Research article

Chebyshev type inequalities involving extended generalized fractional integral operators

  • Received: 26 November 2019 Accepted: 27 March 2020 Published: 13 April 2020
  • MSC : 26A33, 26D10, 33B20

  • In this paper, mainly by using the extended generalized fractional integral operator that involve a further extension of Mittag-Leffler function in the kernel, we obtain several fractional Chebyshev type integral inequalities. So, results of Dahmani et al. from [4] are generalized. Also, it is point out that new results are obtained for different fractional integral operators with the help of special selection of parameters.

    Citation: Erhan Set, M. Emin Özdemir, Sevdenur Demirbaş. Chebyshev type inequalities involving extended generalized fractional integral operators[J]. AIMS Mathematics, 2020, 5(4): 3573-3583. doi: 10.3934/math.2020232

    Related Papers:

  • In this paper, mainly by using the extended generalized fractional integral operator that involve a further extension of Mittag-Leffler function in the kernel, we obtain several fractional Chebyshev type integral inequalities. So, results of Dahmani et al. from [4] are generalized. Also, it is point out that new results are obtained for different fractional integral operators with the help of special selection of parameters.


    加载中


    [1] M. Andric, G. Farid, J. Pečarić, A further extension of Mittag-Leffler function, Fract. Calc. Appl. Anal., 21 (2018), 1377-1395. doi: 10.1515/fca-2018-0072
    [2] S. Belarbi, Z. Dahmani, On some new fractional integral inequalities, JIPAM, 10 (2009), 1-12.
    [3] Z. Dahmani, About some integral inequalities using Riemann-Liouville integrals, General Mathematics, 20 (2012), 63-69.
    [4] Z. Dahmani, O. Mechouar, S. Brahami, Certain inequalities related to the Chebyshev's functional involving a Riemann-Liouville operator, Bull. Math. Anal. Appl., 3 (2011), 38-44.
    [5] Z. Dahmani, New inequalities in fractional integrals, Int. J. Nonlinear Sci., 9 (2010), 493-497.
    [6] Z. Dahmani, Some results associated with fractional integrals involving the extended Chebyshev functional, Acta Universitatis Apulansis, 27 (2011), 217-224.
    [7] J. Daiya, J. Ram, R. K. Saxena, New fractional integral inequalities associated with Pathway operator, Acta Comment. Univ. Tartu. Math., 19 (2015), 121-126.
    [8] S. M. Kang, G. Farid, W. Nazeer, et al. Hadamard and Fejér-Hadamard inequalities for extended generalized fractional integrals involving special functions, J. Ineq. Appl., 2018 (2018), 119.
    [9] S. M. Kang, G. Farid, W. Nazeer, et al. (h-m)-convex functions and associated fractional Hadamard and Fejér-Hadamard inequalities via an extended generalized Mittag-Leffler function, J. Ineq. Appl., 2019 (2019), 78.
    [10] C. P. Niculescu, I. Roventa, An extention of Chebyshev's algebric inequality, Math. Reports, 15 (2013), 91-95.
    [11] M. E. Özdemir, E. Set, A. O. Akdemir, et al. Some new Chebyshev type inequalities for functions whose derivatives belongs to spaces, Afrika Matematika, 26 (2015), 1609-1619. doi: 10.1007/s13370-014-0312-5
    [12] B. G. Pachpatte, A note on Chebyshev-Grüss type inequalities for diferential functions, Tamsui Oxford Journal of Mathematical Sciences, 22 (2006), 29-36.
    [13] T. R. Prabhakar, A singular integral equation with generalized Mittag-Leffler function in the kernel, Yokohama Math. J., 19 (1971), 7-15.
    [14] S. D. Purohit, S. L. Kalla, Certain inequalities related to the Chebyshev's functional involving Erdelyi-Kober operators, Scientia Mathematical Sciences, 25 (2014), 55-63
    [15] G. Rahman, D. Baleanu, M. A. Qurashi, et al. The extended Mittag-Leffler function via fractional calculus, J. Nonlinear Sci. Appl., 10 (2017), 4244-4253. doi: 10.22436/jnsa.010.08.19
    [16] T. O. Salim, A. W. Faraj, A generalization of Mittag-Leffler function and integral operator associated with fractional calculus, J. Fract. Calc. Appl., 3 (2012), 1-13. doi: 10.1142/9789814355216_0001
    [17] S. G. Samko, A. A. Kilbas, O. I. Marichev, Fractional Integral and Derivatives: Theory and Applications, Gordon and Breach, 1993.
    [18] M. Z. Sarıkaya, N. Aktan, H. Yıldırım, On weighted Chebyshev-Grüss like inequalities on time scales, J. Math. Ineq., 2 (2008), 185-195. doi: 10.7153/jmi-02-17
    [19] M. Z. Sarıkaya, A. Saglam, H. Yıldırım, On generalization of Chebyshev type inequalities, Iranian J. Math. Sci. Inform., 5 (2010), 41-48.
    [20] M. Z. Sarıkaya, M. E. Kiriş, On Ostrowski type inequalities and Chebyshev type inequalities with applications, Filomat, 29 (2015), 123-130. doi: 10.2298/FIL1506307S
    [21] E. Set, M. Z. Sarıkaya, F. Ahmad, A generalization of Chebyshev type inequalities for first differentiable mappings, Miskolc Mathematical Notes, 12 (2011), 245-253. doi: 10.18514/MMN.2011.338
    [22] E. Set, Z. Dahmani and İ. Mumcu, New extensions of Chebyshev type inequalities using generalized Katugampola integrals via Polya-Szegö inequality, An International Journal of Optimization and Control: Theories Applications, 8 (2018), 137-144.
    [23] E. Set, J. Choi, İ. Mumcu, Chebyshev type inequalities involving generalized Katugampola fractional integral operators, Tamkang J. Math., 50 (2019), 381-390. doi: 10.5556/j.tkjm.50.2019.2791
    [24] E. Set, A. O. Akdemir, İ. Mumcu, Chebyshev type inequalities for conformable fractional integrals, Miskolc Mathematical Notes, 20 (2019).
    [25] E. Set, İ. Mumcu, S. Demirbaş, Chebyshev type inequalities involving new conformable fractional integral operators, RACSAM, 113 (2018), 2253-2259. doi: 10.1007/s13398-018-0614-9
    [26] H. M. Srivastava, Z. Tomovski, Fractional calculus with an integral operator containing a generalized Mittag-Leffler function in the kernel, Appl. Math. Comput., 211 (2009), 198-210.
    [27] S. Ullah, G. Farid, K. A. Khan, et al. Generalized fractional inequalities for quasi-convex functions, Adv. Difference Equ., 2019 (2019), 1-16. doi: 10.1186/s13662-018-1939-6
    [28] F. Usta, H. Budak, M. Z. Sarıkaya, On Chebyshev Type Inequalities for Fractional Integral Operators, AIP Conference Proceedings, 1833 (2017), 020045.
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3475) PDF downloads(338) Cited by(12)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog