In this paper, we establish a representation of mild solutions to fully nonlocal stochastic evolution problems. Through the iterative technique and energy estimates, we obtain the existence and uniqueness of mild solution. Furthermore, we prove the existence of optimal control for fully nonlocal stochastic control problems with a non-convex cost function. Two examples are given at the end.
Citation: Yongqiang Fu, Lixu Yan. Fully nonlocal stochastic control problems with fractional Brownian motions and Poisson jumps[J]. AIMS Mathematics, 2021, 6(5): 5176-5192. doi: 10.3934/math.2021307
In this paper, we establish a representation of mild solutions to fully nonlocal stochastic evolution problems. Through the iterative technique and energy estimates, we obtain the existence and uniqueness of mild solution. Furthermore, we prove the existence of optimal control for fully nonlocal stochastic control problems with a non-convex cost function. Two examples are given at the end.
[1] | J. Sabatier, O. P. Agrawal, J. A. T. Machado, Advances in fractional calculus: Theoretical developments and applications in physics and engineering, Dordrecht: Springer, 2007. |
[2] | B. B. Mandelbrot, J. W. Van Ness, Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10 (1968), 422-437. doi: 10.1137/1010093 |
[3] | W. Dai, C. C. Heyde, Itô's formula with respect to fractional Brownian motion and its application, Int. J. Appl. Math. Stoch. Anal., 9 (1996), 439-448. doi: 10.1155/S104895339600038X |
[4] | J. Kemppainen, J. Siljander, R. Zacher, Representation of solutions and large-time behavior for fully nonlocal diffusion equations, J. Differ. Equations, 263 (2017), 149-201. doi: 10.1016/j.jde.2017.02.030 |
[5] | L. Li, J. Liu, L. Wang, Cauchy problems for Keller-Segel type time-space fractional diffusion equation, J. Differ. Equations, 265 (2018), 1044-1096. doi: 10.1016/j.jde.2018.03.025 |
[6] | S. Tindel, C. Tudor, F. Viens, Stochastic evolution equations with fractional Brownian motion, Probab. Theory Relat. Fields, 127 (2003), 186-204. doi: 10.1007/s00440-003-0282-2 |
[7] | T. Caraballo, M. Garrido-Atienza, T. Taniguchi, The existence and exponential behavior of solutions to stochastic delay evolution equations with a fractional Brownian motion, Nonlinear Anal., 74 (2011), 3671-3684. doi: 10.1016/j.na.2011.02.047 |
[8] | L. Duc, M. Garrido-Atienza, A. Neuenkirch, B. Schmalfuß, Exponential stability of stochastic evolution equations driven by small fractional Brownian motion with Hurst parameter in (1/2, 1), J. Differ. Equations, 264 (2018), 1119-1145. doi: 10.1016/j.jde.2017.09.033 |
[9] | M. Tang, Q. Meng, Stochastic evolution equations of jump type with random coefficients: Existence, uniqueness and optimal control, Sci. China Ser. F: Inf. Sci., 60 (2017), 118202. doi: 10.1007/s11432-016-9107-1 |
[10] | A. Gu, D. Li, B. Wang, H. Yang, Regularity of random attractors for fractional stochastic reaction-diffusion equations on $\mathbb{R}^{n}$, J. Differ. Equations, 264 (2018), 7094-7137. doi: 10.1016/j.jde.2018.02.011 |
[11] | L. Chen, Y. Hu, D. Nualart, Nonlinear stochastic time-fractional slow and fast diffusion equations on $\mathbb{R}^{d}$, Stoch. Proc. Appl., 129 (2019), 5073-5112. doi: 10.1016/j.spa.2019.01.003 |
[12] | H. M. Ahmed, M. M. El-Borai, A. S. O. El Bab, M. E. Ramadan, Approximate controllability of noninstantaneous impulsive Hilfer fractional integrodifferential equations with fractional Brownian motion, Bound. Value Probl., 2020 (2020), 1–25. doi: 10.1186/s13661-019-01311-5 |
[13] | H. M. Ahmed, M. M. El-Borai, M. E. Ramadan, Boundary controllability of nonlocal Hilfer fractional stochastic differential systems with fractional Brownian motion and Poisson jumps, Adv. Differ. Equations, 2019 (2019), 1–23. doi: 10.1186/s13662-018-1939-6 |
[14] | H. M. Ahmed, Approximate controllability via resolvent operators of Sobolev-type fractional stochastic integrodifferential equations with fractional Brownian motion and Poisson jumps, Bull. Iran. Math. Soc., 45 (2019), 1045-1059. doi: 10.1007/s41980-018-0183-x |
[15] | V. Barbu, M. Röckner, D. Zhang, Optimal control of nonlinear stochastic differential equations on Hilbert spaces, SIAM J. Control Optim., 58 (2020), 2383-2410. doi: 10.1137/19M1307615 |
[16] | G. Guatteri, F. Masiero, On the existence of optimal controls for SPDEs with boundary noise and boundary control, SIAM J. Control Optim., 51 (2013), 1909-1939. doi: 10.1137/110855855 |
[17] | P. Benner, C. Trautwein, A linear quadratic control problem for the stochastic heat equation driven by Q-Wiener processes, J. Math. Anal. Appl., 457 (2018), 776-802. doi: 10.1016/j.jmaa.2017.08.052 |
[18] | M. Fuhrman, Y. Hu, G. Tessitore, Stochastic maximum principle for optimal control of partial differential equations driven by white noise, Stoch. PDE: Anal. Comput., 6 (2018), 255-285. doi: 10.1007/s40072-017-0108-3 |
[19] | N. Durga, P. Muthukumar, Optimal control of fractional neutral stochastic differential equations with deviated argument governed by Poisson jumps and infinite delay, Optim. Control Appl. Methods, 40 (2019), 880-899. doi: 10.1002/oca.2515 |
[20] | G. M. Bisci, V. D. Rădulescu, R. Servadei, Variational methods for nonlocal fractional problems, Cambridge: Cambridge University Press, 2016. |
[21] | D. Nualart, Stochastic calculus with respect to fractional Brownian motion, Ann. Fac. Sci. Toulouse Math., 15 (2006), 63-78. doi: 10.5802/afst.1113 |
[22] | N. Ikeda, S. Watanabe, Stochastic differential equations and diffusion processes, Amsterdam: North-Holland, 1981. |
[23] | R. Situ, Theory of stochastic differential equations with jumps and applications: Mathematical and analytical techniques with applications to engineering, New York: Springer, 2005. |