Research article

An efficient modification to diagonal systematic sampling for finite populations

  • Received: 04 December 2020 Accepted: 07 March 2021 Published: 11 March 2021
  • MSC : 62D05

  • This paper presents a new modified diagonal systematic sampling method for the linear trend situation. For numerical illustration, data from the literature have been used to compare the proposed method's efficiency with some existing sampling schemes. The findings show that the proposed new systematic sampling method is more efficient than the existing sampling schemes. Moreover, the improvement in efficiency has also been shown in the case of a perfect linear trend. Mathematical conditions under which the new method is more efficient than the existing sampling schemes have been derived.

    Citation: Muhammad Azeem, Muhammad Asif, Muhammad Ilyas, Muhammad Rafiq, Shabir Ahmad. An efficient modification to diagonal systematic sampling for finite populations[J]. AIMS Mathematics, 2021, 6(5): 5193-5204. doi: 10.3934/math.2021308

    Related Papers:

  • This paper presents a new modified diagonal systematic sampling method for the linear trend situation. For numerical illustration, data from the literature have been used to compare the proposed method's efficiency with some existing sampling schemes. The findings show that the proposed new systematic sampling method is more efficient than the existing sampling schemes. Moreover, the improvement in efficiency has also been shown in the case of a perfect linear trend. Mathematical conditions under which the new method is more efficient than the existing sampling schemes have been derived.



    加载中


    [1] W. G. Madow, L. H. Madow, On the theory of systematic sampling, I, Ann. Math. Statist., 15 (1944), 1-24. doi: 10.1214/aoms/1177731312
    [2] J. Subramani, S. N. Gupta, G. Prabavathy, Circular systematic sampling in the presence of linear trend, Am. J. Math. Manage. Sci., 33 (2014), 1-19.
    [3] H. J. Chang, K. C. Huang, Remainder linear systematic sampling, Sankhya: Indian J. Stat. Ser. B, 62 (2000), 249-256.
    [4] J. Subramani, Diagonal systematic sampling scheme for finite populations. J. Indian Soc. Agric. Stat., 53 (2000), 187-195.
    [5] S. Sampath, V. Varalakshmi, Diagonal circular systematic sampling, Model Assisted Stat. Appl., 3 (2008), 345-352.
    [6] J. Subramani, Further results on diagonal systematic sampling for finite populations, J. Indian Soc. Agric. Stati., 63 (2009), 277-282.
    [7] J. Subramani, A modification on linear systematic sampling for odd sample size, Bonfring Int. J. Data Min., 2 (2012), 32-36. doi: 10.9756/BIJDM.1354
    [8] J. Subramani, S. N. Gupta, Generalized modified linear systematic sampling scheme for finite populations, Hacet. J. Math. Stat., 43 (2014), 529-542.
    [9] W. G. Madow, On the theory of systematic sampling Ⅲ-comparison of centered and random start systematic sampling, Ann. Math. Statist., 24 (1953), 101-106. doi: 10.1214/aoms/1177729087
    [10] F. Yates, Systematic sampling. Philos. T. R. Soc A, 241 (1948), 345-377.
    [11] D. R. Bellhouse, J. N. K Raom, Systematic sampling in the presence of linear trends, Biometrika, 62 (1975), 694-697.
    [12] D. R. Bellhouse, 6 Systematic sampling, Handbook Stat., 6 (1988), 125-145.
    [13] R. L. Fountain, P. L. Pathak, Systematic and non-random sampling in the presence of linear trends, Commun. Stat-Theory M., 18 (1989), 2511-2526. doi: 10.1080/03610928908830047
    [14] S. Sampath, N. Uthayakumaran, Markov systematic sampling, Biometrical J., 40 (1998), 883-895.
    [15] J. Subramani, A modification on linear systematic sampling, Model Assisted Stat. Appl., 8 (2013), 215-227.
    [16] D. G. Horvitz, D. J. Thompson, A generalization of sampling without replacement from finite universe, J. Am. Stat. Assoc., 47 (1952), 663-685. doi: 10.1080/01621459.1952.10483446
    [17] V. M. Joshi, Note on the admissibility of the sen-yates-grundy variance estimator and murthy's estimator and its variance estimator for samples of size two, Sankhyā: Indian J. Stat. Ser. A, 32 (1970), 431-438.
    [18] F. Yates, P. M. Grundy, Selection without replacement from within strata with probability proportional to size, J. R. Stat. Soc. Ser. B, 15 (1953), 253-261.
    [19] T. K. Pandey, V. Kumar, Systematic sampling for non-linear trend in milk yield data, J. Reliab. Stat. Stud., 7 (2014), 157-168.
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1986) PDF downloads(105) Cited by(2)

Article outline

Figures and Tables

Tables(3)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog