In this paper, using positive symmetric functions, we offer two new important identities of fractional integral form for convex and harmonically convex functions. We then prove new variants of the Hermite-Hadamard-Fejér type inequalities for convex as well as harmonically convex functions via fractional integrals involving an exponential kernel. Moreover, we also present improved versions of midpoint type Hermite-Hadamard inequality. Graphical representations are given to validate the accuracy of the main results. Finally, applications associated with matrices, q-digamma functions and modifed Bessel functions are also discussed.
Citation: Thongchai Botmart, Soubhagya Kumar Sahoo, Bibhakar Kodamasingh, Muhammad Amer Latif, Fahd Jarad, Artion Kashuri. Certain midpoint-type Fejér and Hermite-Hadamard inclusions involving fractional integrals with an exponential function in kernel[J]. AIMS Mathematics, 2023, 8(3): 5616-5638. doi: 10.3934/math.2023283
In this paper, using positive symmetric functions, we offer two new important identities of fractional integral form for convex and harmonically convex functions. We then prove new variants of the Hermite-Hadamard-Fejér type inequalities for convex as well as harmonically convex functions via fractional integrals involving an exponential kernel. Moreover, we also present improved versions of midpoint type Hermite-Hadamard inequality. Graphical representations are given to validate the accuracy of the main results. Finally, applications associated with matrices, q-digamma functions and modifed Bessel functions are also discussed.
[1] | J. Hadamard, Étude sur les propriétés des fonctions entiéres en particulier d'une fonction considérée par Riemann, J. Math. Pures Appl., 58 (1893), 171–215. |
[2] | S. S. Dragomir, R. P. Agarwal, Two inequalities for diferentiable mappings and applications to special means fo real numbers and to trapezoidal formula, Appl. Math. Lett., 11 (1998), 91–95. https://doi.org/10.1016/S0893-9659(98)00086-X doi: 10.1016/S0893-9659(98)00086-X |
[3] | U. S. Kirmaci, M. E. Özdemir, On some inequalities for differentiable mappings and applications to special means of real numbers and to midpoint formula, Appl. Math. Comput., 153 (2004), 361–368. https://doi.org/10.1016/S0096-3003(02)00657-4 doi: 10.1016/S0096-3003(02)00657-4 |
[4] | M. Alomari, M. Darus, U. S. Kirmaci, Refinements of Hadamard-type inequalities for quasi-convex functions with applications to trapezoidal formula and to special means, Comput. Math. Appl., 59 (2010), 225–232. https://doi.org/10.1016/j.camwa.2009.08.002 doi: 10.1016/j.camwa.2009.08.002 |
[5] | B. Y. Xi, F. Qi, Some integral inequalities of Hermite-Hadamard type for convex functions with applications to means, J. Funct. Space., 2012 (2012), 1–14. https://doi.org/10.1155/2012/980438 doi: 10.1155/2012/980438 |
[6] | M. E. Özdemir, M. Avci, E. Set, On some inequalities of Hermite-Hadamard type via $m$-convexity, Appl. Math. Lett., 23 (2010), 1065–1070. https://doi.org/10.1016/j.aml.2010.04.037 doi: 10.1016/j.aml.2010.04.037 |
[7] | H. Ahmad, M. Tariq, S. K. Sahoo, J. Baili, C. Cesarano, New estimations of Hermite-Hadamard type integral inequalities for special functions, Fractal Fract., 5 (2021), 144. https://doi.org/10.3390/fractalfract5040144 doi: 10.3390/fractalfract5040144 |
[8] | S. K. Sahoo, M. Tariq, H. Ahmad, B. Kodamasingh, A. A. Shaikh, T. Botmart, et al., Some novel fractional integral inequalities over a new class of generalized convex function, Fractal Fract., 6 (2022). https://doi.org/10.3390/fractalfract6010042 |
[9] | Í. Íşcan, Hermite-Hadamard type inequalities for harmonically convex functions, Hacet. J. Math. Stat., 43 (2013), 935–942. |
[10] | M. Z. Sarikaya, E. Set, H. Yaldiz, N. Başak, Hermite-Hadamard inequalities for fractional integrals and related fractional inequalities, Math. Comput. Model., 57 (2013), 2403–2407. https://doi.org/10.1016/j.mcm.2011.12.048 doi: 10.1016/j.mcm.2011.12.048 |
[11] | K. Liu, J. Wang, D. O'Regan On the Hermite-Hadamard type inequality for $\psi$-Riemann-Liouville fractional integrals via convex functions, J. Inequal. Appl., 2019 (2019), 1–10. https://doi.org/10.1186/s13660-019-1982-1 doi: 10.1186/s13660-019-1982-1 |
[12] | İ. Mumcu, E. Set, A. O. Akdemir, F. Jarad, New extensions of Hermite-Hadamard inequalities via generalized proportional fractional integral, Numer. Meth. Part. D. E., 2021. https://doi.org/10.1002/num.22767 |
[13] | T. Aljaaidi, D. B. Pachpatte, T. Abdeljawad, M. S. Abdo, M. A. Almalahi, S. S. Redhwan, Generalized proportional fractional integral Hermite-Hadamard's inequalities, Adv. Differ. Equ., 2021 (2021), 1–9. https://doi.org/10.1186/s13662-021-03651-y doi: 10.1186/s13662-021-03651-y |
[14] | S. K. Sahoo, H. Ahmad, M. Tariq, B. Kodamasingh, H. Aydi, M. De la Sen, Hermite-Hadamard type inequalities involving $k$-fractional operator for $(\overline{h}, m)$-convex functions, Symmetry, 13 (2021). https://doi.org/10.3390/sym13091686 |
[15] | M. Gürbüz, A. O. Akdemir, S. Rashid, E. Set, Hermite-Hadamard inequality for fractional integrals of Caputo-Fabrizio type and related inequalities, J. Inequal. Appl., 2020 (2020), 1–10. https://doi.org/10.1186/s13660-020-02438-1 doi: 10.1186/s13660-020-02438-1 |
[16] | S. K. Sahoo, P. O. Mohammed, B. Kodamasingh, M. Tariq, Y. S. Hamed, New fractional integral inequalities for convex functions pertaining to Caputo-Fabrizio operator, Fractal Fract., 6 (2022), 171. https://doi.org/10.3390/fractalfract6030171 doi: 10.3390/fractalfract6030171 |
[17] | A. Fernandez, P. O. Mohammed, Hermite-Hadamard inequalities in fractional calculus defined using Mittag-Leffler kernels, Math. Meth. Appl. Sci., 44 (2021), 8414–8431. https://doi.org/10.1002/mma.6188 doi: 10.1002/mma.6188 |
[18] | I. Ullah, S. Ahmad, Q. Al-Mdallal, Z. A. Khan, H. Khan, A. Khan, Stability analysis of a dynamical model of tuberculosis with incomplete treatment, Adv. Differ. Equ., 2020 (2020). https://doi.org/10.1186/s13662-020-02950-0 |
[19] | K. Khan, R. Zarin, A. Khan, A. Yusuf, M. Al-Shomrani, A. Ullah, Stability analysis of five-grade Leishmania epidemic model with harmonic mean-type incidence rate, Adv. Differ. Equ., 2021 (2021), 1–27. https://doi.org/10.1186/s13662-021-03249-4 doi: 10.1186/s13662-021-03249-4 |
[20] | Z. A. Khan, A. Khan, T. Abdeljawad, H. Khan, H. Computational analysis of fractional order imperfect testing infection disease model, Fractals, 2022 (2022). https://doi.org/10.1142/S0218348X22401697 |
[21] | K. Shah, Z. A. Khan, A. Ali, R. Amin, H. Khan, A. Khan, Haar wavelet collocation approach for the solution of fractional order COVID-19 model using Caputo derivative, Alex. Eng. J., 59 (2020), 3221–3231. https://doi.org/10.1016/j.aej.2020.08.028 doi: 10.1016/j.aej.2020.08.028 |
[22] | A. Khan, H. M. Alshehri, T. Abdeljawad, Q. M. Al-Mdallal, H. Khan, Stability analysis of fractional nabla difference COVID-19 model, Results Phys., 22 (2021), 103888. https://doi.org/10.1016/j.rinp.2021.103888 doi: 10.1016/j.rinp.2021.103888 |
[23] | H. Khan, C. Tunc, A. Khan, Green function's properties and existence theorems for nonlinear singular-delay-fractional differential equations, Discrete Cont. Dyn. Syst. Ser.-S, 13 (2020), 2475. https://doi.org/10.3934/dcdss.2020139 doi: 10.3934/dcdss.2020139 |
[24] | A. Alkhazzan, P. Jiang, D. Baleanu, H. Khan, A. Khan, Stability and existence results for a class of nonlinear fractional differential equations with singularity, Math. Meth. Appl. Sci., 41 (2018), 9321–9334. https://doi.org/10.1002/mma.5263 doi: 10.1002/mma.5263 |
[25] | A. Khan, Z. A. Khan, T. Abdeljawad, H. Khan, Analytical analysis of fractional-order sequential hybrid system with numerical application, Adv. Cont. Discr. Mod., 2022 (2022), 1–19. https://doi.org/10.1186/s13662-022-03685-w doi: 10.1186/s13662-022-03685-w |
[26] | I. Işcan, Hermite-Hadamard-Fejér type inequalities for convex functions via fractional integrals, Stud. Univ. Babeş-Bol. Sect. A Math., 60 (2015), 355–366. |
[27] | F. Chen, A note on Hermite-Hadamard inequalities for products of convex functions via Riemann-Liouville fractional integrals, Ital. J. Pure Appl. Math., 33 (2014), 299–306. |
[28] | H. Ogulmus, M. Z. Sarikaya, Hermite-Hadamard-Mercer type inequalities for fractional integrals, Filomat, 35 (2021), 2425–2436. https://doi.org/10.2298/FIL2107425O doi: 10.2298/FIL2107425O |
[29] | S. I. Butt, P. Agarwal, S. Yousaf, J. L. Guirao, Generalized fractal Jensen and Jensen-Mercer inequalities for harmonic convex function with applications, J. Inequal. Appl., 2022 (2022), 1–18. https://doi.org/10.1186/s13660-021-02735-3 doi: 10.1186/s13660-021-02735-3 |
[30] | S. K. Sahoo, R. P. Agarwal, P. O. Mohammed, B. Kodamasingh, K. Nonlaopon, K. M. Abualnaja, Hadamard-Mercer, Dragomir-Agarwal-Mercer, and Pachpatte-Mercer type fractional inclusions for convex functions with an exponential kernel and their applications, Symmetry, 14 (2022), 836. https://doi.org/10.3390/sym14040836 doi: 10.3390/sym14040836 |
[31] | S. I. Butt, S. Yousaf, K. A. Khan, R. M. Mabela, A. M. Alsharif, Fejer-Pachpatte-Mercer-type inequalities for harmonically convex functions involving exponential function in kernel, Math. Prob. Eng., 2022 (2022). https://doi.org/10.1155/2022/7269033 |
[32] | M. A. Latif, H. Kalsoom, Z. A. Khan, Hermite-Hadamard-Fejér type fractional inequalities relating to a convex harmonic function and a positive symmetric increasing function, AIMS Math., 7 (2022), 4176–4198. https://doi.org/10.3934/math.2022232 doi: 10.3934/math.2022232 |
[33] | P. Xu, S. I. Butt, S. Yousaf, A. Aslam, T. J. Zia, Generalized fractal Jensen-Mercer and Hermite-Mercer type inequalities via h-convex functions involving Mittag-Leffler kernel, Alex. Eng. J., 61 (2022), 4837–4846. https://doi.org/10.1016/j.aej.2021.10.033 doi: 10.1016/j.aej.2021.10.033 |
[34] | S. I. Butt, A. Nosheen, J. Nasir, K. A. Khan, R. M. Mabela, New fractional Mercer-Ostrowski type inequalities with respect to monotone function, Math. Prob. Eng., 2022. https://doi.org/10.1155/2022/7067543 |
[35] | J. Nasir, S. Qaisar, S. I. Butt, H. Aydi, M. De la Sen, Hermite-Hadamard like inequalities for fractional integral operator via convexity and quasi-convexity with their applications, AIMS Math., 7 (2022) 3418–3439. https://doi.org/10.3934/math.2022190 |
[36] | M. Samraiz, Z. Perveen, G. Rahman, M. A. Khan, K. S. Nisar, Hermite-Hadamard fractional inequalities for differentiable functions, Fractal Fract., 6 (2022), 60. https://doi.org/10.3390/fractalfract6020060 doi: 10.3390/fractalfract6020060 |
[37] | M. Z. Sarikaya, H. Yildirim, On Hermite-Hadamard type inequalities for Riemann-Liouville fractional integrals, Miskolc Math. Note., 17 (2016) 1049–1059. https://doi.org/10.18514/MMN.2017.1197 |
[38] | M. Andrić, J. Pečarič, I. Perić, A multiple Opial type inequality for the Riemann-Liouville fractional derivatives, J. Math. Inequal., 7 (2013), 139–150. |
[39] | H. M. Srivastava, S. K. Sahoo, P. O. Mohammed, D. Baleanu, B. Kodamasingh, Hermite-Hadamard type inequalities for interval-valued preinvex functions via fractional integral operators, Int. J. Comput. Intell. Syst., 15 (2022), 1–12. https://doi.org/10.1007/s44196-021-00061-6 doi: 10.1007/s44196-021-00061-6 |
[40] | M. K. Neamah, A. Ibrahim, H. S. Mehdy, S. S. Redhwan, M. S. Abdo, Some new fractional inequalities involving convex functions and generalized fractional integral operator, J. Funct. Space., 2022 (2022). https://doi.org/10.1155/2022/2350193 |
[41] | T. A. Aljaaidi, D. B. Pachpatte, M. S. Abdo, T. Botmart, H. Ahmad, M. A. Almalahi, et al., $(k, \Psi)$-proportional fractional integral Pólya-Szegö and Grüss-type inequalities, Fractal Fract., 5 (2021), 172. https://doi.org/10.3390/fractalfract5040172 doi: 10.3390/fractalfract5040172 |
[42] | C. P. Niculescu, L. E. Persson, Convex functions and their applications, Springer, New York, USA, 2006. |
[43] | I. G. Macdonald, Symmetric functions and orthogonal polynomials, American Mathematical Society, New York, NY, USA, 1997. |
[44] | L. Fejér, Uber die Fourierreihen, II, J. Math. Naturwiss Anz. Ungar. Akad. Wiss Hung, 24 (1906), 369–390. |
[45] | M. A. Latif, S. S. Dragomir, E. Momoniat, Some Fejér type inequalities for harmonically-convex functions with applications to special means, 13 (2020), 2475–2487. https://doi.org/10.3934/dcdss.2020139 |
[46] | F. Chen, S. Wu, Fejér and Hermite-Hadamard type inequalities for harmonically convex functions, J. Appl. Math., 2014 (2014). https://doi.org/10.1155/2014/386806 |
[47] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, North-Holland Mathematical Studies, Elsevier (North-Holland) Science Publishers, Amsterdam, London and New York, 2006. |
[48] | H. M. Srivastava, An introductory overview of fractional-calculus operators based upon the Fox-Wright and related higher transcendental functions, J. Adv. Eng. Comput., 5 (2021), 135–166. http://dx.doi.org/10.55579/jaec.202153.340 doi: 10.55579/jaec.202153.340 |
[49] | B. Ahmad, A. Alsaedi, M. Kirane, B. T. Torebek, Hermite-Hadamard, Hermite-Hadamard-Fejér, Dragomir-Agarwal and Pachpatte type inequalities for convex functions via new fractional integrals, Comput. Appl. Math., 353 (2019), 120–129. https://doi.org/10.1016/j.cam.2018.12.030 doi: 10.1016/j.cam.2018.12.030 |
[50] | E. Awad, On the time-fractional Cattaneo equation of distributed order, Physica A, 518 (2019), 210–233. |
[51] | M. Sababheh, Convex functions and means of matrices, arXiv: 1606.08099v1, 2016. |
[52] | G. N. Watson, A treatise on the theory of Bessel functions, Cambridge University Press: Cambridge, UK, 1995. |
[53] | A. Bhunia, S. Samanta, A study of interval metric and its application in multi-objective optimization with interval objectives, Comput. Ind. Eng., 74 (2014), 169–178. https://doi.org/10.1016/j.cie.2014.05.014 doi: 10.1016/j.cie.2014.05.014 |
[54] | W. Liu, F. Shi, G. Ye, D. Zhao, The properties of harmonically cr-h-convex function and its applications, Mathematics, 10 (2022), 2089. https://doi.org/10.3390/math10122089 doi: 10.3390/math10122089 |