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Abstract: We propose a generalization of the alternating Poisson process from the point of view of
fractional calculus. We consider the system of differential equations governing the state probabilities
of the alternating Poisson process and replace the ordinary derivative with the fractional derivative (in
the Caputo sense). This produces a fractional 2-state point process. We obtain the probability mass
function of this process in terms of the (two-parameter) Mittag-Leffler function. Then we show that
it can be recovered also by means of renewal theory. We study the limit state probability, and certain
proportions involving the fractional moments of the sub-renewal periods of the process. In conclusion,
in order to derive new Mittag-Leffler-like distributions related to the considered process, we exploit a
transformation acting on pairs of stochastically ordered random variables, which is an extension of the
equilibrium operator and deserves interest in the analysis of alternating stochastic processes.
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1. Introduction

Extension of continuous-time point processes to the fractional case has been a major topic in liter-
ature for several years. Recently published papers consider, among others, fractional versions of the
Poisson process (see Beghin and Orsingher [1], Laskin [9,10], Uchaikin and Sibatov [20]), of the pure
birth process (see Orsingher and Polito [14]), of the pure death process (see Orsingher et al. [16]), of
the birth-death process (see Orsingher and Polito [15]), of a general counting process (cf. Di Crescenzo
et al. [4]), of branching processes (see Uchaikin et al. [19]). In most cases such “fractionalization” is
performed by replacing the time-derivative with a fractional one in the differential equations governing
the probability distribution. To this aim, one usually resorts either to the Riemann-Liouville derivative
or to the Caputo one (for a comprehensive introduction to fractional calculus see [18] and [5]). A dis-
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tinctive feature of these processes is the parameter, denoted by ν, describing the order of the fractional
derivative, 0 < ν ≤ 1. In fact, due to the peculiar structure of the fractional derivative, it is capable
of taking into account the length of the memory of the process. For example, the Caputo derivative is
a non-local operator defined as a classical derivative weighted over a time interval [0, t] by means of
a power-law kernel. This will be clearer in the formal definition shown in (2.2). Moreover, for some
fractional processes, such as the pure birth fractional process [14], it can be seen that a decrease in the
order of fractionality results in a more rapidly evolving process. Fractional processes are widely used
to model real-world phenomena in science, technology and engineering systems, since they are also
characterized by the presence of a heavy-tailed distribution. The probability distribution functions of
such processes are given in terms of the generalized Mittag-Leffler function, which is defined as

Eγα,β(z) =
∞∑

r=0

(γ)r zr

r!Γ(αr + β)
, α, β, γ ∈ C, Re(α),Re(β),Re(γ) > 0 (1.1)

where

(γ)r :=

γ(γ + 1) . . . (γ + r − 1), r = 1, 2, . . . ,
1, r = 0

is the Pochhammer symbol. For γ = 1, Eq. (1.1) gives the (two-parameter) Mittag-Leffler function,
denoted as

Eα,β(z) =
∞∑

r=0

zr

Γ(αr + β)
, α, β ∈ C, Re(α),Re(β) > 0. (1.2)

For more details on the Mittag-Leffler function see [5]. This function provides a simple but powerful
generalization of the exponential function.

Inspired by the aforementioned developments in the field of fractional counting processes, in this
paper we propose a fractional version of the alternating Poisson process.

1.1. Background on alternating Poisson process

Alternating renewal processes are special types of renewal processes. Specifically, an alternating
renewal process is a stochastic process in which the renewal interval comprises two random subinter-
vals that alternate cyclically. During the first one the process is in mode 1, whilst during the second
one the process is in mode 0. For example, consider a repairable system which might periodically be
in ON mode (running) or in OFF mode (in repair) for a random time. Another example, from the field
of mathematical physics, is that of a telegraph process. A particle, in the origin at time t = 0, moves by
turns UP (in a positive direction on a line) and DOWN (in a negative direction) during random times.
Here the UP movement is one mode, and the DOWN movement is the other mode. Other examples can
be taken from the fields of inventory control, finance, traffic control, etc. (cf. [21] for more details). If
the system starts in state 1 and if a cycle consists of a mode-1 and a mode-0 interval, then the process
that counts the number of cycles completed up to time t is an alternating renewal process, where returns
to state 1 are the arrivals (cycle completions).

Let {Uk; k = 1, 2, . . .} and {Dk; k = 1, 2, . . .} be sequences of independent copies of two non-
negative absolutely continuous random variables U, describing the duration of a mode-1 period, and
D, describing the duration of a mode-0 period. Therefore, the k-th cycle is distributed as

Xk
d
= U (k) + D(k), (1.3)
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where
U (k) = U1 + U2 + · · · + Uk, D(k) = D1 + D2 + · · · + Dk, k = 1, 2, . . . . (1.4)

The distribution functions of U and D are denoted respectively by FU and FD, whereas the correspond-
ing complementary cumulative distribution functions are FU and FD. If Uk and Dk are exponentially
distributed with positive parameters λ and µ, the resulting counting process having interarrival times
U1,D1,U2,D2, . . . is the alternating Poisson process (see, for instance, [8] for details). Equivalently,
an alternating Poisson process is a 2-state continuous-time Markov chain, whose state occupancy prob-
abilities satisfy, for t ≥ 0, λ, µ > 0, the system of equations:

d p11

dt
= −λ p11(t) + µ p10(t)

d p10

dt
= λ p11(t) − µ p10(t).

(1.5)

It is well-known that the solutions of (1.5), subject to the initial conditions p11(0) = 1, p10(0) = 0 and
normalizing condition p11(t) + p10(t) = 1, are

p11(t) =
µ

λ + µ
+
λ

λ + µ
e−(λ+µ)t and p10(t) =

λ

λ + µ
− λ

λ + µ
e−(λ+µ)t. (1.6)

Specifically, let Y(t), t ≥ 0, be a stochastic process with state space {0, 1}. If Y(t) describes the state of
the process at time t and pi j(t) = P (Y(t) = j | Y(0) = i), then p11(t) and p10(t) represent respectively the
probabilities of being in states 1 and 0 at time t starting from state 1 at t = 0. Similarly, the probabilities
of being in states 1 and 0 at t starting from state 0 at t = 0 are found to be, for t ≥ 0

p01(t) =
µ

λ + µ
− µ

λ + µ
e−(λ+µ)t and p00(t) =

λ

λ + µ
+
µ

λ + µ
e−(λ+µ)t.

If we define

p j(t) = P (Y(t) = j) (1.7)
= p1(0)p1 j(t) + p0(0)p0 j(t), t ≥ 0,

then

p1(t) =
µ

λ + µ
+

[
p1(0) − µ

λ + µ

]
e−(λ+µ)t and p0(t) =

λ

λ + µ
+

[
p0(0) − λ

λ + µ

]
e−(λ+µ)t.

1.2. Plan of the paper

The paper is organized as follows. In Section 2, we develop the analysis of the fractional version (in
the Caputo sense) of the alternating Poisson process, by determining explicitly the probability law, the
renewal function and the renewal density. In Section 3, we deal with the asymptotic behaviour of the
process, with special attention to the limit probability of the state 1 of the fractional alternating Poisson
process, and to similar ratios involving the fractional moments of the renewal variables of the process.
Finally, we exploit a suitable transformation of interest in the context of alternating renewal processes
aiming to derive new Mittag-Leffler-like distributions.
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2. Main results

In order to generalize the equations governing the alternating Poisson process, we now replace in
(1.5) the time-derivative with the fractional derivative (in the Caputo sense) of order ν ∈ (0, 1], thus
obtaining the following system: 

dν

dtν
pν11(t) = −λ pν11(t) + µ pν10(t)

dν

dtν
pν10(t) = λ pν11(t) − µ pν10(t),

(2.1)

subject to the initial conditions pν11(0) = 1, pν10(0) = 0, pν11(t)+ pν10(t) = 1. We recall that the definition
of the fractional derivative in the sense of Caputo for m ∈ N is the following:

dν

dtν
u(t) =


1

Γ(m − ν)

∫ t

0
(t − s)m−α−1 dm

dsm u(s)ds if m − 1 < ν < m

dm

dtm u(t) if ν = m.

(2.2)

We remark that the use of the Caputo derivative permits us to avoid fractional derivatives in the initial
conditions.

Proposition 2.1. The solution of the Cauchy problem (2.1), for t ≥ 0 and ν ∈ (0, 1], is given by

pν11(t) = 1 − λtνEν,ν+1(−(λ + µ)tν) and pν10(t) = λtνEν,ν+1(−(λ + µ)tν), (2.3)

where Eα,β(t) is the Mittag-Leffler function (1.2).

Proof. The Laplace transform of the solution to system (2.1) becomes, for s > (λ + µ)1/ν,
L {

pν11(t); s
}
=

sν−1

sν + (λ + µ)
+ µ

s−1

sν + (λ + µ)

L {
pν10(t); s

}
= λ

s−1

sν + (λ + µ)
.

(2.4)

System (2.4) can be inverted by using formula (5.1.6) of [5], i.e.

L
{
tγ−1E δβ,γ

(
ωtβ

)
; s

}
=

s βδ−γ

(s β − ω)δ
, (2.5)

where Re(β) > 0, Re(γ) > 0, Re(δ) > 0 and s > |ω| 1
Re(β) . Indeed, recalling that (cf. (4.2.3) of [5])

Eα,β(z) =
1
Γ(β)

+ zEα,α+β(z), (2.6)

we recover
pν11(t) = Eν,1(−(λ + µ)tν) + µtνEν,ν+1(−(λ + µ)tν)

= 1 − λtνEν,ν+1(−(λ + µ)tν)

and
pν10(t) = λtνEν,ν+1(−(λ + µ)tν).

This completes the proof of (2.3). �
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Solutions (2.3) can be interpreted as the probabilities of a fractional alternating Poisson process of
being in states 1 and 0 at t starting from state 1 at time t = 0. Specifically, if Yν(t), t ≥ 0, is a stochastic
process with state space {0, 1}, describing the state of the process at time t, then

pν11(t) = P (Yν(t) = 1 | Yν(0) = 1) and pν10(t) = P (Yν(t) = 0 |Yν(0) = 1) .

Similarly to (2.3), we find that the probabilities of being in states 1 and 0 at t starting from state 0 at
t = 0 are

pν01(t) = µtνEν,ν+1(−(λ + µ)tν)

and

pν00(t) = Eν,1(−(λ + µ)tν) + λtνEν,ν+1(−(λ + µ)tν)
= 1 − µtνEν,ν+1(−(λ + µ)tν).

By analogy with the non-fractional case, we can define

pνj(t) = P
(
state j occupied at time t

)
= pν1(0)pν1 j(t) + pν0(0)pν0 j(t),

so that, if the process starts in state 1 at t = 0,

pν1(t) = pν11(t) and pν0(t) = pν10(t). (2.7)

We point out that whereas the starting alternating Poisson process is Markovian, the new process
Yν(t) is non-Markov. Indeed, similarly as for other stochastic processes, the “fractionalization” pro-
duces persistence or long memory effects.

Such state occupancy probabilities can be recovered also by a different approach. Indeed, we sup-
pose that the the random variable Uk (Dk), describing the duration of the kth time interval during which
the system is in state 1 (state 0), is equally distributed with a random variable U (D) following a
Mittag-Leffler distribution with density

fU(t) = λtν−1Eν,ν(−λtν),
(

fD(t) = µtν−1Eν,ν(−µtν)
)
, t > 0, 0 < ν < 1, (2.8)

and complementary cumulative distribution function

FU(t) = Eν,1(−λtν),
(
FD(t) = Eν,1(−µtν)

)
, t > 0, 0 < ν < 1. (2.9)

We recall that densities (2.8) are characterized by fat tails, with polynomial decay, and, as a conse-
quence, the mean time spent by such a process both in state 1 and in state 0 is infinite.

The probability density function of the first cycle X (cf. Eq. (1.3)), due to the independence of its
summands, can be recovered by inverting its Laplace transform:

LX(s) = LU(s)LD(s) =
λµ

(sν + λ)(sν + µ)
, (2.10)

so that, bearing in mind formula (2.5), we recover the following generalized mixture, for λ , µ:

fX(t) =
µ

µ − λλt
ν−1Eν,ν(−λtν) −

λ

µ − λµt
ν−1Eν,ν(−µtν), t > 0. (2.11)
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In the next proposition we derive the expression of the renewal function of the considered alternating
process. See Cahoy and Polito [2] and Gorenflo and Mainardi [6] for recent contributions on renewal
processes related to the fractional Poisson process.

Proposition 2.2. Let M(t), t ≥ 0, be the renewal function of an alternating process whose inter-renewal
times are distributed as in (2.11). Then

M(t) = λµt2νEν,2ν+1(−(λ + µ)tν), t > 0. (2.12)

The corresponding renewal density is

m(t) = λµt2ν−1Eν,2ν(−(λ + µ)tν), t > 0. (2.13)

Proof. With regard to (2.11), the Laplace transform of the renewal function of the considered process,
which we call M(t), is (cf. [13])

L {M(t); s} = LX(s)
s(1 − LX(s))

=
1
s
· λµ

sν(sν + (λ + µ))
, (2.14)

where the last identity follows from (2.10). From Equation (2.14) we infer that the Laplace transform
of the corresponding renewal density is

L {m(t)} = L
{

dM(t)
dt

}
= sL {M(t)}

=
λµ

sν(sν + (λ + µ))
,

which can be inverted with the help of formula (2.5) in order to obtain

m(t) =
λµ

λ + µ
· tν−1

Γ(ν)
− λµ
λ + µ

tν−1Eν,ν(−(λ + µ)tν),

this giving (2.13). In addition, the renewal function turns out to be the following:

M(t) =
λµ

λ + µ
· tν

Γ(ν + 1)
− λµ
λ + µ

tνEν,ν+1(−(λ + µ)tν)

= λµt2νEν,2ν+1(−(λ + µ)tν),

where the last equality is due to (2.6). The proof of (2.12) is thus complete. �

From the theory of alternating renewal processes (cf. formula (6.66) of [13]), it is known that, for
t ≥ 0,

π1(t) = FU(t) +
∫ t

0
m(t − x)FU(t)dx,

where π1(t) is the probability that at time t the process is in state 1 and m(t) is the renewal density.
Recalling (2.13) and (2.9), we obtain

π1(t) = Eν,1(−λtν) + λµ
∫ t

0
(t − x)2ν−1Eν,2ν(−(λ + µ)(t − x)ν)Eν,1(−λxν)dx

= Eν,1(−λtν) − λ2t2νEν,2ν+1(−λtν) + λ(λ + µ)t2νEν,2ν+1(−(λ + µ)tν)
= 1 − λtνEν,ν+1(−(λ + µ)tν),

(2.15)
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where the last equality follows from (2.6). Due to (2.3), we observe that probability (2.15) equals the
first of (2.7). Therefore, the random times between consecutive events for a fractional alternating Pois-
son process alternate between two Mittag-Leffler distributions with parameter λ and µ, respectively.
Consequently, the two approaches considered, i.e. the one based on the resolution of the fractional
system of equations (2.1), and the one based on renewal theory arguments, lead to the same alternating
process.

3. Asymptotic behaviour and some transformations

We begin the present section by studying the asymptotic behaviour of the process Yν(t), with refer-
ence to pν1(t) = π1(t).

Proposition 3.1. The limiting probability that the fractional alternating Poisson process is in state 1
is given by

lim
t→+∞

pν1(t) =
µ

λ + µ
.

Proof. From (2.7) we observe that the limiting probability of being in the first phase of the considered
process is:

lim
t→+∞

pν1(t) = lim
t→+∞

(
1 − λtνEν,ν+1(−(λ + µ)tν)

)
= lim

t→+∞

λ

λ + µ

(
λ + µ

λ
− (λ + µ) tνEν,ν+1(−(λ + µ)tν)

)
.

It holds that (λ + µ) tνEν,ν+1(−(λ + µ)tν)
t→+∞→ 1, since we are dealing with the probability distribution

function of a Mittag-Leffler random variable with parameter λ + µ. Hence

lim
t→+∞

pν1(t) =
λ

λ + µ

(
λ + µ

λ
− 1

)
=
µ

λ + µ
,

this completing the proof. �

It is noteworthy to point out that the fractional alternating Poisson process displays the same long-
run proportion of time spent in mode 1 as its non fractional counterpart (cf. [8]). Moreover, the result
presented in Proposition 3.3 is in accordance with Theorem 5 of [12], where the limiting distribution
of the spent lifetime is presented in the case of infinite mean renewal periods.

We are now concerned with other kinds of proportions involving the fractional moments of the
sub-renewal periods of the process Yν(t).

Proposition 3.2. Let U and D be random variables with densities (2.8). Then

E[Uq]
E[Uq] + E[Dq]

=
1

ξq/ν + 1
, ξ =

λ

µ
, 0 < q < ν ≤ 1.
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Proof. By [17], the expression for the qth moment, q < ν, of a random variable with density (2.8) is

E[Uq] =
qπ

νλq/νΓ(1 − q) sin(qπ/ν)
. (3.1)

The proof follows by conveniently substituting the expression for the qth moment of D. �

To prove Proposition 3.3 below we need the following Lemma (see [11]).

Lemma 3.1. Let X be a positive random variable with Laplace transform ϕ. Then

E [Xr] =
r

Γ(1 − r)

∫ +∞

0
s−r−1 (1 − ϕ(s)) ds, r ∈ (0, 1).

With regard to (1.4), we observe that (cf. [1])

f k
U(t) = P{U (k) ∈ dt}/dt = λktνk−1Ek

ν,νk(−λtν), t > 0, 0 < ν < 1, (3.2)

with Laplace transform

L
{
f k
U(t); s

}
=

λk

(sν + λ)k . (3.3)

The density and the Laplace transform of D(k) can be obtained from (3.2) and (3.3) respectively,
by replacing λ with µ. We are now ready to prove the next proposition, which gives an immediate
extension of Proposition 3.2.

Proposition 3.3. Let U (k) and D(k) be random variables defined as in (1.4). Then

E
[(

U (k)
)q]

E
[(

U (k))q]
+ E

[(
D(k))q] = 1

ξq/ν + 1
, ξ =

λ

µ
, 0 < q < ν ≤ 1. (3.4)

Proof. From Lemma 3.1 and Eq. (3.3), for q ∈ (0, 1),

E
[(

U (k)
)q]
=

q
Γ(1 − q)

∫ +∞

0
s−q−1

(
1 − λk

(sν + λ)k

)
ds

=
q

Γ(1 − q)

k−1∑
i=0

(
k
i

)
λi

∫ +∞

0

sν(k−i)−q−1

(sν + λ)k ds,

where the last equality is due to the binomial theorem. By applying formula 3.241-4 of [7], i.e.∫ +∞

0

x µ−1

(p + qxν) n+1 dx =
1
νp n+1

(
p
q

)µ/ν
Γ(µ/ν)Γ(1 + n − µ/ν)

Γ(1 + n)
, 0 <

µ

ν
< n + 1, p , 0, q , 0,

we obtain, for 0 < q < ν ≤ 1,

E
[(

U (k)
)q]
=

q
Γ(1 − q)

k−1∑
i=0

(
k
i

)
1
νλ q/ν

Γ(k − i − q/ν)Γ(i + q/ν)
Γ(k)

=
q

Γ(1 − q)
1
νλ q/ν

k−1∑
i=0

(
k
i

)
B (k − i − q/ν, i + q/ν) , (3.5)
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where B(x, y) denotes the Beta function. Observe that, in an analogous way, we can calculate

E
[(

D(k)
)q]
=

q
Γ(1 − q)

1
νµ q/ν

k−1∑
i=0

(
k
i

)
B (k − i − q/ν, i + q/ν) .

The thesis thus follows. �

Some plots of the ratio (3.4) are provided in Figure 1.
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Figure 1. The ratio (3.4) is shown on the left for 0 < ξ ≤ 1 and q/ν = 0.1, 0.2, . . . , 0.9
(from bottom to top), on the right for 1 ≤ ξ ≤ 100 and q/ν = 0.1, 0.2, . . . , 0.9 (from top
to bottom).

Hereafter we aim to explore new stochastic models related to the fractional alternating Poisson
process. Specifically, with reference to the process Yν(t), we now study a special transformation of
the random variables involved. Such transformation, acting on pairs of non-negative random variables
having unequal finite means, is an extension of the equilibrium operator. It is of interest since it arises
essentially from stochastic processes characterized by two randomly alternating states. In fact, it is
suitable to describe the asymptotic behaviour of the corresponding spent lifetime (cf. [3]). In general,
if X and Y are non-negative random variables such that E[X] < E[Y] < +∞, then

fZ(x) =
FY(x) − FX(x)
E[Y] − E[X]

, x ≥ 0, (3.6)

is the probability density function of an absolutely continuous non-negative random variable Z if and
only if X ≤st Y , where ≤st is the usual stochastic order (i.e., X ≤st Y if and only if FX(x) ≤ FY(x) for
all x). In Eq. (3.6), FX(x) and FY(x) denote the survival functions of X and Y , respectively. We write
Z ≡ Ψ(X, Y) to mean that Z is a random variable possessing density (3.6).

Example 3.1. Let U and D be random variables having Mittag-Leffler densities with parameters λ and
µ respectively, expressed by (2.8), and fix a positive real number α, 0 < α < ν ≤ 1, such that the
random variables Uα and Dα have finite means. If λ < µ, one has U ≤st D and then Uα ≤st Dα. From
(2.9), (3.1) and (3.6), the density of Z ≡ Ψ(Uα,Dα) is

fZ(t) =
νλα/νµα/νΓ(1 − α) sin (απ/ν)

απ
(
λα/ν − µα/ν) (

Eν,1(−µtν/α) − Eν,1(−λtν/α)
)
, t ≥ 0. (3.7)

AIMS Mathematics Volume 1, Issue 3, 212-224



221

Figure 2 shows various plots of density (3.7).
Consequently, from the probabilistic mean value theorem given in Theorem 4.1 of [3], if g is a

measurable and differentiable function such that E
[
g (Dα)

]
and E

[
g (Uα)

]
are finite and if its derivative

g′ is measurable and Riemann-integrable on the interval
[
x, y

]
for all y ≥ x ≥ 0, then E

[
g′ (Z)

]
is finite

and
E

[
g (Dα)

] − E [
g (Uα)

]
= E

[
g′ (Z)

]
(E [Dα] − E [Uα]) ,

where Z is a random variable having density (3.7).

0 1 2 3 4 5 6
t

0.2

0.4

0.6

0.8

1.0

1.2
fZ (t)

α=0.25, ν=0.75

0 1 2 3 4 5 6
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7
fZ (t)

α=0.45, ν=0.75

0 1 2 3 4 5 6
t

0.1

0.2

0.3

0.4

0.5

0.6

0.7
fZ (t)

α=0.25, ν=0.5

0 1 2 3 4 5 6
t

0.02

0.04

0.06

0.08

0.10

0.12

0.14
fZ (t)

α=0.45, ν=0.5

Figure 2. Density (3.7) for various choices of α and ν, with λ = 1 and µ = 1.01, 2, 5, 15
(from bottom to top near the origin).

Example 3.2. Let us consider the random variables U (1) and U (2) (cf. (1.4)), with densities (2.8) and
(3.2) respectively. Again, we fix a positive real number α, with 0 < α < ν ≤ 1, such that both random
variables involved, i.e.

(
U (1)

)α
and

(
U (2)

)α
have finite first order moments. Clearly, U (1) ≤st U (2)

and then
(
U (1)

)α
≤st

(
U (2)

)α
, so that we can study the transformation Ψ acting on

(
U (1)

)α
and

(
U (2)

)α
.

The complementary cumulative distribution functions of U (1) and U (2) are expressed in terms of the
generalized Mittag-Leffler function (1.1), since (cf. (2.9))

P
(
U (1) > t

)
= 1 − λtνEν,ν+1(−λtν), t ≥ 0 (3.8)

and (cf. [1])
P
(
U (2) > t

)
= 1 − λ2t2νE2

ν,2ν+1(−λtν), t ≥ 0. (3.9)
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Recalling that (cf. formula (5.1.12) of [5]) if α, β, γ ∈ C and Re α > 0, Re β > 0, Re β − α > 0

zEγα,β = Eγα,β−α − Eγ−1
α,β−α, (3.10)

the following equality holds:

Eν,ν+1(−λtν) = λtνE2
ν,2ν+1(−λtν) + E2

ν,ν+1(−λtν), t ≥ 0,

and then
λtνEν,ν+1(−λtν) = λ2t2νE2

ν,2ν+1(−λtν) + λtνE2
ν,ν+1(−λtν), t ≥ 0. (3.11)

Owing to formula (5.1.14) of [5], i.e.

αE2
α,β = Eα,β−1 − (1 + α − β)Eα,β

if α, β ∈ C and Re α > 0, Re β > 1, then

E2
ν,ν+1(−λtν) = 1

ν
Eν,ν(−λtν). (3.12)

By using (3.12) into (3.11), we get

λtνEν,ν+1(−λtν) = λ2t2νE2
ν,2ν+1(−λtν) + λt

ν

ν
Eν,ν(−λtν), t ≥ 0, (3.13)

and the function tνEν,ν(−λtν) is positive due to the complete monotonicity of tν−1Eν,ν(−λtν) (cf. (5.1.10)
of [5]). Consequently, recalling (3.8) and (3.9), from (3.13) we obtain

1 − λ2t2νE2
ν,2ν+1(−λtν) ≥ 1 − λtνEν,ν+1(−λtν)

⇐⇒ P
(
U (2) > t

)
≥ P

(
U (1) > t

)
⇐⇒ U (1) ≤st U (2)

⇐⇒
(
U (1)

)α
≤st

(
U (2)

)α
.

Hence, if Z ≡ Ψ
((

U (1)
)α
,
(
U (2)

)α)
, from (3.1) and (3.5) we have, for t ≥ 0,

fZ(t) =
Γ(1 − α)ν2λα/ν sin(απ/ν)

α2π

(
λtν/αEν,ν+1(−λtν/α) − λ2t2ν/αE2

ν,2ν+1(−λtν/α)
)
.

It follows that, making use of (3.10), for 0 < α < ν ≤ 1 and λ > 0 we obtain

fZ(t) =
Γ(1 − α)ν2λα/ν sin(απ/ν)

α2π
λtν/αE2

ν,ν+1(−λtν/α), t ≥ 0. (3.14)

Again, from Theorem 4.1 of [3], if g is a suitable function and Z is a random variable with density
(3.14), then

E
[
g
((

U (2)
)α)]
− E

[
g
((

U (1)
)α)]
= E

[
g′ (Z)

] (
E

[(
U (2)

)α]
− E

[(
U (1)

)α])
.
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4. Conclusion

In this paper we have studied a generalization of the alternating Poisson process from the point
of view of fractional calculus. In the system of differential equations governing the state occupancy
probabilities for the alternating Poisson process we replace the ordinary derivative with the Caputo
one, thus endowing the process with persistent memory. We obtain the probability mass function of a
fractional alternating Poisson process and then show that it can be recovered also by means of renewal
theory arguments. Furthermore, we provide results for the behaviour of some quantities characterizing
the process under examination and derive new Mittag-Leffler-like distributions of interest in the context
of alternating renewal processes.
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