Citation: Nichaphat Patanarapeelert, Thanin Sitthiwiratthame. On nonlocal fractional symmetric Hanh integral boundary value problems for fractional symmetric Hahn integrodifference equation[J]. AIMS Mathematics, 2020, 5(4): 3556-3572. doi: 10.3934/math.2020231
[1] | W. Hahn, Über Orthogonalpolynome, die q-Differenzenlgleichungen genügen, Math. Nachr., 2 (1949), 4-34. doi: 10.1002/mana.19490020103 |
[2] | K. A. Aldwoah, Generalized time scales and associated difference equations, Ph.D. Thesis, Cairo University, 2009. |
[3] | M. H. Annaby, A. E. Hamza, K. A. Aldwoah, Hahn difference operator and associated Jackson-Nörlund integrals, J. Optim. Theory Appl., 154 (2012), 133-153. doi: 10.1007/s10957-012-9987-7 |
[4] | A. B. Malinowska, D. F. M. Torres, The Hahn quantum variational calculus, J. Optim. Theory Appl., 147 (2010), 419-442. doi: 10.1007/s10957-010-9730-1 |
[5] | A. B. Malinowska, D. F. M. Torres, Quantum Variational Calculus. Spinger Briefs in Electrical and Computer Engineering-Control, Automation and Robotics, Springer, Berlin, 2014. |
[6] | A. B. Malinowska, N. Martins, Generalized transversality conditions for the Hahn quantum variational calculus, Optimization, 62 (2013), 323-344. doi: 10.1080/02331934.2011.579967 |
[7] | A. E. Hamza, S. M. Ahmed, Theory of linear Hahn difference equations, J. Adv. Math., 4 (2013), 441-461. |
[8] | A. E. Hamza, S. M. Ahmed, Existence and uniqueness of solutions of Hahn difference equations, Adv. Differ. Equ., 2013 (2013), 1-15. doi: 10.1186/1687-1847-2013-1 |
[9] | A. E. Hamza, S. D. Makharesh, Leibniz' rule and Fubinis theorem associated with Hahn difference operator, J. Adv. Math., 12 (2016), 6335-6345. doi: 10.24297/jam.v12i6.3836 |
[10] | T. Sitthiwirattham, On a nonlocal boundary value problem for nonlinear second-order Hahn difference equation with two different q, ω-derivatives, Adv. Differ. Equ., 2016 (2016), 116. doi: 10.1186/s13662-016-0842-2 |
[11] | U. Sriphanomwan, J. Tariboon, N. Patanarapeelert, et al. Nonlocal boundary value problems for second-order nonlinear Hahn integro-difference equations with integral boundary conditions, Adv. Differ. Equ., 2017 (2017), 170. doi: 10.1186/s13662-017-1228-9 |
[12] | R. S. Costas-Santos, F. Marcellán, Second structure Relation for q-semiclassical polynomials of the Hahn Tableau, J. Math. Anal. Appl., 329 (2007), 206-228. doi: 10.1016/j.jmaa.2006.06.036 |
[13] | K. H. Kwon, D. W. Lee, S. B. Park, et al. Hahn class orthogonal polynomials, Kyungpook Math. J., 38 (1998), 259-281. |
[14] | M. Foupouagnigni, Laguerre-Hahn orthogonal polynomials with respect to the Hahn operator: fourth-order difference equation for the rth associated and the Laguerre-Freud equations recurrence coefficients, Ph.D. Thesis, Université Nationale du Bénin, Bénin, 1998. |
[15] | T. Brikshavana, T. Sitthiwirattham, On fractional Hahn calculus with the delta operators, Adv. Differ. Equ., 2017 (2017), 354. doi: 10.1186/s13662-017-1412-y |
[16] | N. Patanarapeelert, T. Sitthiwirattham, Existence Results for Fractional Hahn Difference and Fractional Hahn Integral Boundary Value Problems, Discrete Dyn. Nat. Soc., 2017 (2017), 1-13. doi: 10.1155/2017/7895186 |
[17] | N. Patanarapeelert, T. Brikshavana, T. Sitthiwirattham, On nonlocal Dirichlet boundary value problem for sequential Caputo fractional Hahn integrodifference equations, Bound. Value Probl., 2018 (2018), 6. |
[18] | N. Patanarapeelert, T. Sitthiwirattham, On Nonlocal Robin Boundary Value Problems for Riemann-Liouville Fractional Hahn Integrodifference Equation, Bound. Value Probl., 2018 (2018), 46. |
[19] | T. Dumrongpokaphan, N. Patanarapeelert, T. Sitthiwirattham, Existence Results of a Coupled System of Caputo Fractional Hahn Difference Equations with Nonlocal Fractional Hahn Integral Boundary Value Conditions, Mathematics, 7 (2019), 15. |
[20] | M. C. Artur, B. Cruz, N. Martins, et al. Hahn's symmetric quantum variational calculus, Numer. Algebra Control Optim., 3 (2013), 77-94. doi: 10.3934/naco.2013.3.77 |
[21] | N. Patanarapeelert, T. Sitthiwirattham, On fractional symmetric Hahn calculus, Mathematics, 7 (2019), 873. doi: 10.3390/math7100873 |
[22] | M. Sun, Y. Jin, C. Hou, Certain fractional q-symmetric integrals and q-symmetric derivatives and their application, Adv. Differ. Equ., 2016 (2016), 222. |
[23] | M. Sun, C. Hou, Fractional q-symmetric calculus on a time scale, Adv. Differ. Equ., 2017 (2017), 166. |
[24] | D. H. Griffel, Applied functional analysis, Ellis Horwood Publishers, Chichester, 1981. |
[25] | D. Guo, V. Lakshmikantham, Nonlinear Problems in Abstract Cone, Academic Press, Orlando, 1988. |