Citation: Antonio Di Crescenzo, Alessandra Meoli. On a fractional alternating Poisson process[J]. AIMS Mathematics, 2016, 1(3): 212-224. doi: 10.3934/Math.2016.3.212
[1] | L. Beghin, E. Orsingher, Poisson-type processes governed by fractional and higher-order recursivedifferential equations, Electron. J. Probab., 15 (2010), 684-709. |
[2] | D.O. Cahoy, F. Polito, Renewal processes based on generalized Mittag-Leffler waiting times, Commun.Nonlinear Sci. Numer. Simul., 18 (2013), 639-650. |
[3] | A. Di Crescenzo, A probabilistic analogue of the mean value theorem and its applications to reliabilitytheory, J. Appl. Probab., 36 (1999), 706-719. |
[4] | A. Di Crescenzo, B. Martinucci, and A. Meoli, A fractional counting process and its connectionwith the Poisson process, ALEA Lat. Am. J. Probab. Math. Stat., 13 (2016), 291-307. |
[5] | R. Gorenflo, A.A. Kilbas, F. Mainardi, and S.V. Rogosin, Mittag-Leffler Functions, Related Topicsand Applications, Springer, Berlin, 2014. |
[6] | R. Gorenflo, F. Mainardi, On the fractional Poisson process and the discretized stable subordinator,Axioms, 4 (2015), 321-344. |
[7] | I.S. Gradshteyn, I.M. Ryzhik, Table of Integrals, Series, and Products, Eighth edition, Elsevier/Academic Press, Amsterdam, 2014. |
[8] | T. Lancaster, The Econometric Analysis of Transition Data, Econometric Society Monographs, 17,Cambridge University Press, Cambridge, 1990. |
[9] | N. Laskin, Fractional Poisson process, Commun. Nonlinear Sci. Numer. Simul., 8 (2003), 201-213. |
[10] | N. Laskin, Some applications of the fractional Poisson probability distribution, J. Math. Phys., 50(2009), 113513. |
[11] | G.D. Lin, On the Mittag-Leffler distributions, J. Stat. Plan. Infer., 74 (1998), 1-9. |
[12] | K.V. Mitov, N.M. Yanev, Limiting distributions for lifetimes in alternating renewal processes,Pliska Stud. Math. Bulg., 16 (2004), 137-145. |
[13] | R. Nelson, Probability, Stochastic Processes, and Queueing Theory: the Mathematics of ComputerPerformance Modeling, Springer-Verlag, New York, 1995. |
[14] | E. Orsingher, F. Polito, Fractional pure birth processes, Bernoulli, 16 (2010), 858-881. |
[15] | E. Orsingher, F. Polito, On a fractional linear birth-death process Bernoulli, 17 (2011), 114-137. |
[16] | E. Orsingher, F. Polito, and L. Sakhno, Fractional non-Linear, linear and sublinear death processes,J. Stat. Phys., 141 (2010), 68-93. |
[17] | R.N. Pillai, On Mittag-Leffler functions and related distributions, Ann. Inst. Statist. Math., 42(1990), 157-161. |
[18] | I. Podlubny, Fractional Differential Equations. An Introduction to Fractional Derivatives, FractionalDifferential Equations, to Methods of Their Solution and Some of Their Applications. Mathematicsin Science and Engineering, 198, Academic Press, San Diego, 1999. |
[19] | V.V. Uchaikin, D.O. Cahoy, and R.T. Sibatov, Fractional processes: from Poisson to branchingone, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 18 (2008), 2717-2725. |
[20] | V.V. Uchaikin, R.T. Sibatov, A fractional Poisson process in a model of dispersive charge transportin semiconductors, Russian J. Numer. Anal. Math. Modelling, 23 (2008), 283-297. |
[21] | S. Zacks, Distribution of the total time in a mode of an alternating renewal process with applications,Sequential Anal., 31 (2012), 397-408. |