
In this paper, we derive the explicit analytical solution of incommensurate fractional differential equation systems with fractional order 1<α,β<2. The derivation is extended from a recently published paper by Huseynov et al. in [
Citation: Yong Xian Ng, Chang Phang, Jian Rong Loh, Abdulnasir Isah. Analytical solutions of incommensurate fractional differential equation systems with fractional order 1<α,β<2 via bivariate Mittag-Leffler functions[J]. AIMS Mathematics, 2022, 7(2): 2281-2317. doi: 10.3934/math.2022130
[1] | Muhammad Akram, Ghulam Muhammad, Tofigh Allahviranloo, Ghada Ali . New analysis of fuzzy fractional Langevin differential equations in Caputo's derivative sense. AIMS Mathematics, 2022, 7(10): 18467-18496. doi: 10.3934/math.20221016 |
[2] | Khaled M. Saad, Manal Alqhtani . Numerical simulation of the fractal-fractional reaction diffusion equations with general nonlinear. AIMS Mathematics, 2021, 6(4): 3788-3804. doi: 10.3934/math.2021225 |
[3] | Aisha Abdullah Alderremy, Mahmoud Jafari Shah Belaghi, Khaled Mohammed Saad, Tofigh Allahviranloo, Ali Ahmadian, Shaban Aly, Soheil Salahshour . Analytical solutions of $ q $-fractional differential equations with proportional derivative. AIMS Mathematics, 2021, 6(6): 5737-5749. doi: 10.3934/math.2021338 |
[4] | Dan-Ning Xu, Zhi-Ying Li . Mittag-Leffler stabilization of anti-periodic solutions for fractional-order neural networks with time-varying delays. AIMS Mathematics, 2023, 8(1): 1610-1619. doi: 10.3934/math.2023081 |
[5] | Yuehong Zhang, Zhiying Li, Wangdong Jiang, Wei Liu . The stability of anti-periodic solutions for fractional-order inertial BAM neural networks with time-delays. AIMS Mathematics, 2023, 8(3): 6176-6190. doi: 10.3934/math.2023312 |
[6] | Ismail Gad Ameen, Dumitru Baleanu, Hussien Shafei Hussien . Efficient method for solving nonlinear weakly singular kernel fractional integro-differential equations. AIMS Mathematics, 2024, 9(6): 15819-15836. doi: 10.3934/math.2024764 |
[7] | Bahar Acay, Ramazan Ozarslan, Erdal Bas . Fractional physical models based on falling body problem. AIMS Mathematics, 2020, 5(3): 2608-2628. doi: 10.3934/math.2020170 |
[8] | Anumanthappa Ganesh, Swaminathan Deepa, Dumitru Baleanu, Shyam Sundar Santra, Osama Moaaz, Vediyappan Govindan, Rifaqat Ali . Hyers-Ulam-Mittag-Leffler stability of fractional differential equations with two caputo derivative using fractional fourier transform. AIMS Mathematics, 2022, 7(2): 1791-1810. doi: 10.3934/math.2022103 |
[9] | Antonio Di Crescenzo, Alessandra Meoli . On a fractional alternating Poisson process. AIMS Mathematics, 2016, 1(3): 212-224. doi: 10.3934/Math.2016.3.212 |
[10] | Veliappan Vijayaraj, Chokkalingam Ravichandran, Thongchai Botmart, Kottakkaran Sooppy Nisar, Kasthurisamy Jothimani . Existence and data dependence results for neutral fractional order integro-differential equations. AIMS Mathematics, 2023, 8(1): 1055-1071. doi: 10.3934/math.2023052 |
In this paper, we derive the explicit analytical solution of incommensurate fractional differential equation systems with fractional order 1<α,β<2. The derivation is extended from a recently published paper by Huseynov et al. in [
System of fractional differential equations with incommensurate order derivatives have received increasing attention recently as this incommensurate order derivative is better in describing the real phenomena, such as financial system [2,3], circuit simulation [4], eco-epidemiological model[5], HIV model [6] and modeling glucose-insulin regulatory system [7]. In this research direction, many works had been done to study stability analysis [8,9,10,11], synchronization [12] and other rich dynamical behaviour [13,14].
Due to the emerging of cross-discipline research in this incommensurate fractional order system, finding the solution of the incommensurate fractional order system is becoming more and more important. In this case, numerical methods, such as the predictor-corrector scheme [15,16], are always used to obtain the solution for the incommensurate fractional order system. Apart from this, some algorithms are developed to obtain the approximation solution for incommensurate fractional order systems, such as the Adomian decomposition algorithm [17], reduced-order model approximation via genetic algorithm [18]. However, not much research was done to find the analytical solution or exact solution for this incommensurate fractional order system. Until recently, Huseynov et al. in [1] successfully derive the analytical solution for the incommensurate fractional order 0<α,β<1 by converting the system into a corresponding Volterra integral equation. Besides that, Ahmadova et al. [19] found the analytical solution for this incommensurate fractional order system via trivariate Mittag-Leffer functions. However, their proposed methods are only limited to incommensurate fractional order 0<α,β<1. Hence, this motivates us to derive the analytical solution for a higher order of incommensurate fractional order system.
In this paper, we extend the work by Huseynov et al. in [1], which is limited for incommensurate fractional order system for 0<α,β<1. We intend to derive the analytical solution of higher order incommensurate fractional order system. Specifically, for α,β∈(1,2), we consider the incommensurate fractional order system as follows:
CDαx1(t)=a11x1(t)+a12x2(t)+g1(t),CDβx2(t)=a21x1(t)+a22x2(t)+g2(t), | (1.1) |
with initial condition x1(0)=x01, x2(0)=x02, x′1(0)=x11 and x′2(0)=x12. The physical meaning of such an incommensurate fractional order system as well as the advantages of using incommensurate models over the classical one (compare to commensurate models) are shown in [2–14]. The fractional derivatives are defined with Caputo sense and the initial value problems to be solved for x1,x2∈C1[0,∞). Similar to the works in [1], we convert the system in (1.1) to Volterra integral equations and Picard's successive approximations were used to derive the analytical expression of the solution for an incommensurate fractional order system for 1<α,β<2. Similar to [1], we use Picard's successive approximations to solve the Volterra integral equations arise because this method is based on the Banach fixed point theorem. In order to obtain the fixed point of a functional operator, start with an arbitrary function (i.e. the zeroth approximation) and apply the operator repeatedly to obtain a sequence of successive approximations which should converge towards the fixed point. This method has been applied to derive the explicit analytical solution of incommensurate fractional differential equation systems with fractional order 0<α,β<1 [1]. The solution will be simplified via some combinatorial concepts and bivariate Mittag-Leffler function. In short, this paper aims to contribute to analytical method that gives new explicit solutions to a certain class of fractional differential systems. These kind of explicit solutions for solving fractional differential equations or systems have been increasingly investigated by researchers in these research areas, such as in [20,21,22,23,24]. In short, we hope to contribute in obtaining an explicit analytical solution for fractional calculus problems, which is relatively less investigated compared to numerical solution, such as in [25,26,27,28,29,30,31,32].
The rest of this paper is structured as follows. Section 2 is devoted to some preliminaries regarding some important definitions, concepts and notations in fractional calculus and special functions. Section 3 is devoted to presenting the derivation of analytical solutions for the incommensurate fractional order system in higher order. Moreover, some special cases will be discussed in Section 4. Sections 5 and 6 are devoted to presenting some examples and conclusion of this paper, respectively.
In this section, we briefly explain some important definitions, concepts and notations in fractional calculus and special functions, which is important for obtaining the analytical solution for this incommensurate fractional order system.
Definition 1. Let α>0, n=[α]+1 if α∉N, n=α if α∈N and x>0. The left Caputo fractional derivative of a function of order α, denoted by CDαxf(x) is
CDαx f(x)=1Γ(n−α)∫x0f(n)(τ)(x−τ)α−n+1dτ, | (2.1) |
with n−1≤α<n.
For Caputo fractional derivative, we have this important expression:
CDαx xβ=Γ(β+1)Γ(β+1−α)xβ−α,forβ>α. | (2.2) |
Definition 2. For Re(α),Re(β)>0, the classical Mittag-Leffler function (i.e. one parameter) and two-parameter Mittag-Leffler function are defined as
Eα(t)=∞∑k=0tkΓ(αk+1),Eα,β(t)=∞∑k=0tkΓ(αk+β). | (2.3) |
Definition 3. [33] For Re(α),Re(β),Re(γ)>0, the three-parameter version of bivariate Mittag-Leffler function can be defined as:
Eα,β,γ(x,y)=∞∑k=0∞∑l=0(k+l)!xkylΓ(αk+βl+γ)k!l!. | (2.4) |
The convergence of this bivariate Mittag-Leffler function was shown in Section 2, the new bivariate Mittag-Leffler function in [33]. The Mittag-Leffler function is used as the solution of system of fractional differential equations as this Mittag-Leffler function is the generalization of the exponential function, which exponential function is widely used to express the solution of integer order system of differential equations. The Mittag-Leffler function is a series which the terms are up to infinity. Hence, to calculate these Mittag-Leffler functions, ones can refer the numerical algorithm such as in [34,35,36]. With Caputo fractional derivative, we have this important expression for the fractional derivative involving Mittag-Leffler function:
CDαx(Eα(λxα))=λ(Eα(λxα)). | (2.5) |
In this paper, we will use some important integration with was introduced in [1] as follows:
∫t0(t−τ)a−1τb−1dτ=Γ(a)Γ(b)Γ(a+b)ta+b−1,fora>0,b>0. | (2.6) |
∫tu(t−τ)a−1(τ−u)b−1dτ=Γ(a)Γ(b)Γ(a+b)(t−u)a+b−1,fora>0,b>0. | (2.7) |
∫t0∫τ0(t−τ)a−1(τ−u)b−1f(u)dudτ=Γ(a)Γ(b)Γ(a+b)∫t0(t−u)a+b−1f(u)du,fora>0,b>0. | (2.8) |
Remarks: We can also write Γ(a)Γ(b)Γ(a+b)=B(a,b), where B(a,b) is the Beta function.
For the f(τ)=τv, where v>0, using Eq (2.6), we have the following integration involving Mittag-Leffler function.
∫t0(t−τ)aEα,β(λ(t−τ)b)τvdτ=∞∑k=0∫t0λk(t−τ)bk+aτvdτΓ(αk+β)=∞∑k=0λkΓ(bk+a+1)Γ(v+1)tbk+a+v+1Γ(αk+β)Γ(bk+a+v+2). | (2.9) |
If a=β−1 and b=α, from Eq (2.9), we obtain
∫t0(t−τ)β−1τvEα,β(λ(t−τ)α)dτ=Γ(v+1)tβ+vEα,β+v+1(λtα). |
The lower incomplete gamma function is defined for Re(α)>0,Re(z)>0 as follows:
γ(α,z)=∫z0e−ttα−1dt. | (2.10) |
Definition 4. Hypergeometric functions 2F1(a1,a2;b;z) and 1F2(a;b1,b2;z) are defined by the series
2F1(a1,a2;b;z)=∞∑k=0(a1)k(a2)k(b)kzkk!,|z|<1,1F2(a;b1,b2;z)=∞∑k=0(a)k(b1)k(b2)kzkk!, | (2.11) |
where the pochhammer symbol, (a)k=Γ(a+k)Γ(a).
For the sake of simplicity, throughout the writing, we use ∑∞n1,n2,⋯,nk=0 to represent multiple series ∑∞n1=0∑∞n2=0⋯∑∞nk=0.
In order to derive the analytical solutions for the incommensurate fractional differential equation systems with order 1<α,β<2 as in Eq (1.1), basically one can follow the following steps:
Step 1: Write the system in Volterra integral equations of second kind.
Step 2: Perform the Picard's successive approximations.
Step 3: Simplify the solution by using some combinatorial formulae.
Step 4: Verify the solution by using substitution.
Here, we will derive the inhomogeneous case. By setting g1(t)=0 and g2(t), the Eq (1.1) will reduce to the homogeneous case. Similarly, if we take the value of α=β, the incommensurate fractional differential equation systems with fractional order 1<α,β<2 will be reduced to commensurate fractional differential equation systems with fractional order 1 to 2.
Step 1: Write the system in Volterra integral equations of second kind.
Using the result from Theorem 5.15 in [37], we obtain the single fractional differential equation for σ∈(1,2) in Caputo sense as follows:
CDσy(t)=λy(t)+h(t),y(0)=y0,y′(0)=y1. | (3.1) |
We have the following solution:
y(t)=y0Eσ(λtσ)+y1tEσ,2(λtσ)+∫t0(t−τ)σ−1h(τ)Eσ,σ(λ(t−τ)σ)dτ. | (3.2) |
Using Eq (3.2), the Volterra integral equation of second kind for the equation in (1.1) can be written as
x1(t)=x01Eα(a11tα)+x11tEα,2(a11tα)+∫t0(t−τ)α−1[a12x2(τ)+g1(τ)]Eα,α(a11(t−τ)α)dτ,x2(t)=x02Eβ(a22tβ)+x12tEβ,2(a22tβ)+∫t0(t−τ)β−1[a21x1(τ)+g2(τ)]Eβ,β(a22(t−τ)β)dτ. | (3.3) |
Substituting x2(t) into the first equation in (3.3) and x1(t) into the second equation in (3.3), we obtain the following:
![]() |
(3.4) |
Using identity as in Eq (2.6) to Eq (2.8), we obtain
x1(t)=x01Eα(a11tα)+x11tEα,2(a11tα)+a12x02∞∑n1,n2=0an111an222tn1α+n2β+αΓ(n1α+n2β+α+1)+a12x12∞∑n1,n2=0an111an222tn1α+n2β+α+1Γ(n1α+n2β+α+2)+∞∑n1=0an111Γ(n1α+α)∫t0(t−τ)n1α+α−1g1(τ)dτ+a12∞∑n1,n2=0an111an222Γ(n1α+n2β+α+β)∫t0(t−τ)n1α+n2β+α+β−1(a21x1(τ)+g2(τ))dτ. | (3.5) |
By using a similar approach, we obtain the expression for x2(t) as follows:
x2(t)=x02Eβ(a22tβ)+x12tEβ,2(a22tβ)+a21x01∞∑n1,n2=0an122an211tn1β+n2α+βΓ(n1β+n2α+β+1)+a21x11∞∑n1,n2=0an122an211tn1β+n2α+β+1Γ(n1β+n2α+β+2)+a21∞∑n1,n2=0an122an211Γ(n1β+n2α+α+β)∫t0(t−τ)n1β+n2α+α+β−1(a12x2(τ)+g1(τ))dτ+∞∑n1=0an122Γ(n1β+β)∫t0(t−τ)n1β+β−1g2(τ)dτ. | (3.6) |
Step 2: Perform the Picard's successive approximation.
Using Picard's successive approximation, the solution of the Volterra integral equations as in Eqs (3.5) and (3.6) can be obtained via setting
![]() |
(3.7) |
and
![]() |
(3.8) |
For m=1, using the identities (2.6)–(2.8), we have
x1,1(t)=x1,0(t)+a12a21x01∞∑n1,n2,n3=0an1+n311an222t(n1+n3)α+n2β+α+βΓ((n1+n3)α+n2β+α+β+1)+a12a21x11∞∑n1,n2,n3=0an1+n311an222t(n1+n3)α+n2β+α+β+1Γ((n1+n3)α+n2β+α+β+2)+a212a21x02∞∑n1,n2,n3,n4=0an1+n311an2+n422t(n1+n3)α+(n2+n4)β+2α+βΓ((n1+n3)α+(n2+n4)β+2α+β+1)+a212a21x12∞∑n1,n2,n3,n4=0an1+n311an2+n422t(n1+n3)α+(n2+n4)β+2α+β+1Γ((n1+n3)α+(n2+n4)β+2α+β+2)+a12a21∞∑n1,n2,n3=0an1+n311an222∫t0(t−τ)(n1+n3)α+n2β+2α+β−1g1(τ)dτΓ((n1+n3)α+n2β+2α+β)+a212a21∞∑n1,n2,n3,n4=0an1+n311an2+n422∫t0(t−τ)(n1+n3)α+(n2+n4)β+2α+2β−1g2(τ)dτΓ((n1+n3)α+(n2+n4)β+2α+2β). | (3.9) |
Meanwhile, for m=2, we have
![]() |
(3.10) |
In general, after some algebraic manipulation, we obtain
![]() |
(3.11) |
where n1+⋯+n2m+1 and n2+⋯+n2m denote n1+n3+⋯+n2m+1 and n2+n4+⋯+n2m, respectively.
When m→∞, we can rewrite the solution of x1(t) as follows:
![]() |
(3.12) |
Similarly, by symmetry, we have successive approximations for x2(t)=limm→∞x2,m(t) as follows:
![]() |
(3.13) |
Step 3: Simplify the solution by using some combinatorial formulae.
We write j as all the odd-indexed terms together and m as all the even-indexed appear together, i.e. j=n1+n3+⋯+n2k+1, m=n2+n4+⋯+n2k or m=n2+n4+⋯+n2k+2, we obtain,
x1(t)=x01∞∑n1=0an111tn1αΓ(n1α+1)+x01∞∑k=1∞∑j=0∞∑m=0∑n1,n2,⋯,n2k+1:n1+n3+⋯+n2k+1=j,n2+n4+⋯+n2k=mak12ak21aj11am22t(j+k)α+(m+k)βΓ((j+k)α+(m+k)β+1)+x11∞∑n1=0an111tn1α+1Γ(n1α+2)+x11∞∑k=1∞∑j=0∞∑m=0∑n1,n2,⋯,n2k+1:n1+n3+⋯+n2k+1=j,n2+n4+⋯+n2k=mak12ak21aj11am22t(j+k)α+(m+k)β+1Γ((j+k)α+(m+k)β+2)+x02∞∑k=0∞∑j=0∞∑m=0∑n1,n2,⋯,n2k+2:n1+n3+⋯+n2k+1=j,n2+n4+⋯+n2k+2=mak+112ak21aj11am22t(j+k+1)α+(m+k)βΓ((j+k+1)α+(m+k)β+1)+x12∞∑k=0∞∑j=0∞∑m=0∑n1,n2,⋯,n2k+2:n1+n3+⋯+n2k+1=j,n2+n4+⋯+n2k+2=mak+112ak21aj11am22t(j+k+1)α+(m+k)β+1Γ((j+k+1)α+(m+k)β+2)+∞∑n1=0an111∫t0(t−τ)n1α+α−1g1(τ)dτΓ(n1α+α)+∞∑k=1∞∑j=0∞∑m=0∑n1,n2,⋯,n2k+1:n1+n3+⋯+n2k+1=j,n2+n4+⋯+n2k=mak12ak21aj11am22∫t0(t−τ)(j+k+1)α+(m+k)β−1g1(τ)dτΓ((j+k+1)α+(m+k)β)+∞∑k=0∞∑j=0∞∑m=0∑n1,n2,⋯,n2k+2:n1+n3+⋯+n2k+1=j,n2+n4+⋯+n2k+2=mak+112ak21aj11am22∫t0(t−τ)(j+k+1)α+(m+k+1)β−1g2(τ)dτΓ((j+k+1)α+(m+k+1)β). | (3.14) |
Then, we have the simple combinatorial identity as follows for any k, j and m:
∑n1,n2,⋯,n2k+1:n1+n3+⋯+n2k+1=j,n2+n4+⋯+n2k=m(1)=|{(n1,n3,⋯,n2k+1):∑=j}||{n2,n4,⋯,n2k):∑=m}|=(k+j)!k!j!(k+m−1)!(k−1)!m!=(k+jk)(k+m−1k−1) | (3.15) |
∑n1,n2,⋯,n2k+2:n1+n3+⋯+n2k+1=j,n2+n4+⋯+n2k+2=m(1)=|{(n1,n3,⋯,n2k+1):∑=j}||{n2,n4,⋯,n2k+2):∑=m}|=(k+j)!k!j!(k+m)!k!m!=(k+jk)(k+mk) | (3.16) |
Applying Eqs (3.15) and (3.16) to Eq (3.14) yields
x1(t)=x01∞∑n1=0an111tn1αΓ(n1α+1)+x01∞∑k=1∞∑j=0∞∑m=0ak12ak21aj11am22t(j+k)α+(m+k)β(k+jk)(k+m−1k−1)Γ((j+k)α+(m+k)β+1)+x11∞∑n1=0an111tn1α+1Γ(n1α+2)+x11∞∑k=1∞∑j=0∞∑m=0ak12ak21aj11am22t(j+k)α+(m+k)β+1(k+jk)(k+m−1k−1)Γ((j+k)α+(m+k)β+2)+x02∞∑k=0∞∑j=0∞∑m=0ak+112ak21aj11am22t(j+k+1)α+(m+k)β(k+jk)(k+mk)Γ((j+k+1)α+(m+k)β+1)+x12∞∑k=0∞∑j=0∞∑m=0ak+112ak21aj11am22t(j+k+1)α+(m+k)β+1(k+jk)(k+mk)Γ((j+k+1)α+(m+k)β+2)+∞∑n1=0an111∫t0(t−τ)n1α+α−1g1(τ)dτΓ(n1α+α)+∞∑k=1∞∑j=0∞∑m=0ak12ak21aj11am22∫t0(t−τ)(j+k+1)α+(m+k)β−1g1(τ)dτ(k+jk)(k+m−1k−1)Γ((j+k+1)α+(m+k)β)+∞∑k=0∞∑j=0∞∑m=0ak+112ak21aj11am22∫t0(t−τ)(j+k+1)α+(m+k+1)β−1g2(τ)dτ(k+jk)(k+mk)Γ((j+k+1)α+(m+k+1)β). | (3.17) |
By writing some of the terms in Mittag-Leffler function and let all the summations start from 0, we have
x1(t)=x01Eα(a11tα)+x01∞∑k=0∞∑j=0∞∑m=0ak+112ak+121aj11am22t(j+k+1)α+(m+k+1)β(k+j+1k+1)(k+mk)Γ((j+k+1)α+(m+k+1)β+1)+x11tEα,2(a11tα)+x11∞∑k=0∞∑j=0∞∑m=0ak+112ak+121aj11am22t(j+k+1)α+(m+k+1)β+1(k+j+1k+1)(k+mk)Γ((j+k+1)α+(m+k+1)β+2)+x02∞∑k=0∞∑j=0∞∑m=0ak+112ak21aj11am22t(j+k+1)α+(m+k)β(k+jk)(k+mk)Γ((j+k+1)α+(m+k)β+1)+x12∞∑k=0∞∑j=0∞∑m=0ak+112ak21aj11am22t(j+k+1)α+(m+k)β+1(k+jk)(k+mk)Γ((j+k+1)α+(m+k)β+2)+∫t0(t−τ)α−1Eα,α(a11(t−τ)α)g1(τ)dτ+∞∑k=0∞∑j=0∞∑m=0ak+112ak+121aj11am22∫t0(t−τ)(j+k+2)α+(m+k+1)β−1g1(τ)dτ(k+j+1k+1)(k+mk)Γ((j+k+2)α+(m+k+1)β)+∞∑k=0∞∑j=0∞∑m=0ak+112ak21aj11am22∫t0(t−τ)(j+k+1)α+(m+k+1)β−1g2(τ)dτ(k+jk)(k+mk)Γ((j+k+1)α+(m+k+1)β). | (3.18) |
In the same manner, for x2(t), we obtain the following expression
![]() |
(3.19) |
Using (k+j+1k+1)(k+mk)=(k+j+1)!(k+1)!j!(k+m)!k!m! and (k+jk)(k+mk)=(k+j)!k!j!(k+m)!k!m! and assuming p=j+k and q=m+k and a11,a22≠0, we obtain
![]() |
(3.20) |
The above equation can also be rewritten as follows:
x1(t)=x01Eα(a11tα)+x11tEα,2(a11tα)+∫t0(t−τ)α−1Eα,α(a11(t−τ)α)g1(τ)dτ+x01a12a21a22∞∑p=0∞∑q=1ap11aq22tpα+qβ+αΓ(pα+qβ+α+1)min(p,q−1)∑k=0(a12a21a11a22)k(p+1)!(k+1)!(p−k)!(q−1)!k!(q−k−1)!+x11a12a21a22∞∑p=0∞∑q=1ap11aq22tpα+qβ+α+1Γ(pα+qβ+α+2)min(p,q−1)∑k=0(a12a21a11a22)k(p+1)!(k+1)!(p−k)!(q−1)!k!(q−k−1)!+x02a12∞∑p=0∞∑q=0ap11aq22tpα+qβ+αΓ(pα+qβ+α+1)min(p,q)∑k=0(a12a21a11a22)kp!k!(p−k)!q!k!(q−k)!+x12a12∞∑p=0∞∑q=0ap11aq22tpα+qβ+α+1Γ(pα+qβ+α+2)min(p,q)∑k=0(a12a21a11a22)kp!k!(p−k)!q!k!(q−k)!+a12a21a22∞∑p=0∞∑q=1ap11aq22∫t0(t−τ)pα+qβ+2α−1g1(τ)dτΓ(pα+qβ+2α)×min(p,q−1)∑k=0(a12a21a11a22)k(p+1)!(k+1)!(p−k)!(q−1)!k!(q−k−1)!+a12∞∑p=0∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+α+β−1g2(τ)dτΓ(pα+qβ+α+β)×min(p,q)∑k=0(a12a21a11a22)kp!k!(p−k)!q!k!(q−k)!. | (3.21) |
Similarly, by symmetric, we obtain
x2(t)=x02Eβ(a22tβ)+x12tEβ,2(a22tβ)+∫t0(t−τ)β−1Eβ,β(a22(t−τ)β)g2(τ)dτ+x02a12a21a11∞∑p=1∞∑q=0ap11aq22tpα+qβ+βΓ(pα+qβ+β+1)min(p−1,q)∑k=0(a12a21a11a22)k(p−1)!k!(p−k−1)!(q+1)!(k+1)!(q−k)!+x12a12a21a11∞∑p=1∞∑q=0ap11aq22tpα+qβ+β+1Γ(pα+qβ+β+2)min(p−1,q)∑k=0(a12a21a11a22)k(p−1)!k!(p−k−1)!(q+1)!(k+1)!(q−k)!+x01a21∞∑p=0∞∑q=0ap11aq22tpα+qβ+βΓ(pα+qβ+β+1)min(p,q)∑k=0(a12a21a11a22)kp!k!(p−k)!q!k!(q−k)!+x11a21∞∑p=0∞∑q=0ap11aq22tpα+qβ+β+1Γ(pα+qβ+β+2)min(p,q)∑k=0(a12a21a11a22)kp!k!(p−k)!q!k!(q−k)!+a21∞∑p=0∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+α+β−1g1(τ)dτΓ(pα+qβ+α+β)min(p,q)∑k=0(a12a21a11a22)kp!k!(p−k)!q!k!(q−k)!+a12a21a11∞∑p=1∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+2β−1g2(τ)dτΓ(pα+qβ+2β)×min(p−1,q)∑k=0(a12a21a11a22)k(p−1)!k!(p−k−1)!(q+1)!(k+1)!(q−k)!. | (3.22) |
Letting A=a12a21a11a22 with a11,a22≠0, we can simplify the inner series in (3.21) into hypergeometric function expression using the following identities.
min(p,q)∑k=0(a12a21a11a22)kp!k!(p−k)!q!k!(q−k)!=2F1(−p,−q;1;A),min(p,q−1)∑k=0(a12a21a11a22)k(p+1)!(k+1)!(p−k)!(q−1)!k!(q−k−1)!=(p+1)2F1(−p,1−q;2;A). | (3.23) |
Hence, we have x1(t) as follows:
x1(t)=x01Eα(a11tα)+x11tEα,2(a11tα)+∫t0(t−τ)α−1Eα,α(a11(t−τ)α)g1(τ)dτ+x01a11A∞∑p=0∞∑q=1ap11aq22tpα+qβ+αΓ(pα+qβ+α+1)(p+1)2F1(−p,1−q;2;A)+x11a11A∞∑p=0∞∑q=1ap11aq22tpα+qβ+α+1Γ(pα+qβ+α+2)(p+1)2F1(−p,1−q;2;A)+x02a12∞∑p=0∞∑q=0ap11aq22tpα+qβ+αΓ(pα+qβ+α+1)2F1(−p,−q;1;A)+x12a12∞∑p=0∞∑q=0ap11aq22tpα+qβ+α+1Γ(pα+qβ+α+2)2F1(−p,−q;1;A)+a11A∞∑p=0∞∑q=1ap11aq22∫t0(t−τ)pα+qβ+2α−1g1(τ)dτΓ(pα+qβ+2α)(p+1)2F1(−p,1−q;2;A)+a12∞∑p=0∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+α+β−1g2(τ)dτΓ(pα+qβ+α+β)2F1(−p,−q;1;A). | (3.24) |
The same is applied for x2(t), where we can simplify the inner series in (3.22) into a hypergeometric function expression using the following identities.
min(p,q)∑k=0(a12a21a11a22)kp!k!(p−k)!q!k!(q−k)!=2F1(−p,−q;1;A),min(p−1,q)∑k=0(a12a21a11a22)k(p−1)!k!(p−k−1)!(q+1)!(k+1)!(q−k)!=(q+1)2F1(1−p,−q;2;A). | (3.25) |
Hence, we obtain x2(t) as follows:
x2(t)=x02Eβ(a22tβ)+x12tEβ,2(a22tβ)+∫t0(t−τ)β−1Eβ,β(a22(t−τ)β)g2(τ)dτ+x02a22A∞∑p=1∞∑q=0ap11aq22tpα+qβ+βΓ(pα+qβ+β+1)(q+1)2F1(1−p,−q;2;A)+x12a22A∞∑p=1∞∑q=0ap11aq22tpα+qβ+β+1Γ(pα+qβ+β+2)(q+1)2F1(1−p,−q;2;A)+x01a21∞∑p=0∞∑q=0ap11aq22tpα+qβ+βΓ(pα+qβ+β+1)2F1(−p,−q;1;A)+x11a21∞∑p=0∞∑q=0ap11aq22tpα+qβ+β+1Γ(pα+qβ+β+2)2F1(−p,−q;1;A)+a22A∞∑p=1∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+2β−1g2(τ)dτΓ(pα+qβ+2β)(q+1)2F1(1−p,−q;2;A)+a21∞∑p=0∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+α+β−1g1(τ)dτΓ(pα+qβ+α+β)2F1(−p,−q;1;A). | (3.26) |
Substituting q=0 in the double series with q=1 in Eq (3.24) (i.e. the 4th, 5th and 8th terms in the RHS of Eq (3.24)), and using 2F1(−p,1;2;A)=1−(1−A)p+1A(p+1), we obtain the following new expression for the 4th, 5th and 8th terms in the RHS of Eq (3.24).
x01a11A∞∑p=0ap11t(p+1)αΓ((p+1)α+1)(p+1)2F1(−p,1;2;A)=x01Eα(a11tα)−x01Eα(a11(1−A)tα),x11a11A∞∑p=0ap11t(p+1)α+1Γ((p+1)α+2)(p+1)2F1(−p,1;2;A)=x11tEα,2(a11tα)−x11tEα,2(a11(1−A)tα),a11A∞∑p=0ap11∫t0(t−τ)(p+1)α+α−1g1(τ)dτΓ((p+1)α+α)(p+1)2F1(−p,1;2;A)=∫t0(t−τ)α−1[Eα,α(a11(t−τ)α)−Eα,α(a11(1−A)(t−τ)α)]g1(τ)dτ. | (3.27) |
Hence, we have the final solutions for the x1(t) to the system (1.1) as follows:
x1(t)=x01Eα(a11(1−A)tα)+x11tEα,2(a11(1−A)tα)+∫t0(t−τ)α−1Eα,α(a11(1−A)(t−τ)α)g1(τ)dτ+x01a11A∞∑p=0∞∑q=0ap11aq22tpα+qβ+αΓ(pα+qβ+α+1)(p+1)2F1(−p,1−q;2;A)+x11a11A∞∑p=0∞∑q=0ap11aq22tpα+qβ+α+1Γ(pα+qβ+α+2)(p+1)2F1(−p,1−q;2;A)+x02a12∞∑p=0∞∑q=0ap11aq22tpα+qβ+αΓ(pα+qβ+α+1)2F1(−p,−q;1;A)+x12a12∞∑p=0∞∑q=0ap11aq22tpα+qβ+α+1Γ(pα+qβ+α+2)2F1(−p,−q;1;A)+a11A∞∑p=0∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+2α−1g1(τ)dτΓ(pα+qβ+2α)(p+1)2F1(−p,1−q;2;A)+a12∞∑p=0∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+α+β−1g2(τ)dτΓ(pα+qβ+α+β)2F1(−p,−q;1;A). | (3.28) |
Using similar approach, the final solutions for the x2(t) to the system (1.1) is given as follows:
x2(t)=x02Eβ(a22(1−A)tβ)+x12tEβ,2(a22(1−A)tβ)+∫t0(t−τ)β−1Eβ,β(a22(1−A)(t−τ)β)g2(τ)dτ+x02a22A∞∑p=0∞∑q=0ap11aq22tpα+qβ+βΓ(pα+qβ+β+1)(q+1)2F1(1−p,−q;2;A)+x12a22A∞∑p=0∞∑q=0ap11aq22tpα+qβ+β+1Γ(pα+qβ+β+2)(q+1)2F1(1−p,−q;2;A)+x01a21∞∑p=0∞∑q=0ap11aq22tpα+qβ+βΓ(pα+qβ+β+1)2F1(−p,−q;1;A)+x11a21∞∑p=0∞∑q=0ap11aq22tpα+qβ+β+1Γ(pα+qβ+β+2)2F1(−p,−q;1;A)+a21∞∑p=0∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+α+β−1g1(τ)dτΓ(pα+qβ+α+β)2F1(−p,−q;1;A)+a22A∞∑p=0∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+2β−1g2(τ)dτΓ(pα+qβ+2β)(q+1)2F1(1−p,−q;2;A). | (3.29) |
Step 4: Verify the solution by using substitution.
Finally, we can verify the solutions by substituting (3.28) (i.e. x1(t)) and (3.29) (i.e. x2(t)) into CDαx1(t)=a11x1(t)+a12x2(t)+g1(t), which is the first equation of incommensurate fractional order system (1.1). Hence, the right-hand-side of the first equation of (1.1) is given by
a11x1(t)+a12x2(t)+g1(t)=x01a11Eα(a11tα)+x11a11tEα,2(a11tα)+[a11∫t0(t−τ)α−1Eα,α(a11(t−τ)α)g1(τ)dτ+g1(t)]+x02a12Eβ(a22tβ)+x12a12tEβ,2(a22tβ)+a12∫t0(t−τ)β−1Eβ,β(a22(t−τ)β)g2(τ)dτ+x01a11A∞∑p=0∞∑q=1ap11aq22tpα+qβΓ(pα+qβ+1)(p2F1(1−p,1−q;2;A)+2F1(−p,1−q;1;A))+x11a11A∞∑p=0∞∑q=1ap11aq22tpα+qβ+1Γ(pα+qβ+2)(p2F1(1−p,1−q;2;A)+2F1(−p,1−q;1;A))+x02a12∞∑p=1∞∑q=0ap11aq22tpα+qβΓ(pα+qβ+1)(2F1(1−p,−q;1;A)+Aq2F1(1−p,1−q;2;A))+x12a12∞∑p=1∞∑q=0ap11aq22tpα+qβ+1Γ(pα+qβ+2)(2F1(1−p,−q;1;A)+Aq2F1(1−p,1−q;2;A))+a11A∞∑p=0∞∑q=1ap11aq22∫t0(t−τ)pα+qβ+α−1g1(τ)dτΓ(pα+qβ+α)(p2F1(1−p,1−q;2;A)+2F1(−p,1−q;1;A))+a12∞∑p=1∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+β−1g2(τ)dτΓ(pα+qβ+β)(2F1(1−p,−q;1;A)+Aq2F1(1−p,1−q;2;A)), | (3.30) |
while the left-hand-side of the equation is given by
CDαx1(t)=a11x01Eα(a11tα)+a11x11tEα,2(a11tα)+CDα(∫t0(t−τ)α−1Eα,α(a11(t−τ)α)g1(τ)dτ)+x01a11A∞∑p=0∞∑q=1ap11aq22tpα+qβΓ(pα+qβ+1)(p+1)2F1(−p,1−q;2;A)+x11a11A∞∑p=0∞∑q=1ap11aq22tpα+qβ+1Γ(pα+qβ+2)(p+1)2F1(−p,1−q;2;A)+x02a12Eβ(a22tβ)+x02a12∞∑p=1∞∑q=0ap11aq22tpα+qβΓ(pα+qβ+1)2F1(−p,−q;1;A)+x12a12tEβ,2(a22tβ)+x12a12∞∑p=1∞∑q=0ap11aq22tpα+qβ+1Γ(pα+qβ+2)2F1(−p,−q;1;A)+a11A∞∑p=0∞∑q=1ap11aq22∫t0(t−τ)pα+qβ+α−1g1(τ)dτΓ(pα+qβ+α)(p+1)2F1(−p,1−q;2;A)+a12∫t0(t−τ)β−1Eβ,β(a22(t−τ)β)g2(τ)dτ+a12∞∑p=1∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+β−1g2(τ)dτΓ(pα+qβ+β)2F1(−p,−q;1;A). | (3.31) |
Using the Lemma 2.1 in [1], all the terms in Eqs (3.31) and (3.30) are equivalent, except for the third term of Eqs (3.31) and (3.30). Hence, we show here using some algebraic manipulation that the third term of Eq (3.31) is indeed equivalent to the third term in Eq (3.30). We have
CDα(∫t0(t−τ)α−1Eα,α(a11(t−τ)α)g1(τ)dτ)=CDα(∫t0(t−τ)α−1Γ(α)g1(τ)dτ+∞∑k=1∫t0ak11(t−τ)kα+α−1Γ(kα+α)g1(τ)dτ)=CDα(Iαg1(t))+CDα(∞∑k=1∫t0ak11(t−τ)kα+α−1Γ(kα+α)g1(τ)dτ)=g1(t)+∞∑k=1∫t0ak11(t−τ)(k−1)α+α−1Γ((k−1)α+α)g1(τ)dτ=g1(t)+a11∞∑k=0∫t0ak11(t−τ)kα+α−1Γ(kα+α)g1(τ)dτ=g1(t)+a11∫t0(t−τ)α−1Eα,α(a11(t−τ)α)g1(τ)dτ. | (3.32) |
By applying Lemma 2.1 in [1] and Eq (3.32), the first equation in (1.1) holds true, while the second equation in (1.1) can be verified using a similar approach. Hence, we have the theorem as follows:
Theorem 1. The incommensurate fractional differential equation systems with fractional order 1<α,β<2 are given by:
CDαx1(t)=a11x1(t)+a12x2(t)+g1(t),CDβx2(t)=a21x1(t)+a22x2(t)+g2(t), | (3.33) |
with initial conditions x1(0)=x01,x2(0)=x02,x′1(0)=x11,x′2(0)=x12 and constant A=a12a21a11a22(≠1), a11,a22≠0 have the solutions as follows:
x1(t)=x01Eα(a11(1−A)tα)+x11tEα,2(a11(1−A)tα)+∫t0(t−τ)α−1Eα,α(a11(1−A)(t−τ)α)g1(τ)dτ+x01a11A∞∑p=0∞∑q=0ap11aq22tpα+qβ+αΓ(pα+qβ+α+1)(p+1)2F1(−p,1−q;2;A)+x11a11A∞∑p=0∞∑q=0ap11aq22tpα+qβ+α+1Γ(pα+qβ+α+2)(p+1)2F1(−p,1−q;2;A)+x02a12∞∑p=0∞∑q=0ap11aq22tpα+qβ+αΓ(pα+qβ+α+1)2F1(−p,−q;1;A)+x12a12∞∑p=0∞∑q=0ap11aq22tpα+qβ+α+1Γ(pα+qβ+α+2)2F1(−p,−q;1;A)+a11A∞∑p=0∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+2α−1g1(τ)dτΓ(pα+qβ+2α)(p+1)2F1(−p,1−q;2;A)+a12∞∑p=0∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+α+β−1g2(τ)dτΓ(pα+qβ+α+β)2F1(−p,−q;1;A), | (3.34) |
x2(t)=x02Eβ(a22(1−A)tβ)+x12tEβ,2(a22(1−A)tβ)+∫t0(t−τ)β−1Eβ,β(a22(1−A)(t−τ)β)g2(τ)dτ+x02a22A∞∑p=0∞∑q=0ap11aq22tpα+qβ+βΓ(pα+qβ+β+1)(q+1)2F1(1−p,−q;2;A)+x12a22A∞∑p=0∞∑q=0ap11aq22tpα+qβ+β+1Γ(pα+qβ+β+2)(q+1)2F1(1−p,−q;2;A)+x01a21∞∑p=0∞∑q=0ap11aq22tpα+qβ+βΓ(pα+qβ+β+1)2F1(−p,−q;1;A)+x11a21∞∑p=0∞∑q=0ap11aq22tpα+qβ+β+1Γ(pα+qβ+β+2)2F1(−p,−q;1;A)+a21∞∑p=0∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+α+β−1g1(τ)dτΓ(pα+qβ+α+β)2F1(−p,−q;1;A)+a22A∞∑p=0∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+2β−1g2(τ)dτΓ(pα+qβ+2β)(q+1)2F1(1−p,−q;2;A). | (3.35) |
In this section, we will present some special cases of Theorem 1, which including the case when A=1, a11=0, or a22=0, respectively. In order to achieve these, we need the following lemmas involving bivariate Mittag-Leffler function:
Lemma 1. [1] For α,β>0 and γ−1>⌊α⌋, we have
dαdtα[tγ−1Eα,β,γ(λ1tα,λ2tβ)]=tγ−α−1Eα,β,γ−α(λ1tα,λ2tβ), | (4.1) |
for any t,α,β,γ,λ1,λ2∈R.
Proof: See Lemma 2.2 in [1].
Lemma 2. [1] For α,β>0, we have
1+a11tαEα,β,α+1(a11tα,a22tβ)+a22tβEα,β,β+1(a11tα,a22tβ)=Eα,β,1(a11tα,a22tβ),tα−1Γ(α)+a11t2α−1Eα,β,2α(a11tα,a22tβ)+a22tα+β−1Eα,β,α+β(a11tα,a22tβ)=tα−1Eα,β,α(a11tα,a22tβ),tβ−1Γ(β)+a11tα+β−1Eα,β,α+β(a11tα,a22tβ)+a22t2β−1Eα,β,2β(a11tα,a22tβ)=tβ−1Eα,β,β(a11tα,a22tβ), | (4.2) |
for any t,α,β∈R.
Proof: See [1].
In this case, we have the hypergeometric function with A=1, i.e. a11a22=a12a21. The following identities are important for finding the explicit analytical solution of system (1.1).
2F1(−p,−q;1;1)=Γ(1)Γ(p+q+1)Γ(p+1)Γ(q+1)=Γ(p+q+1)Γ(p+1)Γ(q+1)=(p+qq)(p+1)2F1(−p,1−q;2;1)=(p+1)Γ(2)Γ(p+q+1)Γ(p+2)Γ(q+1)=Γ(p+q+1)Γ(p+1)Γ(q+1)=(p+qq). | (4.3) |
Using Eqs (3.24), (3.26), A=1 and the identities in Eq (4.3), we can express x1(t) as follows:
x1(t)=x01Eα(a11tα)+x11tEα,2(a11tα)+∫t0(t−τ)α−1Eα,α(a11(t−τ)α)g1(τ)dτ+x01a11∞∑p=0∞∑q=1ap11aq22tpα+qβ+αΓ(pα+qβ+α+1)(p+qq)+x11a11∞∑p=0∞∑q=1ap11aq22tpα+qβ+α+1Γ(pα+qβ+α+2)(p+qq)+x02a12∞∑p=0∞∑q=0ap11aq22tpα+qβ+αΓ(pα+qβ+α+1)(p+qq)+x12a12∞∑p=0∞∑q=0ap11aq22tpα+qβ+α+1Γ(pα+qβ+α+2)(p+qq)+a11∞∑p=0∞∑q=1ap11aq22∫t0(t−τ)pα+qβ+2α−1g1(τ)dτΓ(pα+qβ+2α)(p+qq)+a12∞∑p=0∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+α+β−1g2(τ)dτΓ(pα+qβ+α+β)(p+qq). | (4.4) |
Expanding the Mittag-Leffler function and bivariate Mittag-Leffler function in the first three terms of Eq (4.4) and rearranging the terms in RHS of (4.4) yields
x1(t)=x01+x01∑∞p=0ap+111tpα+αΓ(pα+α+1)+x01a11∞∑p=0∞∑q=1ap11aq22tpα+qβ+αΓ(pα+qβ+α+1)(p+qq)+x02a12∞∑p=0∞∑q=0ap11aq22tpα+qβ+αΓ(pα+qβ+α+1)(p+qq)+x11t+x11t∑∞p=0ap+111tpα+αΓ(pα+α+2)+x11a11∞∑p=0∞∑q=1ap11aq22tpα+qβ+α+1Γ(pα+qβ+α+2)(p+qq)+x12a12∞∑p=0∞∑q=0ap11aq22tpα+qβ+α+1Γ(pα+qβ+α+2)(p+qq)+1Γ(α)∫t0(t−τ)α−1g1(τ)dτ+∑∞p=0ap+111∫t0(t−τ)pα+2α−1g1(τ)dτΓ(pα+2α)+a11∞∑p=0∞∑q=1ap11aq22∫t0(t−τ)pα+qβ+2α−1g1(τ)dτΓ(pα+qβ+2α)(p+qq)+a12∞∑p=0∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+α+β−1g2(τ)dτΓ(pα+qβ+α+β)(p+qq)=x01+(x01a11+x02a12)∞∑p=0∞∑q=0ap11aq22tpα+qβ+αΓ(pα+qβ+α+1)(p+qq)+x11t+(x11a11+x12a12)∞∑p=0∞∑q=0ap11aq22tpα+qβ+α+1Γ(pα+qβ+α+2)(p+qq)+∫t0(t−τ)α−1g1(τ)dτΓ(α)+a11∞∑p=0∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+2α−1g1(τ)dτΓ(pα+qβ+2α)(p+qq)+a12∞∑p=0∞∑q=0ap11aq22∫t0(t−τ)pα+qβ+α+β−1g2(τ)dτΓ(pα+qβ+α+β)(p+qq). | (4.5) |
Rewriting some terms in the above equation using bivariate Mittag-Leffler function yields
x1(t)=x01+(x01a11+x02a12)tαEα,β,α+1(a11tα,a22tβ)+x11t+(x11a11+x12a12)tα+1Eα,β,α+2(a11tα,a22tβ)+1Γ(α)∫t0(t−τ)α−1g1(τ)dτ+a11∫t0(t−τ)2α−1Eα,β,2α(a11(t−τ)α,a22(t−τ)β)g1(τ)dτ+a12∫t0(t−τ)α+β−1Eα,β,α+β(a11(t−τ)α,a22(t−τ)β)g2(τ)dτ. | (4.6) |
Using the similar approach for x2(t), we then have the following theorem:
Theorem 2. The incommensurate fractional differential equation systems with fractional order 1<α,β<2
CDαx1(t)=a11x1(t)+a12x2(t)+g1(t),CDβx2(t)=a21x1(t)+a22x2(t)+g2(t), |
with initial conditions x1(0)=x01,x2(0)=x02,x′1(0)=x11,x′2(0)=x12 and constant A=a12a21a11a22=1 has the following solutions given by:
x1(t)=x01+(x01a11+x02a12)tαEα,β,α+1(a11tα,a22tβ)+x11t+(x11a11+x12a12)tα+1Eα,β,α+2(a11tα,a22tβ)+1Γ(α)∫t0(t−τ)α−1g1(τ)dτ+a11∫t0(t−τ)2α−1Eα,β,2α(a11(t−τ)α,a22(t−τ)β)g1(τ)dτ+a12∫t0(t−τ)α+β−1Eα,β,α+β(a11(t−τ)α,a22(t−τ)β)g2(τ)dτ, | (4.7) |
x2(t)=x02+(x01a21+x02a22)tβEα,β,β+1(a11tα,a22tβ)+x12t+(x11a21+x12a22)tβ+1Eα,β,β+2(a11tα,a22tβ)+1Γ(β)∫t0(t−τ)β−1g2(τ)dτ+a21∫t0(t−τ)α+β−1Eα,β,α+β(a11(t−τ)α,a22(t−τ)β)g1(τ)dτ+a22∫t0(t−τ)2β−1Eα,β,2β(a11(t−τ)α,a22(t−τ)β)g2(τ)dτ. | (4.8) |
Proof: The solution is proved when the first equation of (1.1) is satisfied. Hence, using Eqs (4.7) and (4.8), the LHS of (1.1) (after taking the fractional derivative for Eq (4.7) with Lemma 1) and RHS of (1.1) are shown as follows:
CDαx1(t)=(x01a11+x02a12)Eα,β,1(a11tα,a22tβ)+(x11a11+x12a12)tEα,β,2(a11tα,a22tβ)+g1(t)+a11∫t0(t−τ)α−1Eα,β,α(a11(t−τ)α,a22(t−τ)β)g1(τ)dτ+a12∫t0(t−τ)β−1Eα,β,β(a11(t−τ)α,a22(t−τ)β)g2(τ)dτ, | (4.9) |
a11x1+a12x2+g1(t)=a11x01+a11(x01a11+x02a12)tαEα,β,α+1(a11tα,a22tβ)+x11a11t+a11(x11a11+x12a12)tα+1Eα,β,α+2(a11tα,a22tβ)+a11Γ(α)∫t0(t−τ)α−1g1(τ)dτ+a11a11∫t0(t−τ)2α−1Eα,β,2α(a11(t−τ)α,a22(t−τ)β)g1(τ)dτ+a11a12∫t0(t−τ)α+β−1Eα,β,α+β(a11(t−τ)α,a22(t−τ)β)g2(τ)dτ+a12x02+a12(x01a21+x02a22)tβEα,β,β+1(a11tα,a22tβ)+x12a12t+a12(x11a21+x12a22)tβ+1Eα,β,β+2(a11tα,a22tβ)+a12a21∫t0(t−τ)α+β−1Eα,β,α+β(a11(t−τ)α,a22(t−τ)β)g1(τ)dτ+a12Γ(β)∫t0(t−τ)β−1g2(τ)dτ+a12a22∫t0(t−τ)2β−1Eα,β,2β(a11(t−τ)α,a22(t−τ)β)g2(τ)dτ+g1(t). | (4.10) |
In order to verify the LHS (i.e. Eq (4.9)) is equal to RHS (i.e. Eq (4.10)) for the first equation in (1.1), we will compare the terms containing x01, x02, x11, x12, g1(τ) and g2(τ). First, we take part of (4.10) involving x01 to prove its equivalence with the corresponding x01 term in (4.9). Since A=1, then a11a22=a12a21 which yields
x01(a11+a211tαEα,β,α+1(a11tα,a22tβ)+a12a21tβEα,β,β+1(a11tα,a22tβ))=x01a11(1+a11tαEα,β,α+1(a11tα,a22tβ)+a22tβEα,β,β+1(a11tα,a22tβ))=x01a11(1+∞∑p=0∞∑q=0ap+111aq22tpα+qβ+αΓ(pα+qβ+α+1)(p+qq)+∞∑p=0∞∑q=0ap11aq+122tpα+qβ+βΓ(pα+qβ+β+1)(p+qq))=x01a11(1+∞∑p=1∞∑q=0ap11aq22tpα+qβΓ(pα+qβ+1)(p+q−1q)+∞∑p=0∞∑q=1ap11aq22tpα+qβΓ(pα+qβ+1)(p+q−1q−1))=x01a11(1+∞∑p=1ap11tpαΓ(pα+1)+∞∑q=1aq22tqβΓ(qβ+1)+∞∑p=1∞∑q=1ap11aq22tpα+qβΓ(pα+qβ+1)[(p+q−1q)+(p+q−1q−1)])=x01a11(∞∑p=0∞∑q=0ap11aq22tpα+qβΓ(pα+qβ+1)(p+qq))=x01a11Eα,β,1(a11tα,a22tβ). | (4.11) |
Indeed, the above expression can be obtained via Lemma 2. Hence, using a similar approach, we have the proof for the terms with x02 as follows:
x02a12(1+a11tαEα,β,α+1(a11tα,a22tβ)+a22tβEα,β,β+1(a11tα,a22tβ))=x02a12Eα,β,1(a11tα,a22tβ). | (4.12) |
Similarity, for the terms with x11 and x12, the LHS is equal to the RHS since we have
x11a11t+a11(x11a11+x12a12)tα+1Eα,β,α+2(a11tα,a22tβ)+x12a12t+a12(x11a21+x12a22)tβ+1Eα,β,β+2(a11tα,a22tβ)=(x11a11+x12a12)tEα,β,2(a11tα,a22tβ). | (4.13) |
For the terms containing g1(τ) and g2(τ), using Lemma 2 and A=1, we show that it is equivalent via the following equations.
a11Γ(α)∫t0(t−τ)α−1g1(τ)dτ+a211∫t0(t−τ)2α−1Eα,β,2α(a11(t−τ)α,a22(t−τ)β)g1(τ)dτ+a12a21∫t0(t−τ)α+β−1Eα,β,α+β(a11(t−τ)α,a22(t−τ)β)g1(τ)dτ=a11∫t0(t−τ)α−1Eα,β,α(a11(t−τ)α,a22(t−τ)β)g1(τ)dτ, | (4.14) |
and
a12(1Γ(β)∫t0(t−τ)β−1g2(τ)dτ+a11∫t0(t−τ)α+β−1Eα,β,α+β(a11(t−τ)α,a22(t−τ)β)g2(τ)dτ+a22∫t0(t−τ)2β−1Eα,β,2β(a11(t−τ)α,a22(t−τ)β)g2(τ)dτ)=a12∫t0(t−τ)β−1Eα,β,β(a11(t−τ)α,a22(t−τ)β)g2(τ)dτ. | (4.15) |
Theorem 2 is verified since the Eq (4.9) is equivalent to Eq (4.10) for each of the terms containing x01, x02, x11, x12, g1(τ) and g2(τ).
We have emphasized that a11 and a22 are not equal to zero in Theorem 1. However, we can still make assumption for these special cases. For the case a11=0, we consider α,β∈(1,2). The incommensurate fractional differential equation system (1.1) is now given by
CDαx1(t)=a12x2(t)+g1(t),CDβx2(t)=a21x1(t)+a22x2(t)+g2(t), | (4.16) |
with the same initial conditions as (1.1).
Since a11=0, we use Eq (3.18) which makes it double series when j=0, yielding
x1(t)=x01+x01∞∑k=0∞∑m=0ak+112ak+121am22t(k+1)α+(m+k+1)βΓ((k+1)α+(m+k+1)β+1)(k+m)!k!m!+x11t+x11∞∑k=0∞∑m=0ak+112ak+121am22t(k+1)α+(m+k+1)β+1Γ((k+1)α+(m+k+1)β+2)(k+m)!k!m!+x02∞∑k=0∞∑m=0ak+112ak21am22t(k+1)α+(m+k)βΓ((k+1)α+(m+k)β+1)(k+m)!k!m!+x12∞∑k=0∞∑m=0ak+112ak21am22t(k+1)α+(m+k)β+1Γ((k+1)α+(m+k)β+2)(k+m)!k!m!+1Γ(α)∫t0(t−τ)α−1g1(τ)dτ+∞∑k=0∞∑m=0ak+112ak+121am22∫t0(t−τ)(k+2)α+(m+k+1)β−1g1(τ)dτΓ((k+2)α+(m+k+1)β)(k+m)!k!m!+∞∑k=0∞∑m=0ak+112ak21am22∫t0(t−τ)(k+1)α+(m+k+1)β−1g2(τ)dτΓ((k+1)α+(m+k+1)β)(k+m)!k!m!. | (4.17) |
Rewriting the above equation using bivariate Mittag-Leffler function yields
x1(t)=x01+x01a12a21tα+βEα+β,β,α+β+1(a12a21tα+β,a22tβ)+x11t+x11a12a21tα+β+1Eα+β,β,α+β+2(a12a21tα+β,a22tβ)+x02a12tαEα+β,β,α+1(a12a21tα+β,a22tβ)+x12a12tα+1Eα+β,β,α+2(a12a21tα+β,a22tβ)+1Γ(α)∫t0(t−τ)α−1g1(τ)dτ+a12a21∫t0(t−τ)2α+β−1Eα+β,β,2α+β(a12a21(t−τ)α+β,a22(t−τ)β)g1(τ)dτ+a12∫t0(t−τ)α+β−1Eα+β,β,α+β(a12a21(t−τ)α+β,a22(t−τ)β)g2(τ)dτ. | (4.18) |
Since a11=0, the x2(t) solution can be obtained directly from the first equation of (4.16). By rearranging the first equation of (4.16), we obtain
x2(t)=CDαx1(t)a12−g1(t)a12=1a12(x01a12a21tβEα+β,β,β+1(a12a21tα+β,a22tβ)+x11a12a21tβ+1Eα+β,β,β+2(a12a21tα+β,a22tβ)+x02a12Eα+β,β,1(a12a21tα+β,a22tβ)+x12a12tEα+β,β,2(a12a21tα+β,a22tβ)+g1(t)+a12a21∫t0(t−τ)α+β−1Eα+β,β,α+β(a12a21(t−τ)α+β,a22(t−τ)β)g1(τ)dτ+a12∫t0(t−τ)β−1Eα+β,β,β(a12a21(t−τ)α+β,a22(t−τ)β)g2(τ)dτ)−g1(t)a12. | (4.19) |
Using Lemma 1, and since our α,β>1, we obtain the x2(t) as follows:
x2(t)=x01a21tβEα+β,β,β+1(a12a21tα+β,a22tβ)+x11a21tβ+1Eα+β,β,β+2(a12a21tα+β,a22tβ)+x02Eα+β,β,1(a12a21tα+β,a22tβ)+x12tEα+β,β,2(a12a21tα+β,a22tβ)+a21∫t0(t−τ)α+β−1Eα+β,β,α+β(a12a21(t−τ)α+β,a22(t−τ)β)g1(τ)dτ+∫t0(t−τ)β−1Eα+β,β,β(a12a21(t−τ)α+β,a22(t−τ)β)g2(τ)dτ. | (4.20) |
Hence, we can obtain the following theorem.
Theorem 3. For special case a11=0, the system (1.1) can be written as
CDαx1(t)=a12x2(t)+g1(t),CDβx2(t)=a21x1(t)+a22x2(t)+g2(t), |
and the explicit analytical solution of the above system with initial conditions x1(0)=x01, x2(0)=x02, x′1(0)=x11, x′2(0)=x12 is given by:
x1(t)=x01+x01a12a21tα+βEα+β,β,α+β+1(a12a21tα+β,a22tβ)+x11t+x11a12a21tα+β+1Eα+β,β,α+β+2(a12a21tα+β,a22tβ)+x02a12tαEα+β,β,α+1(a12a21tα+β,a22tβ)+x12a12tα+1Eα+β,β,α+2(a12a21tα+β,a22tβ)+1Γ(α)∫t0(t−τ)α−1g1(τ)dτ+a12a21∫t0(t−τ)2α+β−1Eα+β,β,2α+β(a12a21(t−τ)α+β,a22(t−τ)β)g1(τ)dτ+a12∫t0(t−τ)α+β−1Eα+β,β,α+β(a12a21(t−τ)α+β,a22(t−τ)β)g2(τ)dτ, | (4.21) |
x2(t)=x01a21tβEα+β,β,β+1(a12a21tα+β,a22tβ)+x11a21tβ+1Eα+β,β,β+2(a12a21tα+β,a22tβ)+x02Eα+β,β,1(a12a21tα+β,a22tβ)+x12tEα+β,β,2(a12a21tα+β,a22tβ)+a21∫t0(t−τ)α+β−1Eα+β,β,α+β(a12a21(t−τ)α+β,a22(t−τ)β)g1(τ)dτ+∫t0(t−τ)β−1Eα+β,β,β(a12a21(t−τ)α+β,a22(t−τ)β)g2(τ)dτ. | (4.22) |
Proof: The theorem can be checked by substituting the solutions into the second equation of (4.16). For the LHS, take the fractional derivative for Eq (4.22) and use Lemma 1, which yields
CDβx2(t)=x01a21Eα+β,β,1(a12a21tα+β,a22tβ)+x11a21tEα+β,β,2(a12a21tα+β,a22tβ)+x02CDβ[Eα+β,β,1(a12a21tα+β,a22tβ)]+x12CDβ[tEα+β,β,2(a12a21tα+β,a22tβ)]+a21∫t0(t−τ)α−1Eα+β,β,α(a12a21(t−τ)α+β,a22(t−τ)β)g1(τ)dτ+CDβ[∫t0(t−τ)β−1Eα+β,β,β(a12a21(t−τ)α+β,a22(t−τ)β)g2(τ)dτ]. | (4.23) |
For the RHS, substitute Eqs (4.21) and (4.22) into the second equation of (4.16) yields
a21x1(t)+a22x2(t)+g2(t)=x01a21(1+a12a21tα+βEα+β,β,α+β+1(a12a21tα+β,a22tβ))+x11a21t(1+a12a21tα+βEα+β,β,α+β+2(a12a21tα+β,a22tβ))+x02a12a21tαEα+β,β,α+1(a12a21tα+β,a22tβ)+x12a12a21tα+1Eα+β,β,α+2(a12a21tα+β,a22tβ)+a21Γ(α)∫t0(t−τ)α−1g1(τ)dτ+a12a221∫t0(t−τ)2α+β−1Eα+β,β,2α+β(a12a21(t−τ)α+β,a22(t−τ)β)g1(τ)dτ+a12a21∫t0(t−τ)α+β−1Eα+β,β,α+β(a12a21(t−τ)α+β,a22(t−τ)β)g2(τ)dτ+x01a21a22tβEα+β,β,β+1(a12a21tα+β,a22tβ)+x11a21a22tβ+1Eα+β,β,β+2(a12a21tα+β,a22tβ)+x02a22Eα+β,β,1(a12a21tα+β,a22tβ)+x12a22tEα+β,β,2(a12a21tα+β,a22tβ)+a21a22∫t0(t−τ)α+β−1Eα+β,β,α+β(a12a21(t−τ)α+β,a22(t−τ)β)g1(τ)dτ+a22∫t0(t−τ)β−1Eα+β,β,β(a12a21(t−τ)α+β,a22(t−τ)β)g2(τ)dτ. | (4.24) |
Similar approach will be employed in proving Theorem 2, where we will be comparing one by one of the terms containing x01, x02, x11, x12, g1(τ) and g2(τ). First, for the parts involving x01, x11 and g1(t), by using Lemma 2, we prove Eq (4.24) to be equivalent as those corresponding parts in Eq (4.23) as follows:
x01a21(1+a12a21tα+βEα+β,β,α+β+1(a12a21tα+β,a22tβ)+a22tβEα+β,β,β+1(a12a21tα+β,a22tβ))=x01a21[1+∞∑m=1∞∑n=0am12am21an22tmα+mβ+nβ(m+n−1n)Γ(mα+mβ+nβ+1)+∞∑m=0∞∑n=1am12am21an22tmα+mβ+nβ(m+n−1n−1)Γ(mα+mβ+nβ+1)]=x01a21Eα+β,β,1(a12a21tα+β,a22tβ), | (4.25) |
x11a21t(1+a12a21tα+βEα+β,β,α+β+2(a12a21tα+β,a22tβ)+a22tβEα+β,β,β+2(a12a21tα+β,a22tβ))=x11a21t[1+∞∑m=1∞∑n=0am12am21an22tmα+mβ+nβ(m+n−1n)Γ(mα+mβ+nβ+2)+∞∑m=0∞∑n=1am12am21an22tmα+mβ+nβ(m+n−1n−1)Γ(mα+mβ+nβ+2)]=x11a21tEα+β,β,2(a12a21tα+β,a22tβ), | (4.26) |
a21[1Γ(α)∫t0(t−τ)α−1g1(τ)dτ+a12a21∫t0(t−τ)2α+β−1Eα+β,β,2α+β(a12a21(t−τ)α+β,a22(t−τ)β)g1(τ)dτ+a22∫t0(t−τ)α+β−1Eα+β,β,α+β(a12a21(t−τ)α+β,a22(t−τ)β)g1(τ)dτ]=a21[1Γ(α)∫t0(t−τ)α−1g1(τ)dτ+∞∑m=0∞∑n=0am+112am+121an22∫t0(t−τ)mα+mβ+nβ+2α+β−1g1(τ)dτ(m+nn)Γ(mα+mβ+nβ+2α+β)+∞∑m=0∞∑n=0am12am21an+122∫t0(t−τ)mα+mβ+nβ+α+β−1g1(τ)dτ(m+nn)Γ(mα+mβ+nβ+α+β)]=a21[1Γ(α)∫t0(t−τ)α−1g1(τ)dτ+∞∑m=1∞∑n=0am12am21an22∫t0(t−τ)mα+mβ+nβ+α−1g1(τ)dτ(m+n−1n)Γ(mα+mβ+nβ+α)+∞∑m=0∞∑n=1am12am21an22∫t0(t−τ)mα+mβ+nβ+α−1g1(τ)dτ(m+n−1n−1)Γ(mα+mβ+nβ+α)]=a21[1Γ(α)∫t0(t−τ)α−1g1(τ)dτ+∞∑m=1am12am21∫t0(t−τ)mα+mβ+α−1g1(τ)dτΓ(mα+mβ+α)+∞∑n=1an22∫t0(t−τ)nβ+α−1g1(τ)dτΓ(nβ+α)+∞∑m=1∞∑n=1am12am21an22∫t0(t−τ)mα+mβ+nβ+α−1g1(τ)dτ[(m+n−1n)+(m+n−1n−1)]Γ(mα+mβ+nβ+α)]=a21∫t0(t−τ)α−1Eα+β,β,α(a12a21(t−τ)α+β,a22(t−τ)β)g1(τ)dτ. | (4.27) |
Meanwhile, for x02, x12 and g2(t) parts, we proceed the proving from (4.23) as follows:
x02CDβ[Eα+β,β,1(a12a21tα+β,a22tβ)]=x02∞∑m,n=0(m,n)≠(0,0)am12am21an22tmα+mβ+nβ−β(m+nn)Γ(mα+mβ+nβ−β+1)=x02[∞∑m=1∞∑n=0am12am21an22tmα+mβ+nβ−β(m+n−1n)Γ(mα+mβ+nβ−β+1)+∞∑m=0∞∑n=1am12am21an22tmα+mβ+nβ−β(m+n−1n−1)Γ(mα+mβ+nβ−β+1)]=x02[∞∑m=0∞∑n=0am+112am+121an22t(m+1)α+mβ+nβ(m+nn)Γ((m+1)α+mβ+nβ+1)+∞∑m=0∞∑n=0am12am21an+122tmα+mβ+nβ(m+nn)Γ(mα+mβ+nβ+1)]=x02(a12a21tαEα+β,β,α+1(a12a21tα+β,a22tβ)+a22Eα+β,β,1(a12a21tα+β,a22tβ)), | (4.28) |
x12CDβ[tEα+β,β,2(a12a21tα+β,a22tβ)]=x12∞∑m,n=0(m,n)≠(0,0)am12am21an22tmα+mβ+nβ−β+1(m+nn)Γ(mα+mβ+nβ−β+2)=x12[∞∑m=1∞∑n=0am12am21an22tmα+mβ+nβ−β+1(m+n−1n)Γ(mα+mβ+nβ−β+2)+∞∑m=0∞∑n=1am12am21an22tmα+mβ+nβ−β+1(m+n−1n−1)Γ(mα+mβ+nβ−β+2)]=x12[∞∑m=0∞∑n=0am+112am+121an22t(m+1)α+mβ+nβ+1(m+nn)Γ((m+1)α+mβ+nβ+2)+∞∑m=0∞∑n=0am12am21an+122tmα+mβ+nβ+1(m+nn)Γ(mα+mβ+nβ+2)]=x12(a12a21tα+1Eα+β,β,α+2(a12a21tα+β,a22tβ)+a22tEα+β,β,2(a12a21tα+β,a22tβ)), | (4.29) |
CDβ[∫t0(t−τ)β−1Eα+β,β,β(a12a21(t−τ)α+β,a22(t−τ)β)g2(τ)dτ]=∞∑m,n=0(m,n)≠(0,0)am12am21an22∫t0(t−τ)mα+mβ+nβ−1g2(τ)dτ(m+nn)Γ(mα+mβ+nβ)=∞∑m=1∞∑n=0am12am21an22∫t0(t−τ)mα+mβ+nβ−1g2(τ)dτ(m+n−1n)Γ(mα+mβ+nβ)+∞∑m=0∞∑n=1am12am21an22∫t0(t−τ)mα+mβ+nβ−1g2(τ)dτ(m+n−1n−1)Γ(mα+mβ+nβ)=∞∑m=0∞∑n=0am+112am+121an22∫t0(t−τ)mα+mβ+nβ+α+β−1g2(τ)dτ(m+nn)Γ((mα+mβ+nβ+α+β)+∞∑m=0∞∑n=0am12am21an+122∫t0(t−τ)mα+mβ+nβ+β−1g2(τ)dτ(m+nn)Γ(mα+mβ+nβ+β)=a12a21∫t0(t−τ)α+β−1Eα+β,β,α+β(a12a21(t−τ)α+β,a22(t−τ)β)g2(τ)dτ+a22∫t0(t−τ)β−1Eα+β,β,β(a12a21(t−τ)α+β,a22(t−τ)β)g2(τ)dτ. | (4.30) |
Since all the terms in Eqs (4.23) and (4.24) are equivalent, the solution of the system (4.16) is verified.
For the case a22=0, we consider α,β∈(1,2). The incommensurate fractional differential equation system (1.1) is now given by
CDαx1(t)=a11x1(t)+a12x2(t)+g1(t),CDβx2(t)=a21x1(t)+g2(t), | (4.31) |
with the same initial conditions as in Eq (1.1).
For the case a22=0, using similar approach from the previous subsection, we obtain the following solution
x1(t)=x01Eα+β,α,1(a12a21tα+β,a11tα)+x11tEα+β,α,2(a12a21tα+β,a11tα)+x02a12tαEα+β,α,α+1(a12a21tα+β,a11tα)+x12a12tα+1Eα+β,α,α+2(a12a21tα+β,a11tα)+∫t0(t−τ)α−1g1(τ)Eα+β,α,α(a12a21(t−τ)α+β,a11(t−τ)α)dτ+a12∫t0(t−τ)α+β−1g2(τ)Eα+β,α,α+β(a12a21(t−τ)α+β,a11(t−τ)α)dτ, | (4.32) |
x2(t)=x01a21tβEα+β,α,β+1(a12a21tα+β,a11tα)+x11a21tβ+1Eα+β,α,β+2(a12a21tα+β,a11tα)+x02+x02a12a21tα+βEα+β,α,α+β+1(a12a21tα+β,a11tα)+x12t+x12a12a21tα+β+1Eα+β,α,α+β+2(a12a21tα+β,a11tα)+a21∫t0(t−τ)α+β−1g1(τ)Eα+β,α,α+β(a12a21(t−τ)α+β,a11(t−τ)α)dτ+1Γ(β)∫t0(t−τ)β−1g2(τ)dτ+a12a21∫t0(t−τ)α+2β−1g2(τ)Eα+β,α,α+2β(a12a21(t−τ)α+β,a11(t−τ)α)dτ. | (4.33) |
For the case a11=0 and a22=0, we consider α,β∈(1,2). The incommensurate fractional differential equation system (1.1) is now given by
CDαx1(t)=a12x2(t)+g1(t),CDβx2(t)=a21x1(t)+g2(t), | (4.34) |
with the same initial conditions as in Eq (1.1).
For the case a11=0 and a22=0, using similar approach from the previous subsection, we obtain the following solution,
x1(t)=x01Eα+β(a12a21tα+β)+x11tEα+β,2(a12a21tα+β)+x02a12tαEα+β,α+1(a12a21tα+β)+x12a12tα+1Eα+β,α+2(a12a21tα+β)+∫t0(t−τ)α−1g1(τ)Eα+β,α(a12a21(t−τ)α+β)dτ+a12∫t0(t−τ)α+β−1g2(τ)Eα+β,α+β(a12a21(t−τ)α+β)dτ, | (4.35) |
x2(t)=x01a21tβEα+β,β+1(a12a21tα+β)+x11a21tβ+1Eα+β,β+2(a12a21tα+β)+x02Eα+β(a12a21tα+β)+x12tEα+β,2(a12a21tα+β)+a21∫t0(t−τ)α+β−1g1(τ)Eα+β,α+β(a12a21(t−τ)α+β)dτ+∫t0(t−τ)β−1g2(τ)Eα+β,β(a12a21(t−τ)α+β)dτ. | (4.36) |
This section illustrates an explicit analytical solution for the incommensurate fractional differential system for order α,β∈(1,2) using the theorems that we had derived in previous sections. Four examples will be presented using Theorems 1–3, respectively, for the case of a11=0 and a22=0.
Example 1. Consider the following incommensurate linear fractional differential equation system
(d3/2x1dt3/2d4/3x2dt4/3)=(3212)(x1x2)+(2t−4t), | (5.1) |
with respect to the initial conditions x1(0)=3/2, x′1(0)=2, x2(0)=2 and x′2(0)=3.
Solution: Using Theorem 1, the explicit analytical solution is obtained as follows:
x1(t)=32E32(2t32)+2tE32,2(2t32)+2t52E32,72(2t32)+32∞∑p=0∞∑q=03p2qt3p2+4q3+32Γ(3p2+4q3+52)(p+1)2F1(−p,1−q;2;13)+2∞∑p=0∞∑q=03p2qt3p2+4q3+52Γ(3p2+4q3+72)(p+1)2F1(−p,1−q;2;13)+4∞∑p=0∞∑q=03p2qt3p2+4q3+32Γ(3p2+4q3+52)2F1(−p,−q;1;13)+6∞∑p=0∞∑q=03p2qt3p2+4q3+52Γ(3p2+4q3+72)2F1(−p,−q;1;13)+2∞∑p=0∞∑q=03p2qt3p2+4q3+4Γ(3p2+4q3+5)(p+1)2F1(−p,1−q;2;13)−8∞∑p=0∞∑q=03p2qt3p2+4q3+236Γ(3p2+4q3+296)2F1(−p,−q;1;13), | (5.2) |
x2(t)=2E43(43t43)+3tE43,2(43t43)−4t73E43,103(43t43)+43∞∑p=0∞∑q=03p2qt3p2+4q3+43Γ(3p2+4q3+73)(q+1)2F1(1−p,−q;2;13)+2∞∑p=0∞∑q=03p2qt3p2+4q3+73Γ(3p2+4q3+103)(q+1)2F1(1−p,−q;2;13)+32∞∑p=0∞∑q=03p2qt3p2+4q3+43Γ(3p2+4q3+73)2F1(−p,−q;1;13)+2∞∑p=0∞∑q=03p2qt3p2+4q3+73Γ(3p2+4q3+103)2F1(−p,−q;1;13)+2∞∑p=0∞∑q=03p2qt3p2+4q3+236Γ(3p2+4q3+296)2F1(−p,−q;1;13)−83∞∑p=0∞∑q=03p2qt3p2+4q3+113Γ(3p2+4q3+143)(q+1)2F1(1−p,−q;2;13). | (5.3) |
Example 2. Consider the following incommensurate linear fractional differential equation system
(d3/2x1dt3/2d4/3x2dt4/3)=(3/2312)(x1x2)+(cos(t)et), | (5.4) |
with respect to the initial conditions x1(0)=3, x′1(0)=−1, x2(0)=1 and x′2(0)=2.
Solution: This example is the case when A=1. Hence, using Theorem 2, we have the following explicit analytical solution
x1(t)=3−t+152t32E32,43,52(32t32,2t43)+92t52E32,43,72(32t32,2t43)+1Γ(32)∫t0(t−τ)12cos(τ)dτ+32∫t0(t−τ)2E32,43,3(32(t−τ)32,2(t−τ)43)cos(τ)dτ+3∫t0(t−τ)116E32,43,176(32(t−τ)32,2(t−τ)43)eτdτ=3−t+152t32E32,43,52(32t32,2t43)+92t52E32,43,72(32t32,2t43)+√t3Γ(32)[3sin(t)1F2(14;12,54;−t24)−tcos(t)1F2(34;32,74;−t24)]+32∞∑p,q=0(32)p(2)qΓ(3p2+4q3+4)(p+q)!p!q!t3p2+4q3+31F2(1;3p4+2q3+2,3p4+2q3+52;−t24)+3et∞∑p,q=0(32)p(2)qΓ(3p2+4q3+176)γ(3p2+4q3+176,t), | (5.5) |
x2(t)=1+2t+5t43E32,43,73(32t32,2t43)+3t73E32,43,103(32t32,2t43)+1Γ(43)∫t0(t−τ)13eτdτ+∫t0(t−τ)116E32,43,176(32(t−τ)32,2(t−τ)43)cos(τ)dτ+2∫t0(t−τ)53E32,43,83(32(t−τ)32,2(t−τ)43)eτdτ=1+2t+5t43E32,43,73(32t32,2t43)+3t73E32,43,103(32t32,2t43)+etΓ(43)γ(43,t)+∞∑p,q=0(1.5)p(2)qt9p+8q+176(p+q)!p!q![1Γ(9p+8q+236)−t21F2(1;9p+8q+3512,9p+8q+4112;−t24)Γ(9p+8q+356)]+2et∞∑p,q=0(32)p(2)qΓ(3p2+4q3+83)γ(3p2+4q3+83,t). | (5.6) |
Example 3. Consider the following incommensurate linear fractional differential equation system
(d1.2x1dt1.2d1.5x2dt1.5)=(0151)(x1x2)+(t+ete2t), | (5.7) |
with respect to the initial conditions x1(0)=1, x′1(0)=Γ(1.8), x2(0)=1 and x′2(0)=3.
Solution: Since a11=0, Theorem 3 will be applied. For sake of simplicity, we present this solution using decimal numbers. This example have the following explicit analytical solution
x1(t)=1+tΓ(1.8)+5t2.7E2.7,1.5,3.7(5t2.7,t1.5)+5Γ(1.8)t3.7E2.7,1.5,4.7(5t2.7,t1.5)+t1.2E2.7,1.5,2.2(5t2.7,t1.5)+3t2.2E2.7,1.5,3.2(5t2.7,t1.5)+1Γ(1.2)∫t0(t−τ)0.2(τ+eτ)dτ+5∫t0(t−τ)2.9E2.7,1.5,3.9(5(t−τ)2.7,(t−τ)1.5)(τ+eτ)dτ+∫t0(t−τ)1.7E2.7,1.5,2.7(5(t−τ)2.7,(t−τ)1.5)e2τdτ=1+tΓ(1.8)+5t2.7E2.7,1.5,3.7(5t2.7,t1.5)+5Γ(1.8)t3.7E2.7,1.5,4.7(5t2.7,t1.5)+t1.2E2.7,1.5,2.2(5t2.7,t1.5)+3t2.2E2.7,1.5,3.2(5t2.7,t1.5)+t2.2Γ(3.2)+etγ(1.2,t)Γ(1.2)+5t4.9E2.7,1.5,5.9(5t2.7,t1.5)+5et∞∑p,q=05pγ(2.7p+1.5q+3.9,t)Γ(2.7p+1.5q+3.9)+e2t∞∑p,q=05pγ(2.7p+1.5q+2.7,2t)22.7p+1.5q+2.7Γ(2.7p+1.5q+2.7), | (5.8) |
x2(t)=5t1.5E2.7,1.5,2.5(5t2.7,t1.5)+5Γ(1.8)t2.5E2.7,1.5,3.5(5t2.7,t1.5)+E2.7,1.5,1(5t2.7,t1.5)+3tE2.7,1.5,2(5t2.7,t1.5)+5∫t0(t−τ)1.7E2.7,1.5,2.7(5(t−τ)2.7,(t−τ)1.5)(τ+eτ)dτ+∫t0(t−τ)0.5E2.7,1.5,1.5(5(t−τ)2.7,(t−τ)1.5)e2τdτ=5t1.5E2.7,1.5,2.5(5t2.7,t1.5)+5Γ(1.8)t2.5E2.7,1.5,3.5(5t2.7,t1.5)+E2.7,1.5,1(5t2.7,t1.5)+3tE2.7,1.5,2(5t2.7,t1.5)+5t3.7E2.7,1.5,4.7(5t2.7,t1.5)+5et∞∑p,q=05pγ(2.7p+1.5q+2.7,t)Γ(2.7p+1.5q+2.7)+e2t∞∑p,q=05pγ(2.7p+1.5q+1.5,2t)22.7p+1.5q+1.5Γ(2.7p+1.5q+1.5). | (5.9) |
Example 4. Consider the following incommensurate linear fractional differential equation system
(d1.2x1dt1.2d1.6x2dt1.6)=(03−10)(x1x2)+(2.5t0.8−9tΓ(0.8)t2), | (5.10) |
with respect to the initial conditions x1(0)=2, x′1(0)=0, x2(0)=−6 and x′2(0)=3.
Solution: Since a11=a22=0, applying the result presented in subsection 4.4 and with the help from Eq (2.9), we have the following explicit analytical solution
x1(t)=2E2.8(−3t2.8)−18t1.2E2.8,2.2(−3t2.8)+9t2.2E2.8,3.2(−3t2.8)+2.5Γ(1.8)t2E2.8,3(−3t2.8)−9t2.2E2.8,3.2(−3t2.8)+3Γ(0.8)t4.8E2.8,5.8(−3t2.8), | (5.11) |
x2(t)=−2t1.6E2.8,2.6(−3t2.8)−6E2.8(−3t2.8)+3tE2.8,2(−3t2.8)−2.5Γ(1.8)t3.6E2.8,4.6(−3t2.8)+9t3.8E2.8,4.8(−3t2.8)+Γ(0.8)t3.6E2.8,4.6(−3t2.8). | (5.12) |
The solution of this example is shown in Figure 1. For the purpose of validate the solution (i.e. LHS equal to RHS of the problem), we can find the LHS via fractional derivative of these x1(t) and x2(t) for the desired order (i.e. in this example, are 1.2 and 1.6 respectively). Meanwhile for the RHS, substitute the solution x1(t) and x2(t) in the RHS of problem. If the analytical expression is too lengthy, we suggest to plot the both sides up to desired power. We use Maple to perform all the computation.
This paper has successfully derived the explicit analytical solution of linear incommensurate fractional differential equation systems with fractional order 1<α,β<2. Using the new theorems, analytical solutions are obtained, and we presented them via some examples. This paper serves as an extension of the similar result recently achieved in [1,19], which limited to fractional order 0<α,β<1. Moreover, the analytical solution obtained in this paper may enable us to investigate more rigorously the stability analysis and asymptotic stability for incommensurate fractional differential equation systems with fractional order 1<α,β<2, especially when this kind of incommensurate system may be more suitable to represent the real-world applications such as COVID-19 [38], cancer modelling, fluid flows problems. It may also be extended to higher order in the future. Explicit analytical solution for higher order (i.e. α,β>2) incommensurate fractional differential equation systems may be obtained using a similar approach.
Communication of this research is made possible through monetary assistance by Universiti Tun Hussein Onn Malaysia and the UTHM Publisher's Office via Publication Fund E15216. The first writer wish to thank UTHM for the financial support during her study through GPPS H049.
Authors declare that there is no conflict of interests regarding the publication of the paper.
[1] |
I. T. Huseynov, A. Ahmadova, A. Fernandez, N. I. Mahmudov, Explicit analytical solutions of incommensurate fractional differential equation systems, Appl. Math. Comput., 390 (2021), 125590. doi: 10.1016/j.amc.2020.125590. doi: 10.1016/j.amc.2020.125590
![]() |
[2] |
A. Hajipour, H, Tavakoli, Analysis and circuit simulation of a novel nonlinear fractional incommensurate order financial system, Optik, 127 (2016), 10643–10652. doi: 10.1016/j.ijleo.2016.08.098. doi: 10.1016/j.ijleo.2016.08.098
![]() |
[3] |
I. Pan, S. Das, S. Das, Multi-objective active control policy design for commensurate and incommensurate fractional order chaotic financial systems, Appl. Math. Model., 39 (2015), 500–514. doi: 10.1016/j.apm.2014.06.005. doi: 10.1016/j.apm.2014.06.005
![]() |
[4] |
K. Zourmba, A. A. Oumate, B. Gambo, J. Y. Effa, A. Mohamadou, Chaos in the incommensurate fractional order system and circuit simulations, Int. J. Dyn. Control, 7 (2019), 94–111. doi: 10.1007/s40435-018-0442-y. doi: 10.1007/s40435-018-0442-y
![]() |
[5] |
X. Wang, Z. Wang, J. Xia, Stability and bifurcation control of a delayed fractional-order eco-epidemiological model with incommensurate orders, J. Franklin Inst., 356 (2019), 8278–8295. doi: 10.1016/j.jfranklin.2019.07.028. doi: 10.1016/j.jfranklin.2019.07.028
![]() |
[6] | B. Daşbaşi. Stability analysis of the HIV model through incommensurate fractional-order nonlinear system, Chaos, Solitons Fractals, 137 (2020), 109870. doi: 10.1016/j.chaos.2020.109870. |
[7] |
N. Debbouche, A. O. Almatroud, A. Ouannas, I. M. Batiha, Chaos and coexisting attractors in glucose-insulin regulatory system with incommensurate fractional-order derivatives, Chaos, Solitons Fractals, 143 (2021), 110575. doi: 10.1016/j.chaos.2020.110575. doi: 10.1016/j.chaos.2020.110575
![]() |
[8] |
M. Tavazoei, M. H. Asemani, On robust stability of incommensurate fractional-order systems, Commun. Nonlinear Sci. Numer. Simul., 90 (2020), 105344. doi: 10.1016/j.cnsns.2020.105344. doi: 10.1016/j.cnsns.2020.105344
![]() |
[9] |
M. Tavazoei, M. H. Asemani, Robust stability analysis of incommensurate fractional-order systems with time-varying interval uncertainties, J. Franklin Inst., 357 (2020), 13800–13815. doi: 10.1016/j.jfranklin.2020.09.044. doi: 10.1016/j.jfranklin.2020.09.044
![]() |
[10] |
Y. Shen, Y. Wang, N. Yuan, A graphical approach for stability and robustness analysis in commensurate and incommensurate fractional-order systems, Asian J. Control, 22 (2020), 1241–1252. doi: 10.1002/asjc.1980. doi: 10.1002/asjc.1980
![]() |
[11] |
R. Luo, H. Su, The stability of impulsive incommensurate fractional order chaotic systems with Caputo derivative, Chinese J. Phys., 56 (2018), 1599–1608. doi: 10.1016/j.cjph.2018.06.017. doi: 10.1016/j.cjph.2018.06.017
![]() |
[12] |
C. M. Chang, H. K. Chen, Chaos and hybrid projective synchronization of commensurate and incommensurate fractional-order Chen-Lee systems, Nonlinear Dyn., 62 (2010), 851–858. doi: 10.1007/s11071-010-9767-6. doi: 10.1007/s11071-010-9767-6
![]() |
[13] |
C. Ma, J. Mou, J. Liu, F. Yang, H. Yan, X. Zhao, Coexistence of multiple attractors for an incommensurate fractional-order chaotic system, Eur. Phys. J. Plus, 135 (2020), 1–21. doi: 10.1140/epjp/s13360-019-00093-0. doi: 10.1140/epjp/s13360-019-00093-0
![]() |
[14] |
C. Huang, J. Cao, M. Xiao, A. Alsaedi, F. E. Alsaadi, Controlling bifurcation in a delayed fractional predator-prey system with incommensurate orders, Appl. Math. Comput., 293 (2017), 293–310. doi: 10.1016/j.amc.2016.08.033. doi: 10.1016/j.amc.2016.08.033
![]() |
[15] |
K. Diethelm, N. J. Ford, A. D. Freed, A predictor-corrector approach for the numerical solution of fractional differential equations, Nonlinear Dyn., 29 (2002), 3–22. doi: 10.1023/A:1016592219341. doi: 10.1023/A:1016592219341
![]() |
[16] |
K. Diethelm, N. J. Ford, Multi-order fractional differential equations and their numerical solution, Appl. Math. Comput., 154 (2004), 621–640. doi: 10.1016/S0096-3003(03)00739-2. doi: 10.1016/S0096-3003(03)00739-2
![]() |
[17] |
H. Liao, Y. Ding, L. Wang, Adomian decomposition algorithm for studying incommensurate fractional-order memristor-based Chua's system, Int. J. Bifurcat. Chaos, 28 (2018), 1850134. doi: 10.1142/S0218127418501341. doi: 10.1142/S0218127418501341
![]() |
[18] | H. N. Soloklo, N. Bigdeli, Direct approximation of fractional order systems as a reduced integer/fractional-order model by genetic algorithm, Sadhana, 45 (2020), 1–15. doi: 10.1007/s12046-020-01503-1. |
[19] |
A. Ahmadova, I. T. Huseynov, A. Fernandez, N. I. Mahmudov, Trivariate Mittag-Leffler functions used to solve multi-order systems of fractional differential equations, Commun. Nonlinear Sci. Numer. Simul., 97 (2021), 105735. doi: 10.1016/j.cnsns.2021.105735. doi: 10.1016/j.cnsns.2021.105735
![]() |
[20] | N. I. Mahmudov, I. T. Huseynov, N. A. Aliev, F. A. Aliev, Analytical approach to a class of Bagley-Torvik equations, TWMS J. Pure Appl. Math., 11 (2020), 238–258. |
[21] | I. T. Huseynov, A. Ahmadova, N. I. Mahmudov, Fractional Leibniz integral rules for Riemann-Liouville and Caputo fractional derivatives and their applications, 2020. Available from: https://arXiv.org/abs/2012.11360. |
[22] | M. A. Özarslan, A. Fernandez, On the fractional calculus of multivariate Mittag-Leffler functions, Int. J. Comput. Math., 2021, 1–27. doi: 10.1080/00207160.2021.1906869. |
[23] |
B. Bira, H. Mandal, D. Zeidan, Exact solution of the time fractional variant Boussinesq-Burgers equations, Appl. Math., 66 (2021), 437–449. doi: 10.21136/AM.2021.0269-19. doi: 10.21136/AM.2021.0269-19
![]() |
[24] |
D. Zeidan, C. K. Chau, T. T. Lu, W. Q. Zheng, Mathematical studies of the solution of Burgers' equations by Adomian decomposition method, Math. Methods Appl. Sci., 43 (2020), 2171–2188. doi: 10.1002/mma.5982. doi: 10.1002/mma.5982
![]() |
[25] |
J. R. Loh, C. Phang, Numerical solution of Fredholm fractional integro-differential equation with right-sided Caputo's derivative using Bernoulli polynomials operational matrix of fractional derivative, Mediterr. J. Math., 16 (2019), 1–25. doi: 10.1007/s00009-019-1300-7. doi: 10.1007/s00009-019-1300-7
![]() |
[26] |
J. R. Loh, C. Phang, K. G. Tay, New method for solving fractional partial integro-differential equations by combination of Laplace transform and resolvent kernel method, Chinese J. Phys., 67 (2020), 666–680. doi: 10.1016/j.cjph.2020.08.017. doi: 10.1016/j.cjph.2020.08.017
![]() |
[27] |
M. A. Ebadi, E. Hashemizadeh, A new approach based on the Zernike radial polynomials for numerical solution of the fractional diffusion-wave and fractional Klein-Gordon equations, Phys. Scripta, 93 (2018), 125202. doi: 10.1088/1402-4896/aae726
![]() |
[28] |
L. N. Kaharuddin, C. Phang, S. S. Jamaian, Solution to the fractional logistic equation by modified Eulerian numbers, Eur. Phys. J. Plus, 135 (2020), 1–11. doi: 10.1140/epjp/s13360-020-00135-y. doi: 10.1140/epjp/s13360-020-00135-y
![]() |
[29] |
P. Roul, V. M. K. Prasad Goura, A high order numerical scheme for solving a class of non-homogeneous time-fractional reaction diffusion equation, Numer. Methods Partial Differ. Equ., 37 (2021), 1506–1534. doi: 10.1002/num.22594. doi: 10.1002/num.22594
![]() |
[30] |
P. Roul, A high accuracy numerical method and its convergence for time-fractional Black-Scholes equation governing European options, Appl. Numer. Math., 151 (2020), 472–493. doi: 10.1016/j.apnum.2019.11.004. doi: 10.1016/j.apnum.2019.11.004
![]() |
[31] |
S. Kumar, D. Zeidan, An efficient Mittag-Leffler kernel approach for time-fractional advection-reaction-diffusion equation, Appl. Numer. Math., 170 (2021), 190–207. doi: 10.1016/j.apnum.2021.07.025. doi: 10.1016/j.apnum.2021.07.025
![]() |
[32] |
F. Sultana, D. Singh, R. K. Pandey, D. Zeidan, Numerical schemes for a class of tempered fractional integro-differential equations, Appl. Numer. Math., 157 (2020), 110–134. doi: 10.1016/j.apnum.2020.05.026. doi: 10.1016/j.apnum.2020.05.026
![]() |
[33] |
A. Fernandez, C. Kürt, M. A. Özarslan, A naturally emerging bivariate Mittag-Leffler function and associated fractional-calculus operators, Comput. Appl. Math., 39 (2020), 1–27. doi: 10.1007/s40314-020-01224-5. doi: 10.1007/s40314-020-01224-5
![]() |
[34] |
H. Seybold, R. Hilfer, Numerical algorithm for calculating the generalized Mittag-Leffler function, SIAM J. Numer. Anal., 47 (2009), 69–88. doi: 10.1137/070700280. doi: 10.1137/070700280
![]() |
[35] |
R. Garrappa, Numerical evaluation of two and three parameter Mittag-Leffler functions, SIAM J. Numer. Anal., 53 (2015), 1350–1369. doi: 10.1137/140971191. doi: 10.1137/140971191
![]() |
[36] |
C. Kürt, M. A. Özarslan, A. Fernandez, On a certain bivariate Mittag-Leffler function analysed from a fractional-calculus point of view, Math. Methods Appl. Sci., 44 (2021), 2600–2620. doi: 10.1002/mma.6324. doi: 10.1002/mma.6324
![]() |
[37] | A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Vol. 204, Elsevier, 2006. |
[38] | A. A. Hamou, E. Azroul, Z. Hammouch, A. Lamrani alaoui, On dynamics of fractional incommensurate model of Covid-19 with nonlinear saturated incidence rate, medRxiv, 2021. doi: 10.1101/2021.07.18.21260711. |
1. | Mohammed A. Almalahi, Satish K. Panchal, Fahd Jarad, Phang Chang, Results on Implicit Fractional Pantograph Equations with Mittag-Leffler Kernel and Nonlocal Condition, 2022, 2022, 2314-4785, 1, 10.1155/2022/9693005 | |
2. | Ahmad Qazza, Aliaa Burqan, Rania Saadeh, Fahd Jarad, Application of ARA-Residual Power Series Method in Solving Systems of Fractional Differential Equations, 2022, 2022, 1563-5147, 1, 10.1155/2022/6939045 | |
3. | Thongchai Botmart, Ravi P. Agarwal, Muhammed Naeem, Adnan Khan, Rasool Shah, On the solution of fractional modified Boussinesq and approximate long wave equations with non-singular kernel operators, 2022, 7, 2473-6988, 12483, 10.3934/math.2022693 | |
4. | A. I. Ahmed, T. A. Al-Ahmary, Sagheer Abbas, Fractional-Order Chelyshkov Collocation Method for Solving Systems of Fractional Differential Equations, 2022, 2022, 1563-5147, 1, 10.1155/2022/4862650 | |
5. | Soon Hock Gan, Chang Phang, 2023, Chapter 12, 978-981-99-2849-1, 131, 10.1007/978-981-99-2850-7_12 |