Let $ \mathfrak{w}^{s}_{2, 2}(s = 0, 1) $ be two classes of weak Hopf algebras corresponding to the Sweedler Hopf algebra, and $ r(\mathfrak{w}^{s}_{2, 2}) $ be the representation rings of $ \mathfrak{w}^{s}_{2, 2} $. In this paper, we investigate the automorphism groups $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{s}_{2, 2})) $ of $ r(\mathfrak{w}^{s}_{2, 2}) $, and discuss some properties of $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{s}_{2, 2})) $. We obtain that $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{0}_{2, 2})) $ is isomorphic to $ K_4 $, where $ K_4 $ is the Klein four-group. It is shown that $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{1}_{2, 2})) $ is a non-commutative infinite solvable group, but it is not nilpotent. In addition, $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{1}_{2, 2})) $ is isomorphic to $ (\mathbb{Z}\times \mathbb{Z}_{2})\rtimes \mathbb{Z}_{2} $, and its centre is isomorphic to $ \mathbb{Z}_{2} $.
Citation: Dong Su, Shilin Yang. Automorphism groups of representation rings of the weak Sweedler Hopf algebras[J]. AIMS Mathematics, 2022, 7(2): 2318-2330. doi: 10.3934/math.2022131
Let $ \mathfrak{w}^{s}_{2, 2}(s = 0, 1) $ be two classes of weak Hopf algebras corresponding to the Sweedler Hopf algebra, and $ r(\mathfrak{w}^{s}_{2, 2}) $ be the representation rings of $ \mathfrak{w}^{s}_{2, 2} $. In this paper, we investigate the automorphism groups $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{s}_{2, 2})) $ of $ r(\mathfrak{w}^{s}_{2, 2}) $, and discuss some properties of $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{s}_{2, 2})) $. We obtain that $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{0}_{2, 2})) $ is isomorphic to $ K_4 $, where $ K_4 $ is the Klein four-group. It is shown that $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{1}_{2, 2})) $ is a non-commutative infinite solvable group, but it is not nilpotent. In addition, $ {{{\rm{Aut}}}}(r(\mathfrak{w}^{1}_{2, 2})) $ is isomorphic to $ (\mathbb{Z}\times \mathbb{Z}_{2})\rtimes \mathbb{Z}_{2} $, and its centre is isomorphic to $ \mathbb{Z}_{2} $.
[1] | N. Aizawa, P. S. Isaac, Weak Hopf algebras corresponding to $U_{q}(sl_{n})$, J. Math. Phys., 44 (2003), 5250–5267. doi: 10.1063/1.1616999. doi: 10.1063/1.1616999 |
[2] | R. C. Alperin, Homology of the group of automorphisms of $k[x, y]$, J. Pure Appl. Algebra, 15 (1979), 109–115. doi: 10.1016/0022-4049(79)90027-6. doi: 10.1016/0022-4049(79)90027-6 |
[3] | H. Chen, The coalgebra automorphism group of Hopf algebra $k_q[x; x^{-1}; y]$, J. Pure Appl. Algebra, 217 (2013), 1870–1887. doi: 10.1016/j.jpaa.2013.01.013. doi: 10.1016/j.jpaa.2013.01.013 |
[4] | H. Chen, The Green ring of Drinfeld Double $D(H_{4})$, Algebr. Represent. Th., 17 (2014), 1457–1483. doi: 10.1007/s10468-013-9456-5. doi: 10.1007/s10468-013-9456-5 |
[5] | H. Chen, F. V. Oystaeyen, Y. Zhang, The Green rings of Taft algebras, Proc. Amer. Math. Soc., 142 (2014), 765–775. doi: 10.1090/S0002-9939-2013-11823-X. doi: 10.1090/S0002-9939-2013-11823-X |
[6] | H. Chen, W. Wang, The coalgebra automorphisms of a Hopf algebras, http://www.paper.edu.cn (in Chinese). |
[7] | W. Dicks, Automorphisms of the polynomial ring in two variables, Publ. Sec. Mat. Univ. Auton. Barc., 27 (1983), 155–162. doi: 10.5565/PUBLMAT-27183-04. doi: 10.5565/PUBLMAT-27183-04 |
[8] | J. Han, Y. Su, Automorphism groups of Witt algebras, Mathematics. doi: 10.1007/s10587-016-0314-6. |
[9] | T. Hungerford, GTM73 Algebra, New York-Berlin: Springer-Verlag, 1974. |
[10] | T. Jia, R. Zhao, L. Li, Automorphism group of Green ring of Sweedler Hopf algebra, Front. Math. China, 11 (2016), 921–932. doi: 10.1007/s11464-016-0565-4. doi: 10.1007/s11464-016-0565-4 |
[11] | W. van der Kulk, On polynomial rings in two variables, Nieuw Arch Wiskd., 3 (1853), 33–41. doi: 10.1090/S0002-9904-1928-04567-6. doi: 10.1090/S0002-9904-1928-04567-6 |
[12] | L. Li, Y. Zhang, The Green rings of the generalized Taft Hopf algebras, Contemp. Math., 585 (2013), 275–288. doi: 10.1090/conm/585. doi: 10.1090/conm/585 |
[13] | D. E. Radford, On the coradical of a finite-dimensional Hopf algebra, Proc. Amer. Math. soc., 53 (1975), 9–15. doi: 10.1090/s0002-9939-1975-0396652-0. doi: 10.1090/s0002-9939-1975-0396652-0 |
[14] | D. Su, S. Yang, Green rings of weak Hopf algebras based on generalized Taft algebras, Period. Math. Hungar., 76 (2018), 229–242. doi: 10.1007/s10998-017-0221-0. doi: 10.1007/s10998-017-0221-0 |
[15] | D. Su, S. Yang, Representation rings of small quantum groups $\overline{U}_{q}(sl_{2})$, J. Math. phys., 58 (2017). doi: 10.1063/1.4986839. |
[16] | D. Vesselin, J. Yu, Automorphisms of polynomial algebras and Dirichlet series, J. Algebra, 321 (2009), 292–302. doi: 10.1016/j.jalgebra.2008.08.026. doi: 10.1016/j.jalgebra.2008.08.026 |
[17] | J. Yu, Recognizing automorphisms of polynomial algebras, Mat. Contemp., 14 (1998), 215–225. https://www.mat.unb.br/matcont/. |
[18] | K. Zhao, Automorphisms of the binary polynomial algebras on integer rings, Chinese Ann. Math. Ser. A, 4 (1995), 448–494. |