Citation: Pierluigi Colli, Gianni Gilardi, Jürgen Sprekels. Distributed optimal control of a nonstandard nonlocal phase field system[J]. AIMS Mathematics, 2016, 1(3): 225-260. doi: 10.3934/Math.2016.3.225
[1] |
C. Baiocchi, Sulle equazioni di erenziali astratte lineari del primo e del secondo ordine negli spazi
di Hilbert, Ann. Mat Pura Appl. (4) 76 (1967), 233-304.
2. P. Colli, M. H. Farshbaf-Shaker, G. Gilardi, J. Sprekels, Optimal boundary control of a viscous Cahn–Hilliard system with dynamic boundary condition and double obstacle potentials, SIAM J. Control Optim. 53 (2015), 2696-2721. 3. P. Colli, M. H. Farshbaf-Shaker, G. Gilardi, J. Sprekels, Second-order analysis of a boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions, Ann. Acad. Rom. Sci. Math. Appl. 7 (2015), 41-66. 4. P. Colli, G. Gilardi, P. Krejčí, P. Podio-Guidugli, J. Sprekels, Analysis of a time discretization scheme for a nonstandard viscous Cahn–Hilliard system, ESAIM Math. Model. Numer. Anal. 48 (2014), 1061-1087. 5. P. Colli, G. Gilardi, P. Krejčí, J. Sprekels, A continuous dependence result for a nonstandard system of phase field equations, Math. Methods Appl. Sci. 37 (2014), 1318-1324. 6. P. Colli, G. Gilardi, P. Krejčí, J. Sprekels, A vanishing di usion limit in a nonstandard system of phase field equations, Evol. Equ. Control Theory 3 (2014), 257-275. 7. P. Colli, G. Gilardi, P. Podio-Guidugli, J. Sprekels, Well-posedness and long-time behavior for a nonstandard viscous Cahn–Hilliard system, SIAM J. Appl. Math. 71 (2011), 1849-1870. 8. P. Colli, G. Gilardi, P. Podio-Guidugli, J. Sprekels, Distributed optimal control of a nonstandard system of phase field equations, Contin. Mech. Thermodyn. 24 (2012), 437-459. 9. P. Colli, G. Gilardi, P. Podio-Guidugli, J. Sprekels, Continuous dependence for a nonstandard Cahn–Hilliard system with nonlinear atom mobility, Rend. Sem. Mat. Univ. Politec. Torino 70 (2012), 27-52. 10. P. Colli, G. Gilardi, P. Podio-Guidugli, J. Sprekels, Global existence for a strongly coupled Cahn– Hilliard system with viscosity, Boll. Unione Mat. Ital. (9) 5 (2012), 495-513. 11. P. Colli, G. Gilardi, P. Podio-Guidugli, J. Sprekels, An asymptotic analysis for a nonstandard Cahn–Hilliard system with viscosity, Discrete Contin. Dyn. Syst. Ser. S 6 (2013), 353-368. 12. P. Colli, G. Gilardi, P. Podio-Guidugli, J. Sprekels, Global existence and uniqueness for a singular /degenerate Cahn–Hilliard system with viscosity, J. Di erential Equations 254 (2013), 4217- 4244. 13. P. Colli, G. Gilardi, E. Rocca, J. Sprekels, Optimal distributed control of a di use interface model of tumor growth, preprint arXiv:1601.04567 [math.AP] (2016), 1-32. 14. P. Colli, G. Gilardi, J. Sprekels, Analysis and optimal boundary control of a nonstandard system of phase field equations, Milan J. Math. 80 (2012), 119-149. 15. P. Colli, G. Gilardi, J. Sprekels, Regularity of the solution to a nonstandard system of phase field equations, Rend. Cl. Sci. Mat. Nat. 147 (2013), 3-19. 16. P. Colli, G. Gilardi, J. Sprekels, A boundary control problem for the pure Cahn–Hilliard equation with dynamic boundary conditions, Adv. Nonlinear Anal. 4 (2015), 311-325. 17. P. Colli, G. Gilardi, J. Sprekels, A boundary control problem for the viscous Cahn–Hilliard equation with dynamic boundary conditions, Appl. Math. Optim. 73 (2016), 195-225. 18. P. Colli, G. Gilardi, J. Sprekels, On an application of Tikhonov’s fixed point theorem to a nonlocal Cahn–Hilliard type system modeling phase separation, J. Di erential Equations 260 (2016), 7940- 7964. 19. S. Frigeri, E. Rocca, J. Sprekels, Optimal distributed control of a nonlocal Cahn–Hilliard/Navier– Stokes system in 2D, SIAM J. Control Optim. 54 (2016), 221-250. 20. M. Hinterm¨uller, T. Keil, D. Wegner, Optimal control of a semidiscrete Cahn–Hilliard–Navier– Stokes system with non-matched fluid densities, preprint arXiv:1506.03591 [math.AP] (2015), 1- 35. 21. M. Hinterm¨uller, D.Wegner, Distributed optimal control of the Cahn–Hilliard system including the case of a double-obstacle homogeneous free energy density, SIAM J. Control Optim. 50 (2012), 388-418. 22. M. Hinterm¨uller, D. Wegner, Optimal control of a semidiscrete Cahn–Hilliard–Navier–Stokes system, SIAM J. Control Optim. 52 (2014), 747-772. 23. M. Hinterm¨uller, D. Wegner, Distributed and boundary control problems for the semidiscrete Cahn–Hilliard/Navier–Stokes system with nonsmooth Ginzburg–Landau energies, Isaac Newton Institute Preprint Series No. NI14042-FRB (2014), 1-29. 24. J. L. Lions, “Quelques méthodes de résolution des problèmes aux limites non linéaires”, Dunod Gauthier-Villars, Paris, 1969. 25. P. Podio-Guidugli, Models of phase segregation and diffusion of atomic species on a lattice, Ric. Mat. 55 (2006), pp. 105-118. 26. E. Rocca, J. Sprekels, Optimal distributed control of a nonlocal convective Cahn–Hilliard equation by the velocity in three dimensions, SIAM J. Control Optim. 53 (2015), 1654-1680. 27. J. Simon, Compact sets in the space Lp(0; T; B) , Ann. Mat. Pura Appl. (4) 146 (1987), pp. 65-96. 28. Q.-F. Wang, S.-i. Nakagiri, Weak solutions of Cahn–Hilliard equations having forcing terms and optimal control problems, Mathematical models in functional equations (Japanese) (Kyoto, 1999), Sῡrikaisekikenkyῡsho Kōkyῡroku No. 1128 (2000), 172-180. 29. X. Zhao, C. Liu, Optimal control of the convective Cahn–Hilliard equation, Appl. Anal. 92 (2013), 1028-1045. 30. X. Zhao, C. Liu, Optimal control for the convective Cahn–Hilliard equation in 2D case, Appl. Math. Optim. 70 (2014), 61-82. |