℓ‖≤‖s1‖b+‖s2‖b+‖ℓ‖, |
for all s1,s2∈Λ and ℓ∈Q. Then there exists a unique AM V:Λ→Q fulfilling
‖Ω(s1)−V4(s1),ℓ‖≤2‖s1‖b+‖ℓ‖3−b, |
for all s1∈Λ and all ℓ∈Q, where b∈R+ with b<1.
By the same methods used in sections 3.1 and 3.2, we can obtain the refined stability of the sextic functional equation by defining a mapping Ω:Λ→Q as
RΩ(s1,s2)=Ω(s1+3s2)−6Ω(s1+2s2)+15Ω(s1+s2)−20Ω(s1)+15Ω(s1−s2)−6Ω(s1−2s2)+Ω(s1−3s2)−720Ω(s2), |
for all s1,s2∈Λ, where Λ is a linear normed spaces and Q is a 2-BS.
With the aid of a pertinent example, it is demonstrated that the functional equations (2.1) and (2.15) are unstable in the singular condition. To Gajda's outstanding example in [30], which demonstrates the instability in Corollaries 2 and 3 of equations (2.1) and (2.15), respectively, we propose the following examples as counter-examples via the assumptions p≠1 and p≠log3u43, respectively.
Here, R stands for a real space, Z and Q refer to the sets of integer ad rational numbers. Our counter-examples can be demonstrated as in [31,32].
Remark 4.1. If a mapping Ω:R→Λ fulfills the functional equation (2.1), then the following assertions are true:
(R1) For all s1∈R, z∈Z and m∈Q, Ω(mzs1)=mzΩ(s1);
(R2) For all s1∈R, if the mapping Ω is continuous, then Ω(s1)=s1Ω(1).
Example 4.1. Assume that Ω:R→R is a function described as
Ω(s1)=∞∑j=0ϖ(4js1)4j, |
where
ϖ(s1)={δs1,if s1∈(−1,1),δ,otherwise. |
If we define a function Ω:R→R as in (2.1) such that
|ΔΩ(s1,s2,s3,s4)|≤8δ(|s1|+|s2|+|s3|+|s4|), |
for all s1,s2,s3,s4∈R, then we cannot found an AM W:R→R which satisfies
|Ω(s1)−W(s1)|≤ϰ|s1|, |
for all s1∈R, where ξ and ϰ are constants.
Remark 4.2. If a mapping Ω:R→Λ fulfills the functional equation (2.15), then the following hypotheses hold:
(R1) For all s1∈R, z∈Z and m∈Q, Ω(mz3s1)=mzΩ(s1);
(R2) For all s1∈R, if a mapping Ω is continuous, then Ω(s1)=s31Ω(1).
Example 4.2. Assume that Ω:R→R is a function described as
Ω(s1)=∞∑j=0ϖ(3js1)34j, |
where
ϖ(s1)={δs31,if s1∈(−1,1),δ,otherwise. |
If we define a function Ω:R→R as in (2.15) such that
|ΔΩ(s1,s2)|≤234δ(|s1|3+|s2|3), |
for all s1,s2∈R, then we cannot found a QM W:R→R which satisfies
|Ω(s1)−W(s1)|≤ϰ|s1|3, |
for all s1∈R, where ξ and ϰ are constants.
The concept of stability of a functional equation arises if we replace this functional equation by an inequality acting as a perturbation on the equation itself. Stability of the functional equation has been become an interesting subject over the last seventy years. Several results appeared in this direction. In our work, the direct method of Hyers has been utilized to study the refined stability of the additive, quartic, and sextic functional equations in modular spaces with and without the Δ2-condition. Moreover, we used the direct approach to investigate the Ulam stability in 2-Banach spaces. At the end, some counter examples have been presented in order to ensure that the stability of these equations does not hold in a particular case. As future works, we look forward to study the stability of generalized additive, generalized quartic and generalized sextic functional equations. We will also study the effect of the multivalued mappings of these equations on D-metric spaces and generalized metric spaces.
This work was supported in part by the Basque Government under Grant IT1555-22.
The authors declare that they have no competing interests.
[1] | S. M. Ulam, A collection of mathematical problems, New York: Interscience, 1960. |
[2] |
D. H. Hyers, On the stability of the linear functional equation, Proc. N. A. S., 27 (1941), 222–224. https://doi.org/10.1073/pnas.27.4.222 doi: 10.1073/pnas.27.4.222
![]() |
[3] |
T. Aoki, On the stability of the linear transformation in Banach spaces, J. Math. Soc. Japan, 2 (1950), 64–66. https://doi.org/10.2969/jmsj/00210064 doi: 10.2969/jmsj/00210064
![]() |
[4] | T. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc., 72 (1978), 297–300. |
[5] |
P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately additive mappings, J. Math. Anal. Appl., 184 (1994), 431–436. https://doi.org/10.1006/jmaa.1994.1211 doi: 10.1006/jmaa.1994.1211
![]() |
[6] |
A. Charifi, R. Lukasik, D. Zeglami, A special class of functional equations, Math. Slovaca, 68 (2018), 397–404. https://doi.org/10.1515/ms-2017-0110 doi: 10.1515/ms-2017-0110
![]() |
[7] |
H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, S. Noeiaghdam, Stability analysis for a tripled system of fractional pantograph differential equations with nonlocal conditions, J. Vib. Control, 2023. https://doi.org/10.1177/10775463221149232 doi: 10.1177/10775463221149232
![]() |
[8] |
H. A. Hammad, H. Aydi, H. Isik, M. De la Sen, Existence and stability results for a coupled system of impulsive fractional differential equations with Hadamard fractional derivatives, AIMS Math., 8 (2023), 6913–6941. https://doi.org/10.3934/math.2023350 doi: 10.3934/math.2023350
![]() |
[9] |
H. A. Hammad, R. A. Rashwan, A. Nafea, M. E. Samei, M. De la Sen, Stability and existence of solutions for a tripled problem of fractional hybrid delay differential equations, Symmetry, 14 (2022), 2579. https://doi.org/10.3390/sym14122579 doi: 10.3390/sym14122579
![]() |
[10] |
H. A. Hammad, M. Zayed, Solving a system of differential equations with infinite delay by using tripled fixed point techniques on graphs, Symmetry, 14 (2022), 1388. https://doi.org/10.3390/sym14071388 doi: 10.3390/sym14071388
![]() |
[11] |
H. A. Hammad, P. Agarwal, S. Momani, F. Alsharari, Solving a fractional-order differential equation using rational symmetric contraction mappings, Fractal Fract., 5 (2021), 159. https://doi.org/10.3390/fractalfract5040159 doi: 10.3390/fractalfract5040159
![]() |
[12] |
R. A. Rashwan, H. A. Hammad, M. G. Mahmoud, Common fixed point results for weakly compatible mappings under implicit relations in complex valued G-metric spaces, Inform. Sci. Lett., 8 (2019), 111–119. https://doi.org/10.18576/isl/080305 doi: 10.18576/isl/080305
![]() |
[13] |
H. A. Hammad, M. De la Sen, Fixed-point results for a generalized almost (s,q)-Jaggi F-contraction-type on b-metric-like spaces, Mathematics, 8 (2020), 63. https://doi.org/10.3390/math8010063 doi: 10.3390/math8010063
![]() |
[14] | H. Nakano, Modulared semi-ordered linear spaces, Tokyo: Maruzen Company, Ltd., 1950. |
[15] | W. A. J. Luxemburg, Banach function spaces, Ph.D. Thesis, Delft, the Netherlands: Technische Hogeschool Delft, 1955. |
[16] |
I. Amemiya, On the representation of complemented modular lattices, J. Math. Soc. Japan, 9 (1957), 263–279. https://doi.org/10.2969/jmsj/00920263 doi: 10.2969/jmsj/00920263
![]() |
[17] | J. Musielak, Orlicz spaces and nodular spaces, Berlin, Heidelberg: Springer, 1983. |
[18] | S. Koshi, T. Shimogaki, On F-norms of quasi-modular spaces, J. Fac. Sci. Hokkaido Univ. Ser. 1 Math., 15 (1961), 202–218. |
[19] |
B. Mazur, Modular curves and the Eisenstein ideal, Publ. Math. l'IHÉS, 47 (1977), 33–186. https://doi.org/10.1007/BF02684339 doi: 10.1007/BF02684339
![]() |
[20] | P. Turpin, Fubini inequalities and bounded multiplier property in generalized modular spaces, Comment. Math., 1 (1978), 331–353. |
[21] | W. Orlicz, Collected papers. Part I, II, Warsaw, Poland: PWN-Polish Scientific Publishers, 1988. |
[22] | L. Maligranda, Orlicz spaces and interpolation, Campinas: Universidade Estadual de Campinas, 1989. |
[23] |
M. A. Khamsi, Quasicontraction mappings in modular spaces without Δ2-condition, Fixed Point Theory Appl., 2008 (2008), 916187. https://doi.org/10.1155/2008/916187 doi: 10.1155/2008/916187
![]() |
[24] | G. Sadeghi, A fixed point approach to stability of functional equations in modular spaces, Bull. Malays. Math. Sci. Soc., 37 (2014), 333–344. |
[25] |
H. M. Kim, H. Y. Shin, Refined stability of additive and quadratic functional equations in modular spaces, J. Inequal. Appl., 2017 (2017), 146. https://doi.org/10.1186/s13660-017-1422-z doi: 10.1186/s13660-017-1422-z
![]() |
[26] |
S. Gähler, 2-metrische Räume und ihre topologische struktur, Math. Nachr., 26 (1963), 115–148. https://doi.org/10.1002/mana.19630260109 doi: 10.1002/mana.19630260109
![]() |
[27] |
W. G. Park, Approximate additive mappings in 2-Banach spaces and related topics, J. Math. Anal. Appl., 376 (2011), 193–202. https://doi.org/10.1016/j.jmaa.2010.10.004 doi: 10.1016/j.jmaa.2010.10.004
![]() |
[28] |
K. Wongkum, P. Chaipunya, P. Kumam, On the generalized Ulam-Hyers-Rassias stability of quadratic mappings in modular spaces without Δ2-conditions, J. Funct. Spaces, 2015 (2015), 461719. https://doi.org/10.1155/2015/461719 doi: 10.1155/2015/461719
![]() |
[29] | H. M. Kim, I. S. Chang, E. Son, Stability of Cauchy additive functional equation in fuzzy Banach spaces, Math. Inequal. Appl., 16 (2013), 1123–1136. |
[30] | Z. Gajda, On stability of additive mappings, Int. J. Math. Math. Sci., 14 (1991), 431–434. |
[31] |
N. Uthirasamy, K. Tamilvanan, H. K. Nashine, R. George, Solution and stability of quartic functional equations in modular spaces by using Fatou property, J. Funct. Spaces, 2022 (2022), 5965628. https://doi.org/10.1155/2022/5965628 doi: 10.1155/2022/5965628
![]() |
[32] |
S. A. Mohiuddine, K. Tamilvanan, M. Mursaleen, T. Alotaibi, Stability of quartic functional equation in modular spaces via Hyers and fixed-point methods, Mathematics, 10 (2022), 1938. https://doi.org/10.3390/math10111938 doi: 10.3390/math10111938
![]() |