Processing math: 100%
Research article

Novel efficient estimators of finite population mean in stratified random sampling with application

  • Received: 09 December 2024 Revised: 07 February 2025 Accepted: 04 March 2025 Published: 11 March 2025
  • MSC : 62D

  • Unbiased estimators are valuable when no auxiliary information is available beyond the primary study variables. However, once auxiliary information is accessible, biased estimators with smaller Mean Square Error (MSE) often outperform unbiased estimators that have large variances. We sought to develop new estimators that incorporate a single auxiliary variable in stratified random sampling. This study contributes to the field by introducing two distinct families of estimators designed to estimate the finite population mean. We conducted a theoretical evaluation of the estimators' performance by examining bias and MSE derived under first-order approximation. Additionally, we established the theoretical conditions necessary for the proposed estimator families to exhibit superior performance compared with existing alternatives. Empirical and simulation-based studies demonstrated significant improvements in estimators over competing estimators for finite-population parameter estimation.

    Citation: Khazan Sher, Muhammad Ameeq, Muhammad Muneeb Hassan, Basem A. Alkhaleel, Sidra Naz, Olyan Albalawi. Novel efficient estimators of finite population mean in stratified random sampling with application[J]. AIMS Mathematics, 2025, 10(3): 5495-5531. doi: 10.3934/math.2025254

    Related Papers:

    [1] Tolga Zaman, Cem Kadilar . Exponential ratio and product type estimators of the mean in stratified two-phase sampling. AIMS Mathematics, 2021, 6(5): 4265-4279. doi: 10.3934/math.2021252
    [2] Sohaib Ahmad, Sardar Hussain, Muhammad Aamir, Faridoon Khan, Mohammed N Alshahrani, Mohammed Alqawba . Estimation of finite population mean using dual auxiliary variable for non-response using simple random sampling. AIMS Mathematics, 2022, 7(3): 4592-4613. doi: 10.3934/math.2022256
    [3] Khazan Sher, Muhammad Ameeq, Sidra Naz, Basem A. Alkhaleel, Muhammad Muneeb Hassan, Olayan Albalawi . Developing and evaluating efficient estimators for finite population mean in two-phase sampling. AIMS Mathematics, 2025, 10(4): 8907-8925. doi: 10.3934/math.2025408
    [4] Olayan Albalawi . Estimation techniques utilizing dual auxiliary variables in stratified two-phase sampling. AIMS Mathematics, 2024, 9(11): 33139-33160. doi: 10.3934/math.20241582
    [5] Abdullah Mohammed Alomair, Weineng Zhu, Usman Shahzad, Fawaz Khaled Alarfaj . Non-parametric calibration estimation of distribution function under stratified random sampling. AIMS Mathematics, 2025, 10(2): 4457-4472. doi: 10.3934/math.2025205
    [6] Shashi Bhushan, Anoop Kumar, Md Tanwir Akhtar, Showkat Ahmad Lone . Logarithmic type predictive estimators under simple random sampling. AIMS Mathematics, 2022, 7(7): 11992-12010. doi: 10.3934/math.2022668
    [7] Anoop Kumar, Renu Kumari, Abdullah Mohammed Alomair . Optimal classes of memory-type estimators of population mean for temporal surveys. AIMS Mathematics, 2025, 10(1): 1008-1025. doi: 10.3934/math.2025048
    [8] Yasir Hassan, Muhammad Ismai, Will Murray, Muhammad Qaiser Shahbaz . Efficient estimation combining exponential and ln functions under two phase sampling. AIMS Mathematics, 2020, 5(6): 7605-7623. doi: 10.3934/math.2020486
    [9] Mehreen Fatima, Saman Hanif Shahbaz, Muhammad Hanif, Muhammad Qaiser Shahbaz . A modified regression-cum-ratio estimator for finite population mean in presence of nonresponse using ranked set sampling. AIMS Mathematics, 2022, 7(4): 6478-6488. doi: 10.3934/math.2022361
    [10] Xuechen Liu, Muhammad Arslan . A general class of estimators on estimating population mean using the auxiliary proportions under simple and two phase sampling. AIMS Mathematics, 2021, 6(12): 13592-13607. doi: 10.3934/math.2021790
  • Unbiased estimators are valuable when no auxiliary information is available beyond the primary study variables. However, once auxiliary information is accessible, biased estimators with smaller Mean Square Error (MSE) often outperform unbiased estimators that have large variances. We sought to develop new estimators that incorporate a single auxiliary variable in stratified random sampling. This study contributes to the field by introducing two distinct families of estimators designed to estimate the finite population mean. We conducted a theoretical evaluation of the estimators' performance by examining bias and MSE derived under first-order approximation. Additionally, we established the theoretical conditions necessary for the proposed estimator families to exhibit superior performance compared with existing alternatives. Empirical and simulation-based studies demonstrated significant improvements in estimators over competing estimators for finite-population parameter estimation.



    The selection of biased and unbiased estimators has drawn considerable attention from researchers in the field of statistical estimation. However, researchers frequently employ biased estimators in scenarios with modest variations, ensuring their estimates closely resemble the underlying population parameter on average. These approaches typically result in greater variety, which reduces their usefulness in most cases. As more information becomes available, the estimation of scenario changes favors biased estimators with a lower mean square error (MSE), not with standing their bias. This feature increased the precision of the estimator. Using supplementary data with a strong relationship to the variable under study is a standard procedure in the field of survey sampling. This methodology frequently enhances the accuracy and dependability of the estimators during both the design and estimation phases. Selecting pertinent additional data with care can significantly reduce the mean square error (MSE) of the estimators used to estimate the population parameters. As ratio estimators may leverage the current link between the study and auxiliary variables, they have become popular in support of this goal. Ratio estimators are useful tools for increasing the accuracy of estimates when calculating the population total or average. Significant progress has been made in this sector as a result of numerous academics that have created a range of ratio and regression-based estimators, each based on a different transformation [1], significantly increasing the amount of knowledge in this field. Within the SSRS framework, some studies have presented estimators based on mixed ratio-type techniques. Koyuncu et al. [2] Examined the estimators developed by [1] within the context of SSRS. Moreover, Koyuncu et al. [3] provided a combined version of the SSRS estimator that had been put forth by [5]. Singh et al. [6] Proposed an extensive set of estimators that utilize supplemental data in the SSRS. Singh et al. [7] generated an extraordinarily effective set of estimators using the same SSRS architecture. Together with the references included in these publications, the [8] provided a thorough assessment.

    Stratified sampling with auxiliary variables has diverse applications in physics, engineering, and environmental sciences. In physics, it enhances the particle density estimates in high-energy collisions, cosmological parameter estimates, and material property predictions. Engineering applications include reliability analysis, signal processing, and network-traffic estimation. Specific examples have revealed their utility in estimating ocean currents, predicting structural failures, and optimizing energy systems. These applications underscore the flexibility and potential of stratified sampling in improving the estimation accuracy and efficiency [9].

    Our primary goal of this study, in the context of stratified random sampling, is to develop and evaluate efficient estimators that utilize only one additional variable. Furthermore, we describe and assess two novel groups of mean estimators for a finite population. Our investigation includes a thorough examination of their bias and MSE up to the first level of approximation, which yields useful insights into their performance.

    Researchers constantly strive for progress in their respective domains. The proposed estimator is a significant improvement in the field of sampling methodology. The adoption of this strategy enhances the development of statistical methods, leading to a constant enhancement in the precision and reliability of estimating population parameters. The suggested estimator is specifically developed to offer improved accuracy in calculating the mean of a finite population. By strategically including a single auxiliary variable in each stratum, it optimizes the use of available information, leading to more precise estimations in comparison to current approaches.

    In stratified random sampling, precise estimation of the finite population mean is crucial. Estimators, such as the traditional stratified sampling estimator, ratio estimator, and regression estimator, often rely on simplistic assumptions or fail to effectively hitch the correlation between the study and auxiliary variable. Recently developed estimators, such as the generalized regression estimator and the exponential ratio estimator, offer enhancements, but still have limitations. To address these gaps, we introduce new estimators that incorporate a single auxiliary variable into stratified random sampling. These novel estimators aim to enhance the estimation accuracy and efficiency by better capturing the complex relationships between variables. The proposed estimators are significant, as they provide more reliable and precise estimates, especially in scenarios with non-linear relationships or non-normal distributions, thereby filling an important methodological gap in the survey sampling literature. Simulation studies and empirical evaluations demonstrate the superiority of the proposed estimators over existing ones, making them valuable tools for practitioners and researchers seeking improved estimation strategies.

    Let us take population of size N that comprises L strata (a group of homogenous units) such that Lh=1Nh=N where Nh shows the hth stratum size (h = 1, 2, ..., L). Let each stratum sampled nh units through simple random sample without replacement (SRSWOR) scheme, such that, Lh=1nh=n. Let us suppose that the ith pair of the sample (yhi, xhi) represent the values of y (study variable) and x (auxiliary variable) on the ith unit of the hth stratum, where i = 1, 2, 3, ... Nh.

    To obtain the expressions for the Bias and MSE of the estimators, we supposed the various properties listed below to be true.

    Suppose ¯yst=Lh=1Wh¯yh=¯Y(1+ε0), ¯xst=Lh=1Wh¯xh=¯X(1+ε1) are the overall means of the study and auxiliary variables obtained through a stratified random sample, respectively. Thus the relative error terms ε0 and ε1 satisfies the below properties.

    E(ε0)=E(ε1)=0        and        E(ε20)=C2y=Lh=1whλhC2yh=V20        E(ε21)=C2x=Lh=1whλhC2xh=V02E(ε0ε1)=Lh=1w2hλhρyxhCyhCxh=V11

    where,

    C2yh=S2yh¯Y2 and C2xh=S2xh¯X2 are population coefficient of variations of the study and auxiliary variables, respectively. λh=1nh1Nh is the finite population correction (fpc), wh=NhN is the stratum weight, and R=ˉXˉY.

    Several estimators have been devised to evaluate the finite population mean in the context of stratified random sampling with a single auxiliary variable. Researchers and statisticians have studied several approaches, each designed to utilize information contained in the auxiliary variable to improve the accuracy of the population parameters estimates. The estimators in this context are designed to address the complexities of finite population sampling, considering the stratified structure and the utilization of a single auxiliary variable as a valuable tool for more robust and reliable mean estimation [4]. The conventional estimator for the population mean in the context of stratified random sampling is an unbiased estimator and is defined as follows:

    Tst=Lh=1wh¯yh. (3.1)

    The formula for the variance of the conventional unbiased estimator is provided as:

    MSE(Tst)=¯Y2V20. (3.2)

    Though the usual estimator is unbiased, its variance is large. Therefore, when auxiliary information X­i about the study variable Yi is available, then the researchers in [10] suggest the traditional ratio estimator as

    Tr=ˉystˉXˉxst. (3.3)

    The bias of Cochran's ratio estimator along with its MSE is given as:

    Bias(Tr)=¯Y(V02V11), (3.4)
    MSE(Tr)=¯Y2(V20+V022V11). (3.5)

    Bahl et al. [11] suggested an exponential ratio-type estimator. The functional form, Bias, and MSE of Bahl and Tuteja's estimators are as follows:

    TBT=¯ystexp[¯X¯xst¯X+¯xst] (3.6)
    Bias(TBT)=¯Y(38V0212V11) (3.7)
    MSE(TBT)=¯Y2(V20+V0242V11). (3.8)

    Based on the work of [12,13] a ratio estimator is introduced where the population coefficient of variation is known.

    TKC=ˉyst(ˉX+Cx)(ˉxst+Cx). (3.9)

    The estimator's first-order bias and MSE are discussed as follows:

    Bias(TKC)=ˉY(ϕ2V02ϕV11) (3.10)
    MSE(TKC)=ˉY2(V20+ϕ2V022ϕV11). (3.11)

    Where ϕ=Lh=1whˉXh(ˉX+Cx).

    Upadhyaya et al. [14] suggested a modified version of [15] by multiplying the coefficient of kurtosis by the mean of the auxiliary variable:

    TUS=¯ystLh=1wh(¯Xhβ2h(x)+Cxh)(¯xhβ2h(x)+Cxh). (3.12)

    The MSE and Bias of this estimator are:

    Bias(TUS)=¯Y(θV02V11) (3.13)
    MSE(TUS)=¯Y2(V20+θ2V022θV11). (3.14)

    Here, θ=¯Xhβ2h(x)¯Xhβ2h(x)+Cxh.

    A general family of estimators of the population mean was proposed by [16] in response to the work of [17].

    Tch=ˉyst[aˉX+bα(aˉxst+b)+(1α)(aˉX+b)]τ. (3.15)

    Substituting different values of the constants a, b, τ ( = 0, 1, -1), and α, we obtain several estimators. The bias and MSE of the estimator are:

    Bias(Tch)=ˉY(τ(τ+1)2α2π2V02ατπV11) (3.16)
    MSE(Tch)=ˉY2(V20+α2τ2π2V022ατπV11) (3.17)

    π=a¯Xa¯X+b, α=V11πτV02 and

    based on [18,19], introduced a class of exponential estimators for the population mean in the SRSWOR scheme is introduced.

    TO=¯yst[α1exp{a(¯X¯xst)a(¯xst+¯X)+2b}+α2exp{a(¯xst¯X)a(¯xst+¯X)+2b}]. (3.18)

    The estimator's MSE is obtained as,

    MSE(TO)=V00V22V212V00+V222V12 (3.19)

    where,

    V00=Lh=1w2hλh¯Y2h[C2yh+14φC2xh(φ4K)],
    V22=Lh=1w2hλh¯Y2h[C2yh+14φC2xh(φ+4K)]
    V12=Lh=1w2hλh¯Y2h(C2yh14φ2C2xh)
    φ=a¯Xa¯X+bandK=ρhCyhCxh.

    Motivated by [20,21], proposed a ratio cum exponential type estimator is proposed, as follows:

    TG=ˉyst[ˉxstˉXst]α2exp[ˉXstˉxstˉXst+ˉxst]. (3.20)

    Here, ˉxst=Lh=1wh(ahˉxh+bh)andˉXst=Lh=1wh(ahˉXh+bh), and ahandbh are functions of the known parameters like coefficient of Kurtosis, coefficient of variations etc. of the auxiliary variable.

    The Bias and MSE of the above estimator are:

    Bias(TG)=ˉY[12{α2(α21)θ22α2θ}V02+(α2+θ)V11] (3.21)
    MSE(TG)=Lh=1w2hλh(S2yh+(α2θ)2S2xh+2(α2θ)RSyxh) (3.22)

    where θ=aˉX2(aˉX+b) and α2 are minimizing constant.

    For α2(opt)=Lh=1w2hλh(θhSxhRSyh)Lh=1Sxh the optimum MSE converges to Regression estimator as,

    MSE(TG)=ˉY2V20(1ρc). (3.23)

    The factor ρc represents the aggregate correlation coefficient over all strata and is defined as,

    ρ2c=(Lh=1w2hλhρhSyhSxh)2Lh=1w2hλhS2xhLh=1w2hλhS2yh.

    Motivated by [22,23] the following difference exponential ratio estimator are proposed:

    TNK=[k1ˉyst+k2{ˉxstˉX}γ]exp[Ast(ˉxstˉX)Ast(ˉxstˉX)+2Bst]. (3.24)

    Here, Ast, Bst, and γ are the generalizing constants, and k1 and k2 are the minimizing constants. The Koyuncu estimator's first order of approximated Bias and MSE are given as:

    BIAS(TNK)=ˉY(k11)+k1ˉYδ(38δV0212V11)+k2{12γ(γ+34δ2δ1)V02} (3.25)
    MSE(TNK)=ˉY2+ˉY2k21A+k22B+k1ˉY2C+k2ˉYD+k1k2ˉYE. (3.26)

    Here, δ=AstˉXAstˉX+Bst. For optimum values of k1=DE2BC4ABE2 and k2=ˉYCE2AD4ABE2 the MSE is given as:

    MSE(TNK)=ˉY2[1AD2+BC2CDE4ABE2]. (3.27)

    Here, A=1+V20+δ2V022δV11, B=1+(2γ2+δ2γ2δγ)V02, C=δV11234δ2V02, D={δγ34δ2γ(γ1)}V022 and E={2δ2+γ2γ(2δ+1)}V02+2+2(γδ)V11.

    Tiwari et al. [24] proposed the following difference cum ratio exponential estimator as

    TTSS={k3ˉyst+k4(ˉXˉxst)}[astˉX+bstcstˉxst+dst]α3[exp{ˉXˉxstˉX+ˉxst}]β. (3.28)

    Here, ast, bst, cst, and dst are either known parameters or some functions of the parameters of X, α3, and β which are the generalizing constants that can take values like (1, 0, -1) etc, and k3 and k4 are the minimizing constants. The estimator's bias and MSE are provided:

    Bias(TTSS)=ˉYst[(μstk31)+μst{((β2+α3υst)k4R+(β2+α3υst)k32+(β2+α3υst)2k32)V20(β2+α3υst)k3V11}]. (3.29)

    Here, μst=[astˉX+bstcstˉX+dst]α3 and υst=[cstˉXcstˉX+dst]

    MSE(TTSS)=ˉY2st[1+A1k23+B1k24C1k32D1k4+2E1k3k4]. (3.30)

    For k3=B1C12D1E12(A1B1E21) and k4=2A1D1C1E12(A1B1E21), the lowest possible MSE is calculated as:

    MSE(TTSS)ˉY2st[1B1C21+4A1D214C1D1E12(A1B1E21)]. (3.31)

    Here, A1=μ2st[1+V20+(V024V11)(β2+α3υst)+2V02(β2+α3υst)2], B1=R2μ2stV02, C1=μst[2+(V022V11)(β2+α3υst)+V02(β2+α3υst)2], D1=RμstV02(β2+α3υst) and E1=Rμ2stV11. Javed et al. [25] proposed the following family of estimator estimators,

    TMJ=[ˉyst2{exp[ˉxstˉXˉxst+ˉX]+exp[ˉXˉxstˉxst+ˉX]}+k5ˉyst+k6(ˉXˉxst)]exp[astˉX+bstastˉxst+bst1]. (3.32)

    Here, the constants a, b are generalizing elements. The bias of the proposed estimator is given as,

    Bias(TMJ)=ˉYst[V02(1+20η28)ηV11]+k5(ˉYst+5ˉYstη2V022ˉYstηV11)+ˉXstηk6V02. (3.33)

    For k5=B2C22D2E22(A2B2E22) and k6=R(2A2D2C2E2)2(A2B2E22) a minimal value for MSE is expressed as,

    MSE(TMJ)min=ˉY2st[(V20+η2V022ηV11)4A2D22+B2C224C2D2E24(A2B2E22)]. (3.34)

    Here, A2=1+V20+4η2V02, B2=R2V02, C2=V20+(4η2+18)V023ηV11, D2=V11ηV02 and E2=V112ηV02.

    The estimators suggested in this study represent significant improvements in the field of finite population estimation. In contrast to conventional unbiased estimators, which are appropriate when only the primary study variable is accessible, these innovative estimators designed to exploit the potential of supplementary information. By carefully including only one auxiliary variable in the estimation process, we achieved sophisticated equilibrium between bias and precision.

    Two discrete estimator families were carefully designed and assessed using stratified random sampling. The aforementioned estimators were specifically designed to address the inherent difficulties associated with estimating the average of a determinate population. Consequently, they provided a novel approach for enhancing the accuracy of the estimation.

    Muneer et al. [26] proposed the following regression-exponential-Ratio type estimator

    TS=[w1ˉyw2(ˉxˉX)][α{2exp(ˉzˉZˉz+ˉZ)}+(1α)exp(ˉZˉzˉz+ˉZ)]. (4.1a)

    Here, w1 and w2 are minimizing constants and α takes values either 1 or 0 to have ratio exponential or product exponential estimators, respectively. Similarly, Shabbir et al. [28] proposed the below estimator

    TSGO=[w3ˉy+w4]exp[u(ˉXˉx)u(ˉX+ˉx)+2v]. (4.1b)

    Here, w3 and w4 are the generalizing constants and u, v are some known suitably chosen parameters of the auxiliary variable or some real valued constants.

    In light of the work of [26,28], we propose the following estimator:

    Tpro1=(S1ˉyst+S2)[(ˉXstˉxst){2exp[ust(ˉxstˉXst)ust(ˉXst+ˉxst)+2vst]}+(1)(ˉxstˉXst)exp[ust(ˉXstˉxst)ust(ˉXst+ˉxst)+2vst]]. (4.1.1)

    Here, S1 and S2 are optimizing constants, whose values are obtained so that the MSE is minimum, can take values from 0 to 1 and the generalizing constants u and v are to be replaced by the values of the population parameters or some function of the parameters of the supplementary variable.

    Tpro1=(S1ˉYst(1+ε0)+S2)[(ˉXstˉXst(1+ε1)){2exp[ust(ˉXst(1+ε1)ˉXst)ust(ˉXst+ˉXst(1+ε1))+2vst]}+(1)(ˉXst(1+ε1)ˉXst)exp[ust(ˉXstˉXst(1+ε1))ust(ˉXst+ˉXst(1+ε1))+2vst]]. (4.1.2)

    After simplification and application of different series, the proposed estimator is converted to the following form:

    Tpro1=[S1ˉYst(1+ε0)+S2][1+ϑ1ε1ϑ2ε21]. (4.1.3)

    Here, ϑ1=1η22 and ϑ2=+(12)η+18(32)η2 and η=uˉXstuˉXst+v

    Tpro1=S1ˉYst(1+ε0+ϑ1ε1+ϑ1ε0ε1ϑ2ε21)+S2(1+ϑ1ε1ϑ2ε21). (4.14)

    Now, subtracting ˉYst from both sides, we have:

    Tpro1ˉYst=S1ˉYst(1+ε0+ϑ1ε1+ϑ1ε0ε1ϑ2ε21)+S2(1+ϑ1ε1ϑ2ε21)ˉYst. (4.15)

    When we apply expectation to both sides of the previous equation, we get the following bias expression:

    Bias(Tpro1)=S1ˉYst(1+ϑ1V11ϑ2V02)+S2(1ϑ2V02)ˉYst. (4.16)

    To obtain the MSE expression, we take the square of both sides of the equation

    (Tpro1ˉYst)2=S21ˉY2st(1+ε20+(ϑ212ϑ2)ε21+4ϑ1ε0ε1)+S22(1+(ϑ212ϑ2)ε21)                              +ˉY2st2S1ˉY2st(1ϑ2ε21+ϑ1ε0ε1)2S2ˉYst(1ϑ2ε21)                              +2S1S2ˉYst(1+(ϑ212ϑ2)ε21+2ϑ1ε0ε1). (4.1.7)

    After taking expectation the MSE expression obtained as,

    MSE(Tpro1)=S21ˉY2st(1+V20+(ϑ212ϑ2)V02+4ϑ1V11)+S22(1+(ϑ212ϑ2)V02)                              +ˉY2st2S1ˉY2st(1ϑ2V02+ϑ1V11)2S2ˉYst(1ϑ2V02)                              +2S1S2ˉYst(1+(ϑ212ϑ2)V02+2ϑ1V11) (4.1.8)
    MSE(Tpro1)=S21ˉY2stApr+S22Bpr+ˉY2st2S1ˉY2stCpr2s2ˉYstDpr+2S1S2ˉYstEpr. (4.1.9)

    Here, Apr=1+V20+(ϑ212ϑ2)V02+4ϑ1V11, Bpr=1+(ϑ212ϑ2)V02, Cpr=1ϑ2V02+ϑ1V11, Dpr=1ϑ2V02 and Epr=1+(ϑ212ϑ2)V02+2ϑ1V11.

    Now, let differentiate the MSE equation to obtain the values of S1 and S2 to have minimum MSE.

    MSE(Tpro1)S1=0 and MSE(Tpro1)S2=0. So, we obtain:

    S1ˉY2stApr+S2ˉYstEprˉY2stCpr=0 (4.1.10)
    S1ˉYstEpr+S2BprˉYstDpr=0. (4.1.11)

    Solving Eqs (4.1.10) and (4.1.11), we gain the following optimal values of S1=BprCprDprEprAprBprE2pr and S2=¯Yst(AprDprCprEpr)AprBprE2pr. With these values, the minimum MSE adopts the below form:

    MSE(Tpro1)minˉY2st{1AprD2pr+BprC2pr2CprDprEprAprBprE2pr}. (4.1.12)

    Taking some insights from the work of [26,27,28], we propose the following class of estimators.

    Tpro=(T1ˉyst+T2)[(ˉXstˉxst)+(1)(ˉxstˉXst)]exp[ust(ˉXstˉxst)ust(ˉXst+ˉxst)+2vst]. (4.2.1)

    The values of optimizing constants T1 and T2 are obtained so that the MSE is minimum. The difference equation up-to first order of approximation of the proposed estimator in terms of errors is expressed as

    Tpro2ˉYst=[(T11)ˉYst+T1ˉYst(ε0δ1ε1+δ2ε21δ1ε0ε1)+T2(1δ1ε1+δ2ε21)]. (4.2.2)

    After taking the expectation the bias of the suggested estimator is given as,

    Bias(Tpro2)=(T11)ˉYst+T1ˉYst(δ2V02δ1V11)+T2(1+δ2V02). (4.2.3)

    Here, δ1=12η+21 and δ2=+12η(21)+38η2.

    Squaring both sides of the above (4.2.2) difference equation and using first order of approximation, we have,

    E(Tpro2ˉYst)2=[(T11)2ˉY2st+T21ˉY2st(V20+(δ21+2δ2)V024δ1V11)+T22(1+(δ21+2δ2)V02)2T1ˉY2st(δ2V02δ1V11)2T2ˉYst(1+δ2V02)+2T1T2ˉYst(1+(δ21+2δ2)V022δ1V11)] (4.2.4)

    or

    MSE(Tpro2)=[(T11)2ˉY2st+T21ˉY2st(V20+(δ21+2δ2)V024δ1V11)+T22(1+(δ21+2δ2)V02)2T1ˉY2st(δ2V02δ1V11)2T2ˉYst(1+δ2V02)+2T1T2ˉYst(1+(δ21+2δ2)V022δ1V11)] (4.2.5)

    or

    MSE(Tpro2)=[(T11)2ˉY2st+T21ˉY2stAp+T22Bp2T1ˉY2stCp2T2ˉYstDp+2T1T2ˉYstEp]. (4.2.6)

    Here, Ap=(V20+(δ21+2δ2)V024δ1V11), Bp=(1+(δ21+2δ2)V02), Cp=(δ2V02δ1V11), Dp=(1+δ2V02) and Ep=(1+(δ21+2δ2)V022δ1V11).

    For optimum values of T1=[BpCpDpEp+BpApBpE2p+Bp] and T2=[¯Y(ApDpCpEp+DpEp)ApBpE2p+Bp], the least possible value of the MSE up to the first order of approximation is shown as

    MSE(Tpro2)minˉY2st{1ApD2p+BpC2p2CpDpEp+Bp+2BpCpD2p2DpEpApBpE2p+Bp}. (4.2.7)

    In this section, we define the conditions that must be met for the suggested estimators to outperform the currently used estimating methods in terms of efficiency.

    Condition (ⅰ)

    By comparing (3.2) and (4.1.12), MSE(Tpro1)MSE(Tst) if

    [(V201)+1]>0. (5.1.1)

    Here, 1=AprD2pr+BprC2pr2CprDprEprAprBprE2pr

    Condition (ⅱ)

    By comparing (3.5) and (4.1.12), MSE(Tpro1)MSE(Tr) if

    [V20+V022V111+1]>0. (5.1.2)

    Condition (ⅲ)

    By comparing (3.8) and (4.1.12), MSE(Tpro1)MSE(TSD) if

    (V20+14V02V11)1+1>0. (5.1.3)

    Condition (ⅳ)

    By comparing (3.11) and (4.1.12), MSE(Tpro1)MSE(TBT) if

    (V20+ϕ2V022ϕV11)1+1>0. (5.1.4)

    Condition (ⅴ)

    By comparing (3.14) and (4.1.12), MSE(Tpro1)MSE(TUS) if

    (V20+θ2V022θV11)1+1>0. (5.1.5)

    Condition (ⅵ)

    By comparing (3.17) and (4.1.12), MSE(Tpro1)MSE(TCh) if

    (V20+α2g2π2V022αgπV11)1+1>0. (5.1.6)

    Condition (ⅶ)

    By comparing (3.20) and (4.1.12), MSE(Tpro1)MSE(TO) if

    [V00V22V212V00+V222V12]ˉY2[11]>0. (5.1.7)

    Condition (ⅷ)

    By comparing (3.24) and (4.1.12), MSE(Tpro1)MSE(TG) if

    [V20(1ρst)1+1]>0. (5.1.8)

    Condition (ⅸ)

    By comparing (3.28) and (4.1.12), MSE(Tpro1)MSE(TNK) if

    1AD2+BC2CDE4ABE2>0. (5.1.9)

    Condition (ⅹ)

    By comparing (3.32) and (4.1.12), MSE(Tpro1)MSE(TTSS) if

    1[B1C21+4A1D214C1D1E12(A1B1E21)]>0. (5.1.10)

    Condition (xi)

    By comparing (3.35) and (4.1.12) MSE(Tpro1)MSE(TMJ) if

    (V20+η2V022ηV11)+1[4A2D22+B2C224C2D2E24(A2B2E22)]>0. (5.1.11)

    Condition (ⅰ)

    By comparing (3.2) and (4.2.7), MSE(Tpro2)MSE(Tst) if

    [(V201)+23]>0. (5.2.1)

    Where, 2=ApB2p+BpC2p2CpDpEp+Bp+2BpCpD2p2DpEp and 3=ApBpE2p+Bp

    Condition (ⅱ)

    By comparing (3.5) and (4.2.7), MSE(Tpro2)MSE(Tr) if

    [V20+V022V111+23]>0. (5.2.2)

    Condition (ⅲ)

    By comparing (3.8) and (4.2.7), MSE(Tpro2)MSE(TSD) if

    (V20+14V02V11)1+23>0. (5.2.3)

    Condition (ⅳ)

    By comparing (3.11) and (4.2.7), MSE(Tpro2)MSE(TBT) if

    (V20+ϕ2V022ϕV11)1+23>0. (5.2.4)

    Condition (ⅴ)

    By comparing (3.14) and (4.2.7), MSE(Tpro2)MSE(TUS) if

    (V20+θ2V022θV11)1+23>0. (5.2.5)

    Condition (ⅵ)

    By comparing (3.17) and (4.2.7), MSE(Tpro2)MSE(TCh) if

    (V20+α2g2π2V022αgπV11)1+23>0. (5.2.6)

    Condition (ⅶ)

    By comparing (3.20) and (4.2.7), MSE(Tpro2)MSE(TO) if

    [V00V22V212V00+V222V12]ˉY2[123]>0. (5.2.7)

    Condition (ⅷ)

    By comparing (3.24) and (4.2.7), MSE(Tpro2)MSE(TG) if

    [V20(1ρst)1+23]>0. (5.2.8)

    Condition (ⅸ)

    By comparing (3.28) and (4.2.7), MSE(Tpro2)MSE(TNK) if

    23AD2+BC2CDE4ABE2>0. (5.2.9)

    Condition (ⅹ)

    By comparing (3.32) and (4.2.7), MSE(Tpro2)MSE(TTSS) if

    23[B1C21+4A1D214C1D1E12(A1B1E21)]>0. (5.2.10)

    Condition (xi)

    By comparing (3.35) and (4.2.7), MSE(Tpro2)MSE(TMJ) if

    (V20+η2V022ηV11)+23[4A2D22+B2C224C2D2E24(A2B2E22)]>0. (5.2.11)

    The above theorems are important for the development of conditions under which the novel estimators outperform the suggested estimators. If these conditions hold, then the novelty of the estimators is guaranteed. In other words, these assumptions are related to the efficiency of the proposed estimator.

    To check the performance of the proposed estimator relative to the classical estimator, the following data sets were considered (see Table 1).

    Table 1.  Summary statistics of all the data sets.
    Data Stratum Nh nh Yh Xh Syh Sxh ρyxh Cyh Cxh
    I 1 18 8 85572.11 414.5556 248216 521.68 0.3473 2.9007 1.2584
    2 18 8 19293.61 257 37979.33 365.70 0.9796 1.9685 1.423
    1 18 8 162979.3 962.0556 255887.7 307.95 0.1447 1.5701 0.3202
    2 18 8 134458 1146.722 50235.82 469.93 0.787 0.3736 0.4098
    1 10 4 149.7 1630 102.17 13.470 -0.779 0.063 0.09
    2 10 4 102.6 2036 103.26 12.610 -0.503 0.050 0.122
    1 127 31 703.74 20804.59 883.835 30486.75 0.937 1.256 1.465
    2 117 21 413 9211.79 644.922 15180.77 0.996 1.562 1.648
    3 103 29 573.17 14309.3 1033.467 27549.70 0.291 1.803 1.925
    4 170 38 424.66 9478.85 810.585 18218.93 0.983 1.909 1.922
    5 205 22 267.03 5569.95 403.654 8497.776 0.989 1.512 1.526
    6 201 39 393.84 12997.59 711.723 23094.14 0.965 1.807 1.777
    1 106 9 1536 127 49189 6425 0.82 4.18 2.02
    2 106 17 2212 117 57461 11552 0.86 5.22 2.1
    3 94 38 9384 103 160757 29907 0.9 3.19 2.22
    4 171 67 5588 170 285603 28643 0.99 5.13 3.84
    5 204 7 967 205 45403 2390 0.71 2.47 1.75
    6 173 2 404 201 18794 946 0.89 2.34 1.91

     | Show Table
    DownLoad: CSV

    Data Ⅰ: (source: [29])

    (The two strata are Stratum 1: Rawalpindi, Lahore, Sargodha and Gujranwala. Stratum 2: Sahiwal, Faisalabad, D.G Khan, Multan and Bahawalpur)

    Y: In 2012 division's wise employment level.

    X: in 2012 division's wise quantity of registered factories.

    Data Ⅱ: (source: [29])

    Y: in 2012 division's wise enrollment of students.

    X: in 2012 divisions wise the count of Govt schools.

    Data Ⅲ: (source: [17]). The dataset has information on the apple production amount (Y) and the number of apple trees (X) in 854 villages in Turkey in the year 1999. The data is categorized into strata based on the region of Turkey.

    Data Ⅳ: (source: [2]) The study contains the number of instructors as study variable and the number of students as supplementary variable in schools for 923 districts in six regions in Turkey in 2007. (1: Aegean 2: Black Sea 3: Central Anatolia 4: East and Southeast Anatolia 5: Marmara 6: Mediterranean)

    Data Ⅴ: (source: [30]). The main variable pertains to the number of wet days, whereas the auxiliary variable refers to the total number of sunshine hours.

    Table 2 shows the MSE of all the estimators selected from the [25], along with the proposed estimators under stratified random sampling with a single supplementary variable. The first, second, and third populations consisted of two strata, each with summary information mentioned. The fourth and fifth populations consisted of six strata each. MSE results were obtained for the proposed estimators for three different values of the generalizing constants u and v. In the first estimator, u = 1 and v = 0, and no transformation is applied. In the second estimator, u = 1 and v = Cx, while the third value had the proposed estimators u = ρyx and v = Cx. Furthermore, in the first three populations, the value of the generalizing constant α was 0.5, while in the fourth population, it was α = 0.65. In the fifth population, α = 0.40, and the suggested estimators were compared. It was apparent that the MSEs of the proposed estimators (Tpor1 and Tpro2) were less than those of all competing estimators in this study. In addition, the use of transformation further decreased the MSE values of the suggested estimator.

    Table 2.  MSEs of the estimators of finite population means in real data.
    Estimators Data-Ⅰ Data-Ⅱ Data-Ⅲ Data-Ⅳ Data-Ⅴ
    T0 1094699971 1180635530 8.877803 2229.266 674045.7
    TR 951308503 1137894915 18.79581 727.6426 159151.3
    TBT 969403894 1134267624 13.08039 934.847 341011.7
    TG 951118894 1137875148 18.79535 727.5525 159165.3
    TNK 951118894 1137875148 18.79535 727.6346 159151.7
    TReg 3788003666 4524594622 1295.744 24760.6 9975257
    TCh 941649845 1129698712 4.945649 403.8754 107055.4
    TSD 945428869 1129700285 4.952633 675.4922 121796.6
    TO 51053306 22296777 0.170545 457.1203 38205.42
    TTSS 843775561 1086123241 4.944853 403.2811 106561.4
    TMJ 855382199 1086209302 4.944776 403.5506 106547.6
    0.51,0Tpro1 38240012 16382473 0.358289 112.3608 8942.898
    0.51,CxTpro1 38009353 16371323 0.358265 112.3313 8941.515
    0.5ρ,CxTpro1 37582179 16325464 0.358324 112.2752 8941.243
    0.51,0Tpro2 42105942 16465112 0.358323 110.2066 8459.403
    0.51,CxTpro2 41844854 16453885 0.358299 110.1783 8458.088
    0.5ρ,CxTpro2 41353334 16407580 0.358359 110.1219 8457.812

     | Show Table
    DownLoad: CSV

    The entries in Table 3 and Figure 1 represent the PREs of the estimators for the population mean in the stratified random sampling WOR scheme, in the presence of an auxiliary variable. PREs were obtained relative to the classical estimator of the mean. In all five populations, the efficiencies of the proposed estimators were higher than those of all the listed estimators. In addition, the use of transformation (by applying different parameter values for u and v) further enhanced the efficiency of the estimator. As in the given case, Tproi(1) did not undergo transformations. In Tproi(2), u = 1 and v = Cx, and in Tproi(3), u = rho and v = Cx (i = 1, 2). A visual display of the PREs relative to each dataset is shown in Figure 1. Each of the five lines compare the PREs of the estimators in different datasets. It is obvious that among the five lines, the height of the graph was maximum for the last six entries (Tpro1(1) to Tpor2(3), proposed estimators) compared to the rest of the existing estimators. Hence, the graphical display of PREs supports the claim that the proposed estimators are significantly more efficient than the existing estimators of the finite population mean in stratified random sampling with single auxiliary information.

    Table 3.  PREs of the estimators relative to usual estimator for real data.
    Estimators Data-Ⅰ Data-Ⅱ Data-Ⅲ Data-Ⅳ Data-Ⅴ
    T0 100 100 100 100 100
    TR 115.0731 103.7561 47.2329 306.3683 423.5251
    TBT 112.9251 104.0879 67.87107 238.4632 197.6606
    TG 115.096 103.7579 47.23404 306.4062 423.4879
    TNK 115.096 103.7579 47.23404 306.3717 423.5241
    TReg 28.89913 26.09373 0.685151 9.00328 6.757176
    TCh 116.2534 104.5089 179.5073 551.9688 629.623
    TSD 115.7887 104.5087 179.2542 330.021 553.4193
    TO 2144.229 5295.095 5205.549 487.6761 1764.267
    TTSS 129.7383 108.7018 179.5362 552.7822 632.5421
    TMJ 127.9779 108.6932 179.539 552.4131 632.6243
    0.51,0Tpro1 2862.708 7206.699 2477.835 1984.024 7537.217
    0.51,CxTpro1 2880.081 7211.607 2478.002 1984.545 7538.383
    0.5ρ,CxTpro1 2912.817 7231.865 2477.591 1985.537 7538.612
    0.51,0Tpro2 2599.871 7170.529 2477.597 2022.807 7968.005
    0.51,CxTpro2 2616.092 7175.421 2477.763 2023.326 7969.244
    0.5ρ,CxTpro2 2647.187 7195.671 2477.352 2024.363 7969.504

     | Show Table
    DownLoad: CSV
    Figure 1.  PREs of the estimators in real data.

    In the section, we conducted a simulation study of both the established and newly introduced estimators to assess the stability of these estimators across random samples. We began with a stratified population of N = 1000 units, from which a sample of n = 100 pairs of values (y, x) were selected. This population comprised two strata with sizes N1 = 600 and N2 = 400. By employing proportional allocation, we extracted samples of size n1 = 60% and n2 = 40% of the total sample size (n) from these respective strata. The mean vectors and covariance matrices are expressed as follows (see Table 4):

    Table 4.  Strata summary statistics.
    Stratum N n μ Σ
    1 600 60% [38] [5444]
    2 400 40% [62] [3221.5]

     | Show Table
    DownLoad: CSV

    Here, MSE and PRE values for the estimators were carried out using the following steps in R software.

    Step-1: Simple random samples without replacement (SRSWOR) of different sizes n = 10, 20, 50,100,200. were drawn from the target population. For each sample size, a loop of 10,000 times was caried out and allowed R-studio to compute the estimator values at each iteration.

    Step-2: For each sample, the values of the existing and suggested estimators were calculated separately by taking the average of all iterations.

    Step-3: Using the values obtained in Step-2 the MSE of the estimators is obtained.

    Step-4: PRE of the estimators is obtained using the following formula:

    pre(Ti)=Var(T0)MSE(Ti)×100 Where, Ti replaces different estimators.

    Table 5 presents the simulation results for the MSEs of the estimators with respect to the usual estimators for various sample sizes. By exploring the table, we can see that the MSEs of the suggested estimators are smaller than those of other estimators. Furthermore, our estimator is stable with respect to sample size, and as the sample size increases, the MSE of the estimator also decreases. Hence, our suggested estimators are the best among all competing estimators under study.

    Table 5.  MSEs of the estimators of population mean through simulations.
    Estimator Sample Size (n)
    10 20 50 100 200
    T0 0.57167885 0.23228891 0.097460 0.04408674 0.02228120
    TR 0.2800072 0.10384171 0.03535013 0.01578904 0.00729696
    TP 3.46848296 1.42177894 0.59069627 0.26428811 0.13505578
    TBT 0.07554437 0.02890564 0.01200708 0.00584716 0.00253814
    TSD 0.16541336 0.06573896 0.0225091 0.01076952 0.00461603
    TUS 0.23223990 0.08851816 0.02989319 0.01389308 0.00621069
    TCH 0.28000722 0.10384171 0.03535013 0.01578904 0.00729696
    TO 0.02673456 0.01189527 0.00481989 0.00252548 0.00098261
    TK 0.06359180 0.02652505 0.01157819 0.00575902 0.00251554
    TTSS 0.16076453 0.02538855 0.00588480 0.00266663 0.00101421
    TMJ 0.07674410 0.02874377 0.01196348 0.00584770 0.00253646
    0.51,0Tpro1 0.013249273 0.00518138 0.00217518 0.00100506 0.00033924
    0.51,CxTpro1 0.013210254 0.00507809 0.00215045 0.00083683 0.00033277
    0.5ρ,CxTpro1 0.013109884 0.00503650 0.00211079 0.00078796 0.00033036
    0.51,0Tpro2 0.0138653 0.00547664 0.00243563 0.00108857 0.00036112
    0.51,CxTpro2 0.0132086 0.00539962 0.0023895 0.0009051 0.00035744
    0.5ρ,CxTpro2 0.0130670 0.00526565 0.00235865 0.00086015 0.00034784

     | Show Table
    DownLoad: CSV

    Table 6 shows the simulation results of the different estimators with respect to the usual estimators for the various sample sizes. By exploring the table, we can see that the PREs of the suggested estimators are higher than those of all rival estimators. Furthermore, the suggested estimators are stable with respect to sample size, and as the size of the sample increases, efficiency also increases. Hence, our proposed estimator is superior to all the competing estimators under study. The visual display of the PREs is shown in Figure 2, where each line shows the PREs distribution with a different sample size. Upon examination of the graph, we decided that in each of the samples, the height of the line was the maximum for the last six values (Tpro1(1) to Tpro2(3), the proposed estimators). Hence, the graphical display of the simulation results supports the superiority of the proposed estimators.

    Table 6.  PREs of the estimators of population mean relative to usual estimator in simulated data.
    Estimator Sample Size (n)
    10 20 50 100 200
    T0 100 100.00 100.00 100 100.000
    TR 204.1658 223.6952 275.6999 287.3062 305.3491
    TP 16.4821 16.33791 16.49922 16.68181 16.49777
    TBT 756.7458 803.6109 811.6894 773.0501 877.8541
    TSD 345.6062 353.3505 432.9804 424.0894 482.6918
    TUS 246.1588 262.4195 326.0283 326.8191 358.7558
    TCH 204.1658 223.6952 275.6999 287.3062 305.3491
    TO 2138.351 1952.783 2022.043 1735.336 2267.554
    TK 898.982 875.7341 841.7566 785.2975 885.7426
    TTSS 355.6001 914.9358 1656.135 1626.34 2196.898
    TMJ 744.9157 808.1366 814.6483 773.5519 878.4379
    0.51,0Tpro1 4314.7941 4483.149 4480.539 4386.484 6631.513
    0.51,CxTpro1 4432.0027 4574.340 4532.065 5304.581 6692.862
    0.5ρ,CxTpro1 4656.5601 4612.107 4617.214 5718.092 6744.618
    0.51,0Tpro2 4123.084 4241.449 4001.426 4049.964 6229.81
    0.51,CxTpro2 4237.098 4301.946 4078.654 4904.424 6324.287
    0.5ρ,CxTpro2 4405.5421 4411.404 4132.013 5238.144 6405.531

     | Show Table
    DownLoad: CSV
    Figure 2.  PREs of the estimators in simulated data.

    We provide two new families of estimators in the context of stratified random sampling that are intended to enhance population mean estimation by utilizing a single auxiliary variable. Eq (4.1.1) formalizes the study in [26,28], which has a major effect on the construction of the first family of estimators. Equation (4.2.1) provides the mathematical representation of the second family of estimators, which is also developed based on the findings published in [28,31]. Expressions for the bias and mean squared error (MSE) of both estimator families were derived by a comprehensive theoretical study that took into account their first-order approximations. The statistical features of these formulations are explained in depth in Eqs (4.1.6), (4.1.12), (4.2.3), and (4.2.7).

    To determine the relative efficiency of our proposed estimators compared to existing methods, we established performance criteria based on MSE minimization and precision improvement. Specifically, Eqs (5.1.1)–(5.1.11) delineated the necessary conditions under which the first estimator family achieved superior performance relative to conventional estimators. Likewise, a corresponding set of conditions was identified for the second estimator family, ensuring its enhanced efficiency over competing methods. These are those situations that are necessary for the proposed estimators to be efficient relative to the estimators mentioned under study.

    Both real and simulated datasets were used to thoroughly assess the suggested estimators' effectiveness. The MSE and percentage relative efficiency (PRE) values calculated for real-world data are shown in Tables 2 and 3, which also show how the estimator performs differently for varying values of auxiliary variables, represented by u and v. Among these tables, one can observe that the MSE values of the last six estimators, the proposed one, have small values relative to all the other estimators shown in the table. Similarly, the PRE values for the proposed last six estimators are larger than all the competing estimators for the population mean given in the tables. The findings support the suggested estimators' statistical superiority by showing a constant trend of producing lower MSEs and higher PREs than traditional estimators for the five data sets. The observed patterns indicate that the suggested methodologies provide more accurate estimates of the population mean, thereby reducing estimation errors and enhancing efficiency.

    Furthermore, the robustness of these findings was confirmed through extensive simulation studies, with Tables 5 and 6 summarizing the outcomes. The performance of the estimators was tested under five sample sizes: 10, 20, 50,100, and 200. In all sample sizes used in the simulation studies, both families of estimators exhibited small mean squared errors (MSEs) and large values of percent relative efficiencies (PREs) compared to all competing estimators for the population mean. Furthermore, the tables confirm that the proposed estimators are less variable across sample sizes in terms of MSEs and PREs. These simulated results align closely with the empirical observations, further validating the performance advantages of our proposed estimator families. Notably, the trends in simulated data mirror those observed in real-world datasets, suggesting the generalizability of our approach across population structures.

    Visual representations of the PRE values are provided in Figures 1 and 2, which illustrate the efficiency comparisons between our estimators and existing alternatives. Each line in Figure 1 represents a distinct population, while each line in Figure 2 corresponds to a different sample size. In both figures, the graph lines for the proposed families reach the highest points, indicating superior percent relative efficiencies (PREs). A consistent upward trend is evident, demonstrating that the proposed families consistently achieve higher PRE values across scenarios. This graphical evidence strongly supports our conclusion that the new estimator families outperform traditional approaches in terms of precision and reliability.

    By analyzing the summary statistics in Table 1 and the percent relative efficiencies (PREs) in Table 3, we observe the following patterns: In the first three datasets, the correlation coefficients for all strata are comparatively smaller than those in the last two datasets. Additionally, the PRE values for the first estimator are higher in the first three datasets compared to the second estimator. Conversely, the PREs for the second estimator are higher than those of the first estimator in the last two datasets.

    Based on these findings, we conclude that the first family of estimators performs more efficiently when the correlation coefficients for all or some of the datasets are relatively small. On the other hand, the second family of estimators performs more efficiently when all or most strata have larger correlation coefficients.

    Overall, our research offers a substantial contribution to the field of sampling methodology by introducing efficient estimators that optimize the use of an auxiliary variable in stratified random sampling. The proposed approaches not only enhance estimation accuracy but also provide a more reliable alternative to existing techniques. Researcher can extend this work by exploring the application of these estimators in more complex sampling frameworks or integrating additional auxiliary variables to further refine precision levels. The methodological advancements presented in this study pave the way for improved sampling strategies in statistical analysis, benefiting empirical research and practical data collection applications.

    We introduced two new exponential estimators that can be used to calculate the population mean when stratified random sampling is applied with a single auxiliary variable. We also found formulas for the first-order bias and the MSE of the new estimators. Furthermore, a demanding criterion was established to identify the circumstances in which the proposed estimators outperformed traditional and existing alternatives. We performed a thorough comparison of the MSEs and PREs of our newly designed estimators with those of other approaches. We conducted a comprehensive review, including both simulated experiments and real-world datasets, to improve the robustness and usefulness of our findings. The empirical findings from this investigation consistently confirm the superiority and effectiveness of the proposed estimator families when compared to all the other estimators examined in this study.

    We emphasize the significant advancements made by our cutting-edge exponential-type estimators and highlight their improved performance and efficacy in the difficult field of stratified random sampling using a single auxiliary variable.

    The proposed estimators account for the nonlinear relationships between the study and auxiliary variables, in contrast to traditional estimators. Additionally, the proposed estimators are a hybrid of regression, ratio, product, and exponential functions to obtain more accurate results. Furthermore, the proposed estimators can adapt to multiple distributions, making them more versatile.

    The first limitation of the suggested estimators is that although they can handle nonlinear relations, they assume specific functional forms between the variables. Violation of this assumption may affect the performance of the estimator. Adding more parameters to the suggested estimators increases complexity and computational requirements.

    In conclusion, researchers can develop more effective variables in light of the suggested estimators to cope with nonresponse problems. Researchers can extend the proposed estimators to scenarios of multiple auxiliaries and examine the proposed estimators in other sampling designs and population scenarios.

    Khazan Sher: Conceptualization, project administration, writing original draft, writing–review and editing; Muhammad Ameeq, Basem A. Alkhaleel, Sidra Naz: Investigation, writing original draft, writing–review and editing; Muhammad Muneeb Hassan, Olyan Albalawi: Project administration, investigation, writing original draft, writing–review and editing. All authors have read and agreed to the published version of the manuscript.

    The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.

    Researchers Supporting Project number (RSPD2024R630), King Saud University, Riyadh, Saudi Arabia.

    The authors declare no conflict of interest.

    a. Development of the Bias and MSE of the first family of estimators

    Rewriting the first family of estimators

    Tpro1=(S1ˉyst+S2)[(ˉXstˉxst){2exp[ust(ˉxstˉXst)ust(ˉXst+ˉxst)+2vst]}+(1)(ˉxstˉXst)exp[ust(ˉXstˉxst)ust(ˉXst+ˉxst)+2vst]]. (4.1.1)

    In terms of error, the estimator could be written as

    Tpro1=(S1ˉYst(1+ε0)+S2)[(ˉXstˉXst(1+ε1)){2exp[ust(ˉXst(1+ε1)ˉXst)ust(ˉXst+ˉXst(1+ε1))+2vst]}+(1)(ˉXst(1+ε1)ˉXst)exp[ust(ˉXstˉXst(1+ε1))ust(ˉXst+ˉXst(1+ε1))+2vst]]Tpro1=(S1ˉYst(1+ε0)+S2)[(1+ε1)1{2exp[ustˉXstε1ust(2ˉXst+ˉXstε1)+2vst]}+(1)(1+ε1)exp[ustˉXstε1ust(2ˉXst+ˉXstε1)+2vst]]
    Tpro1=(S1ˉYst(1+ε0)+S2)[(1+ε1)1{2exp[ηε12(1+ηε12)1]}+(1)(1+ε1)exp[ηε12(1+ηε12)1]].

    Expanding the above Taylor series up to first order of approximation, we have

    Tpro1=(S1ˉYst(1+ε0)+S2)[(1+ε1)1{2exp[ηε12(1ηε12+η2ε214...)]}+(1)(1+ε1)exp[ηε12(1ηε12+η2ε214...)]]
    Tpro1=(S1ˉYst(1+ε0)+S2)[(1+ε1)1{2exp[ηε12η2ε214+...]}+(1)(1+ε1)exp[ηε12+η2ε214...]].

    After applying the exponential series, we obtain the below expression

    Tpro1=(S1ˉYst(1+ε0)+S2)[(1ε1+ε21...){2(1+ηε12η2ε218+...)}+(1)(1+ε1)(1ηε12+3η2ε218+...)]
    Tpro1=(S1ˉYst(1+ε0)+S2)[(1ε1+ε21...)(1ηε12+η2ε218+...)+(1)(1+ε1)(1ηε12+3η2ε218+...)]
    Tpro1=(S1ˉYst(1+ε0)+S2)[(1ε1ηε12+ε21+ηε212+η2ε218)+(1)(1+ε1ηε12ηε212+3η2ε218)]
    Tpro1=(S1ˉYst(1+ε0)+S2)[1+(1η22)ε1{+(12)η+η28(32)}ε21]
    Tpro1=(S1ˉYst(1+ε0)+S2)[1+ϑ1ε1ϑ2ε21].

    By subtracting ˉYst from both sides, we have

    Tpro1ˉYst=S1ˉYst(1+ε0+ϑ1ε1+ϑ1ε0ε1ϑ2ε21)+S2(1+ϑ1ε1ϑ2ε21)ˉYst.

    When we apply expectation to both sides of the previous equation, we get the following bias expression:

    Bias(Tpro1)=S1ˉYst(1+ϑ1V11ϑ2V02)+S2(1ϑ2V02)ˉYst. (4.1.6)

    To obtain the MSE expression, we take the square of both sides of the equation,

    (Tpro1ˉYst)2=S21ˉY2st(1+ε0+ϑ1ε1+ϑ1ε0ε1ϑ2ε21)2+S22(1+ϑ1ε1ϑ2ε21)2+ˉY2st+2S1S2ˉYst(1+ε0+ϑ1ε1+ϑ1ε0ε1ϑ2ε21)(1+ϑ1ε1ϑ2ε21)                            2S1ˉY2st(1+ε0+ϑ1ε1+ϑ1ε0ε1ϑ2ε21)2S2ˉYst(1+ϑ1ε1ϑ2ε21)(Tpro1ˉYst)2=S21ˉY2st(1+ε20+ϑ21ε21+2ε0+2ϑ1ε1+2ϑ1ε0ε12ϑ2ε21+2ϑ1ε0ε1)+S22(1+ϑ21ε21+2ϑ1ε12ϑ2ε21)+ˉY2st                            +2S1S2ˉYst(1+ε0+ϑ1ε1+ϑ1ε0ε1ϑ2ε21+ϑ1ε1+ϑ1ε0ε1+ϑ21ε21ϑ2ε21)                            2S1ˉY2st(1+ε0+ϑ1ε1+ϑ1ε0ε1ϑ2ε21)2S2ˉYst(1+ϑ1ε1ϑ2ε21)(Tpro1ˉYst)2=S21ˉY2st(1+2ε0+2ϑ1ε1+ε20+(ϑ212ϑ2)ε21+4ϑ1ε0ε1)+S22(1+2ϑ1ε1+(ϑ212ϑ2)ε21)                            +ˉY2st2S1ˉY2st(1+ε0+ϑ1ε1ϑ2ε21+ϑ1ε0ε1)2S2ˉYst(1+ϑ1ε1ϑ2ε21)                            +2S1S2ˉYst(1+ε0+2ϑ1ε1+(ϑ212ϑ2)ε21+2ϑ1ε0ε1). (4.1.7)

    After taking expectation, the MSE expression is obtained as:

    MSE(Tpro1)=S21ˉY2st(1+V20+(ϑ212ϑ2)V02+4ϑ1V11)+S22(1+(ϑ212ϑ2)V02)                            +ˉY2st2S1ˉY2st(1ϑ2V02+ϑ1V11)2S2ˉYst(1ϑ2V02)                            +2S1S2ˉYst(1+(ϑ212ϑ2)V02+2ϑ1V11). (4.1.8)

    Or

    MSE(Tpro1)=S21ˉY2stApr+S22Bpr+ˉY2st2S1ˉY2stCpr2S2ˉYstDpr+2S1S2ˉYstEpr. (4.1.9)

    Here, Apr=1+V20+(ϑ212ϑ2)V02+4ϑ1V11, Bpr=1+(ϑ212ϑ2)V02, Cpr=1ϑ2V02+ϑ1V11, Dpr=1ϑ2V02 and Epr=1+(ϑ212ϑ2)V02+2ϑ1V11.

    Now, let us differentiate the MSE equation to obtain the values of S1 and S2 to have minimum MSE.

    MSE(Tpro1)S1=02S1ˉY2stApr+2S2ˉYstEpr2ˉY2stCpr=0                 S1ˉY2stApr+S2ˉYstEprˉY2stCpr=0 (4.1.10)
    MSE(Tpro1)S2=02S2Bpr+2S1ˉYstEpr2ˉYstDpr=0                       S1ˉYstEpr+S2BprˉYstDpr=0. (4.1.11)

    Solving Eq (4.1.10) for S1, we have

    S1=S2ˉYstEpr+ˉY2stCprˉY2stApr. (4.1.1a)

    Solving Eq (4.1.11) for S2 , we have

    S2=ˉYstDprS1ˉYstEprBpr. (4.1.2a)

    By putting Eq (4.1.2a) in Eq (4.1.1a) we have

    S1=(ˉYstDprS1ˉYstEpr)ˉYstEpr+ˉY2stBprCprˉY2stAprBprS1=S1ˉY2stE2prˉY2stDprEpr+ˉY2stBprCprˉY2stAprBprS1=S1E2pr+BprCprDprEprAprBprS1S1E2prAprBpr=BprCprDprEprAprBprS1(AprBprE2pr)AprBpr=BprCprDprEprAprBprS1=BprCprDprEprAprBprE2pr. (4.1.3a)

    Now, to obtain a value for S2, we put the value from Eq (4.1.3a) in (4.1.2a)

    S2=ˉYstDpr(BprCprDprEprAprBprE2pr)ˉYstEprBprS2=ˉYstAprBprDprˉYstDprE2prˉYstBprCprEpr+ˉYstDprE2prBpr(AprBprE2pr)S2=¯Yst(AprDprCprEpr)AprBprE2pr. (4.1.4a)

    With these values from Eqs (4.1.3a) and (4.1.4a), the minimum MSE adopts the below form,

    MSE(Tpro1)=(BprCprDprEprAprBprE2pr)2ˉY2stApr+(¯Yst(AprDprCprEpr)AprBprE2pr)2Bpr+ˉY2st2(BprCprDprEprAprBprE2pr)ˉY2stCpr                            2(¯Yst(AprDprCprEpr)AprBprE2pr)ˉYstDpr+2(BprCprDprEprAprBprE2pr)(¯Yst(AprDprCprEpr)AprBprE2pr)ˉYstEprMSE(Tpro1)=ˉY2st[1+AprB2prC2pr+AprD2prE2pr2AprBprCprDprEpr+A2prBprD2pr+BprC2prE2pr2AprBprCprDprEpr2AprB2prC2pr+2AprBprCprDprEpr+2BprC2prE2pr2CprDprE3pr2A2prBprD2pr+2AprBprCprDprEpr+2AprD2prE2pr2CprDprE3pr+2AprBprCprDprEpr2BprC2prE2pr2AprD2prE2pr+2CprDprE3pr(AprBprE2pr)2]MSE(Tpro1)=ˉY2st[1+AprB2prC2pr+AprD2prE2prA2prBprD2pr+BprC2prE2pr2CprDprE3pr+2AprBprCprDprEpr(AprBprE2pr)2]MSE(Tpro1)=ˉY2st[1+AprBpr(AprD2pr+BprC2pr2CprDprEpr)+E2pr(AprD2pr+BprC2pr2CprDprEpr)(AprBprE2pr)2]MSE(Tpro1)=ˉY2st[1+(AprBprE2pr)(AprD2pr+BprC2pr2CprDprEpr)(AprBprE2pr)2]   MSE(Tpro1)minˉY2st{1AprD2pr+BprC2pr2CprDprEprAprBprE2pr}. (4.1.2)

    b. Development of the Bias and MSE of the second family of estimators

    Rewriting the Eq (4.2.1), we have,

    Tst(Pro)=(T1ˉyst+T2)[(ˉXstˉxst)+(1)(ˉxstˉXst)]exp[ust(ˉXstˉxst)ust(ˉXst+ˉxst)+2vst]. (4.2.1)

    In terms of errors, the above equation could be written as:

    Tpro2=(T1ˉYst(1+ε0)+T2)[(ˉXstˉXst(1+ε1))+(1)(ˉXst(1+ε1)ˉXst)]exp[ust(ˉXstˉXst(1+ε1))ust(ˉXst+ˉXst(1+ε1))+2vst]Tpro2=(T1ˉYst(1+ε0)+T2)[(1+ε1)1+(1)(1+ε1)]exp[ustˉXstε1ust(2ˉXst+ˉXstε1)+2vst]   Tpro2=(T1ˉYst(1+ε0)+T2)[(1+ε1)1+(1)(1+ε1)]exp[ηε12(1+ηε12)1]. (4.2.1b)

    Expanding the above Taylor series up to first order of approximation, we have:

    Tpro2=(T1ˉYst(1+ε0)+T2)[(1+ε1)1+(1)(1+ε1)]exp[ηε12(1ηε12+η2ε214...)]  Tpro2=(T1ˉYst(1+ε0)+T2)[(1+ε1)1+(1)(1+ε1)]exp[ηε12+η2ε214...]. (4.2.2b)

    After applying exponential series, we obtain the below expression:

    Tpro2=(T1ˉYst(1+ε0)+T2)[(1ε1+ε21...)+(1)(1+ε1)](1ηε12+3η2ε218+...)Tpro2=(T1ˉYst(1+ε0)+T2)[1+ε12ε1+ε21](1ηε12+3η2ε218+...)Tpro2=(T1ˉYst(1+ε0)+T2)[1+ε12ε1+ε21ηε12ηε212+ηε21+3η2ε218]  Tpro2=[T1ˉYst+T1ˉYst(ε0δ1ε1+δ2ε21δ1ε0ε1)+T2(1δ1ε1+δ2ε21)]. (4.2.3b)

    The difference equation up-to first order of approximation of the proposed estimator in terms of errors is expressed as

    Tpro2ˉYst=[(T11)ˉYst+T1ˉYst(ε0δ1ε1+δ2ε21δ1ε0ε1)+T2(1δ1ε1+δ2ε21)]. (4.2.2)

    After taking the expectation, the bias of the suggested estimator is given as:

    Bias(Tpro2)=(T11)ˉYst+T1ˉYst(δ2V02δ1V11)+T2(1+δ2V02) (4.2.3)

    where δ1=12η+21 and δ2=+12η(21)+38η2.

    Squaring both sides of the above (49) difference equation and using first order of approximation, we have,

    (Tpro2ˉYst)2=[(T11)2ˉY2st+T21ˉY2st(ε0δ1ε1+δ2ε21δ1ε0ε1)2+T22(1δ1ε1+δ2ε21)2+2T1(T11)ˉY2st(ε0δ1ε1+δ2ε21δ1ε0ε1)+2T2(T11)ˉYst(1δ1ε1+δ2ε21)+2T1T2ˉYst(ε0δ1ε1+δ2ε21δ1ε0ε1)(1δ1ε1+δ2ε21)](Tpro2ˉYst)2=[(T11)2ˉY2st+T21ˉY2st(ε20+δ21ε212δ1ε0ε1)+T22(1+δ21ε212δ1ε1+2δ2ε21)+2(T21T1)ˉY2st(ε0δ1ε1+δ2ε21δ1ε0ε1)+2(T1T2T2)ˉYst(1δ1ε1+δ2ε21)+2T1T2ˉYst(ε0δ1ε1+δ2ε21δ1ε0ε1δ1ε0ε1+δ21ε21)](Tpro2ˉYst)2=[(T11)2ˉY2st+T21ˉY2st(2ε02δ1ε1+ε20+2δ2ε21+δ21ε212δ1ε0ε12δ1ε0ε1)+T22(1+δ21ε212δ1ε1+2δ2ε21)2T1ˉY2st(ε0δ1ε1+δ2ε21δ1ε0ε1)2T2ˉYst(1δ1ε1+δ2ε21)+2T1T2ˉYst(1+ε0δ1ε1δ1ε1+δ2ε21+δ2ε21δ1ε0ε1δ1ε0ε1+δ21ε21)](Tpro2ˉYst)2=[(T11)2ˉY2st+T21ˉY2st(2ε02δ1ε1+ε20+(δ21+2δ2)ε214δ1ε0ε1)+T22(12δ1ε1+(δ21+2δ2)ε21)2T1ˉY2st(ε0δ1ε1+δ2ε21δ1ε0ε1)2T2ˉYst(1δ1ε1+δ2ε21)+2T1T2ˉYst(1+ε02δ1ε1+(δ21+2δ2)ε212δ1ε0ε1)] (4.2.4b)
    E(TproˉYst)2=[(T11)2ˉY2st+T21ˉY2st(V20+(δ21+2δ2)V024δ1V11)+T22(1+(δ21+2δ2)V02)2T1ˉY2st(δ2V02δ1V11)2T2ˉYst(1+δ2V02)+2T1T2ˉYst(1+(δ21+2δ2)V022δ1V11)] (4.2.4)

    or

    MSE(Tpro2)=[(T11)2ˉY2st+T21ˉY2st(V20+(δ21+2δ2)V024δ1V11)+T22(1+(δ21+2δ2)V02)2T1ˉY2st(δ2V02δ1V11)2T2ˉYst(1+δ2V02)+2T1T2ˉYst(1+(δ21+2δ2)V022δ1V11)] (4.2.5)

    or

    MSE(Tpro2)=[(T11)2ˉY2st+T21ˉY2stAp+T22Bp2T1ˉY2stCp2T2ˉYstDp+2T1T2ˉYstEp] (4.2.6)

    where Ap=(V20+(δ21+2δ2)V024δ1V11), Bp=(1+(δ21+2δ2)V02), Cp=(δ2V02δ1V11), Dp=(1+δ2V02) and Ep=(1+(δ21+2δ2)V022δ1V11).

    To obtain the values of T1 and T2, we differentiate the Eq (4.2.6) w.r.t as below:

    MSET1=02(T11)ˉY2st+2T1ˉY2stAp2ˉY22Cp+2T2ˉYstEp=0MSET2=02T2Bp2ˉYstDp+2T1ˉYstEp=0(T11)ˉYst+T1ˉYstApˉYstCp+T2Ep=0T2BpˉYstDp+T1ˉYstEp=0T1=ˉYst+ˉYstCpT2Ep(1+Ap)ˉYst (4.2.5b)
    T2=ˉYstDpT1ˉYstEpBp. (4.2.6b)

    Putting Eq (4.2.6b) in (4.2.5b), we have,

    T1=ˉYst+ˉYstCp(ˉYstDpT1ˉYstEpBp)Ep(1+Ap)ˉYstT1=ˉYstBp+ˉYstBpCpˉYstDpEp+T1ˉYstE2p(1+Ap)BpˉYstT1(ApBp+BpE2p)ApBp+Bp=Bp+BpCpDpEpApBp+BpT1=BpCpDpEp+BpApBpE2p+Bp. (4.2.7b)

    With this value of T1, Eq (4.2.6b) adopts the following form

    T2=ˉYstDp(BpCpDpEp+BpApBpE2p+Bp)ˉYstEpBpT2=ˉYst(ApBpDpDpE2p+DpBpBpCpEp+DpE2pBpEp)Bp(ApBpE2p+Bp)T2=ˉYst(ApDpCpEp+DpEp)ApBpE2p+Bp. (4.2.8b)

    The least possible value of the MSE is obtained by utilizing Eqs (4.2.7b) and (4.2.8b)

    MSE(Tpro2)=[(BpCpDpEp+BpApBpE2p+Bp1)2ˉY2st+(BpCpDpEp+BpApBpE2p+Bp)2ˉY2stAp+(ˉYst(ApDpCpEp+DpEp)ApBpE2p+Bp)2Bp2(BpCpDpEp+BpApBpE2p+Bp)ˉY2stCp2(ˉYst(ApDpCpEp+DpEp)ApBpE2p+Bp)ˉYstDp+2(BpCpDpEp+BpApBpE2p+Bp)(ˉYst(ApDpCpEp+DpEp)ApBpE2p+Bp)ˉYstEp]MSE(Tpro2)minˉY2st[(B2pC2p+D2pE2p+A2pB2p+E4p2BpCpDpEp2ApB2pCp+2BpCpE2p+2ApBpDpEp2DpE3p2ApBpE2p+ApB2pC2p+ApD2pE2p+ApB2p2ApBpCpDpEp+2ApB2pCp2ApBpDpEp+A2pBpD2p+BpC2pE2p+BpD2p+BpE2p2ApBpCpDpEp+2ApBpD2p2ApBpDpEp2BpCpDpEp+2BpCpE2p2ApB2pC2p+2ApBpCpDpEp2ApB2pCp+BpC2pE2p2CpDpE3p+2BpCpE2p2B2pC2p+2BpCpDpEp2B2pCp2A2pBpD2p+2ApBpCpDpEp2ApBpD2p+2ApBpDpEp+2ApD2pE2p2CpDpE3p+2D2pE2p2DpE3p2ApBpD2p+2BpCpDpEp2BpD2p+2BpDpEp+2ApBpCpDpEp2BpC2pE2p+2BpCpDpEp2BpCpE2p2ApD2pE2p+2CpDpE3p2D2pE2p+2DpE3p+2ApBpDpEp2BpCpE2p+2BpDpEp2BpE2p)(ApBpE2p+Bp)2]

    or

    MSE(Tpro)minˉY2st{1ApD2p+BpC2p2CpDpEp+Bp+2BpCpD2p2DpEpApBpE2p+Bp}. (4.2.7)

    Section 5.1

    MSE(Tpro1)minMSE(Tst)ˉY2{1AprD2pr+BprC2pr2CprDprEprAprBprE2pr}¯Y2V2011V20  where  1=AprD2pr+BprC2pr2CprDprEprAprBprE2pr(V201)+10. (Eq5.1.1)
    MSE(Tpro1)minMSE(Tr)ˉY2{11}¯Y2(V20+V022V11){11}(V20+V022V11)[V20+V022V111+1]>0. (Eq5.1.2)
    MSE(Tpro1)minMSE(TBT)ˉY2{11}¯Y2(V20+V0242V11){11}(V20+V0242V11)(V20+14V02V11)1+1>0. (Eq5.1.3)
    MSE(Tpro1)minMSE(TKC)ˉY2{11}ˉY2(V20+ϕ2V022ϕV11){11}(V20+ϕ2V022ϕV11)(V20+ϕ2V022ϕV11)1+1>0. (Eq5.1.4)
    MSE(Tpro1)minMSE(TUS)ˉY2{11}¯Y2(V20+θ2V022θV11){11}(V20+θ2V022θV11)(V20+θ2V022θV11)1+1>0. (Eq5.1.5)
    MSE(Tpro1)minMSE(Tch)ˉY2{11}ˉY2(V20+α2τ2π2V022ατπV11){11}(V20+α2τ2π2V022ατπV11)(V20+α2g2π2V022αgπV11)1+1>0. (Eq5.1.6)
    MSE(Tpro1)minMSE(TO)ˉY2{11}V00V22V212V00+V222V12[V00V22V212V00+V222V12]ˉY2[11]>0. (Eq5.1.7)
    MSE(Tpro1)minMSE(TG)ˉY2{11}ˉY2V20(1ρc){11}V20(1ρc)[V20(1ρst)1+1]>0. (Eq5.1.8)
    MSE(Tpro1)minMSE(TNK)ˉY2{11}ˉY2[1AD2+BC2CDE4ABE2]{11}[1AD2+BC2CDE4ABE2]1AD2+BC2CDE4ABE2>0. (Eq5.1.9)
    MSE(Tpro1)minMSE(TTSS)ˉY2{11}ˉY2[1B1C21+4A1D214C1D1E12(A1B1E21)]{11}[1B1C21+4A1D214C1D1E12(A1B1E21)]1[B1C21+4A1D214C1D1E12(A1B1E21)]>0. (Eq5.1.10)
    MSE(Tpro1)minMSE(TMJ)minˉY2{11}ˉY2[(V20+η2V022ηV11)4A2D22+B2C224C2D2E24(A2B2E22)]{11}[(V20+η2V022ηV11)4A2D22+B2C224C2D2E24(A2B2E22)](V20+η2V022ηV11)+1[4A2D22+B2C224C2D2E24(A2B2E22)]>0. (Eq5.1.11)

    Section 5.2

    MSE(Tpro2)minMSE(Tst)ˉY2{1ApD2p+BpC2p2CpDpEp+Bp+2BpCpD2p2DpEpApBpE2p+Bp}¯Y2V20123V20 [(V201)+23]>0. (Eq5.2.1)

    Where, 2=ApB2p+BpC2p2CpDpEp + Bp+2BpCpD2p2DpEp and 3=ApBpE2p+Bp

    MSE(Tpro2)minMSE(Tr)ˉY2{123}¯Y2(V20+V022V11){123}(V20+V022V11)[V20+V022V111+23]>0. (Eq5.2.2)
    MSE(Tpro2)minMSE(TBT)ˉY2{123}¯Y2(V20+V0242V11){123}(V20+V0242V11)(V20+14V02V11)1+23>0. (Eq5.2.3)
    MSE(Tpro2)minMSE(TKC)ˉY2{123}ˉY2(V20+ϕ2V022ϕV11){123}(V20+ϕ2V022ϕV11)(V20+ϕ2V022ϕV11)1+23>0. (Eq5.2.4)
    MSE(Tpro2)minMSE(TUS)ˉY2{123}¯Y2(V20+θ2V022θV11){123}(V20+θ2V022θV11) (V20+θ2V022θV11)1+23>0. (Eq5.2.5)
    MSE(Tpro2)minMSE(Tch)ˉY2{123}ˉY2(V20+α2τ2π2V022ατπV11){123}(V20+α2τ2π2V022ατπV11)(V20+α2g2π2V022αgπV11)1+23>0. (Eq5.2.6)
    MSE(Tpro2)minMSE(TO)ˉY2{123}V00V22V212V00+V222V12[V00V22V212V00+V222V12]ˉY2[123]>0. (Eq5.2.7)
    MSE(Tpro2)minMSE(TG)ˉY2{123}ˉY2V20(1ρc){123}V20(1ρc)[V20(1ρst)1+23]>0. (Eq5.2.8)
    MSE(Tpro2)minMSE(TNK)ˉY2{123}ˉY2[1AD2+BC2CDE4ABE2]{123}[1AD2+BC2CDE4ABE2]23AD2+BC2CDE4ABE2>0. (Eq5.2.9)
    MSE(Tpro2)minMSE(TTSS)ˉY2{123}ˉY2[1B1C21+4A1D214C1D1E12(A1B1E21)]{123}[1B1C21+4A1D214C1D1E12(A1B1E21)]23[B1C21+4A1D214C1D1E12(A1B1E21)]>0. (Eq5.2.10)
    MSE(Tpro2)minMSE(TMJ)minˉY2{123}ˉY2[(V20+η2V022ηV11)4A2D22+B2C224C2D2E24(A2B2E22)]{123}[(V20+η2V022ηV11)4A2D22+B2C224C2D2E24(A2B2E22)](V20+η2V022ηV11)+23[4A2D22+B2C224C2D2E24(A2B2E22)]>0. (Eq5.2.11)


    [1] J. Shabbir, S. Gupta, A new estimator of population mean in stratified sampling, Commun. Stat.-Theor. M., 35 (2006), 1201–1209. https://doi.org/10.1080/03610920600629112 doi: 10.1080/03610920600629112
    [2] N. Koyuncu, C. Kadilar, Family of estimators of population mean using two auxiliary variables in stratified random sampling, Commun. Stat.-Theor. M., 38 (2009), 2398–2417. https://doi.org/10.1080/03610920802562723 doi: 10.1080/03610920802562723
    [3] N. Koyuncu, C. Kadilar, On improvement in estimating population mean in stratified random sampling, J. Appl. Stat., 37 (2010), 999–1013. https://doi.org/10.1080/02664760903002675 doi: 10.1080/02664760903002675
    [4] N. Ali, I. Ahmad, M. Hanif, U. Shahzad, Robust-regression-type estimators for improving mean estimation of sensitive variables by using auxiliary information, Commun. Stat.-Theor. M., 50 (2021), 979–992. https://doi.org/10.1080/03610926.2019.1645857 doi: 10.1080/03610926.2019.1645857
    [5] S. Gupta, J. Shabbir, On improvement in estimating the population mean in simple random sampling, J. Appl. Stat., 35 (2008), 559–566. https://doi.org/10.1080/02664760701835839 doi: 10.1080/02664760701835839
    [6] H. P. Singh, G. K. Vishwakarma, A general procedure for estimating the population mean in stratified sampling using auxiliary information, Metron, 68 (2010), 47–65. https://doi.org/10.1007/BF03263523 doi: 10.1007/BF03263523
    [7] H. P. Singh, R. S. Solanki, Efficient ratio and product estimators in stratified random sampling, Commun. Stat.-Theor. M., 42 (2013), 1008–1023. https://doi.org/10.1080/03610926.2011.592257 doi: 10.1080/03610926.2011.592257
    [8] R. S. Solanki, H. P. Singh, An improved estimation in stratified random sampling, Commun. Stat.-Theor. M., 45 (2016), 2056–2070. https://doi.org/10.1080/03610926.2013.826367 doi: 10.1080/03610926.2013.826367
    [9] J. H. Schuenemeyer, L. J. Drew, Statistics for earth and environmental scientists, John Wiley & Sons, 2011. https://doi.org/10.1002/9780470650707
    [10] W. G. Cochran, Sampling techniques, John Wiley & Sons, 1977.
    [11] S. Bahl, R. Tuteja, Ratio and product type exponential estimators, J. Inform. Optim. Sci., 12 (1991), 159–164. https://doi.org/10.1080/02522667.1991.10699058 doi: 10.1080/02522667.1991.10699058
    [12] B. V. S. Sisodia, V. K. Dwivedi, Modified ratio estimator using coefficient of variation of auxiliary variable, J.-Indian Soc. Agr. Stat., 1981.
    [13] C. Kadilar, H. Cingi, Ratio estimators in stratified random sampling, Biometrical J., 45 (2003), 218–225. https://doi.org/10.1002/bimj.200390007 doi: 10.1002/bimj.200390007
    [14] L. N. Upadhyaya, H. P. Singh, Use of transformed auxiliary variable in estimating the finite population mean, Biometrical J., 41 (1999), 627–636. https://doi.org/10.1002/(SICI)1521-4036(199909)41:5<627::AID-BIMJ627>3.0.CO;2-W doi: 10.1002/(SICI)1521-4036(199909)41:5<627::AID-BIMJ627>3.0.CO;2-W
    [15] B. V. S. Sisodia, V. K. Dwivedi, Modified ratio estimator using coefficient of variation of auxiliary variable, J.-Indian Soc. Agr. Stat., 1981.
    [16] M. K. Chaudhary, R. Singh, R. K. Shukla, M. Kumar, F. Smarandache, A family of estimators for estimating population mean in stratified sampling under nonresponse, Pak. J. Stat. Oper. Res., 2009. 47–54. https://doi.org/10.18187/pjsor.v5i1.153 doi: 10.18187/pjsor.v5i1.153
    [17] C. Kadilar, H. Cingi, Improvement in estimating the population mean in simple random sampling, Appl. Math. Lett., 19 (2006), 75–79. https://doi.org/10.1016/j.aml.2005.02.039 doi: 10.1016/j.aml.2005.02.039
    [18] R. Singh, Improved exponential estimator in stratified random sampling, Pak. J. Stat. Oper. Res., 2009, 67–82. https://doi.org/10.18187/pjsor.v5i2.118 doi: 10.18187/pjsor.v5i2.118
    [19] A. C. Onyeka, A class of product-type exponential estimators of the population mean in simple random sampling scheme, Stat. Transit. New Seri., 14 (2013), 189–200. https://doi.org/10.59170/stattrans-2013-012 doi: 10.59170/stattrans-2013-012
    [20] H. P. Singh, R. Tailor, S. Singh, J. M. Kim, A modified estimator of population mean using power transformation, Stat. Pap., 49 (2008), 37–58. https://doi.org/10.1007/s00362-006-0371-2 doi: 10.1007/s00362-006-0371-2
    [21] Ö. Z. E. L. Gamze, Modified exponential type estimator for population mean using auxiliary variables in stratified random sampling, Alphanumeric J., 3 (2015), 49–56. https://doi.org/10.17093/aj.2015.3.2.5000145484 doi: 10.17093/aj.2015.3.2.5000145484
    [22] N. Koyuncu, Efficient estimators of population mean using auxiliary attributes, Appl. Math. Comput., 218 (2012), 10900–10905. https://doi.org/10.1016/j.amc.2012.04.050 doi: 10.1016/j.amc.2012.04.050
    [23] N. Koyuncu, Improved exponential type estimators for finite population mean in stratified random sampling, Pak. J. Stat. Oper. Res., 2016,429–441. https://doi.org/10.18187/pjsor.v12i3.1172 doi: 10.18187/pjsor.v12i3.1172
    [24] K. K. Tiwari, S. Bhougal, S. Kumar, A general class of estimators in stratified random sampling, Commun. Stat.-Simul. C., 52 (2023), 442–452. https://doi.org/10.1080/03610918.2020.1859537 doi: 10.1080/03610918.2020.1859537
    [25] M. Javed, M. Irfan, S. H. Bhatti, R. Onyango, A simulation-based study for progressive estimation of population mean through traditional and nontraditional measures in stratified random sampling, J. Math., 2021, 1–16. https://doi.org/10.1155/2021/9038126 doi: 10.1155/2021/9038126
    [26] S. Muneer, J. Shabbir, A. Khalil, Estimation of finite population mean in simple random sampling and stratified random sampling using two auxiliary variables, Commun. Stat.-Theor. M., 46 (2017), 2181–2192. https://doi.org/10.1080/03610926.2015.1035394 doi: 10.1080/03610926.2015.1035394
    [27] A. Haq, M. Usman, M. Khan, Estimation of finite population variance under stratified random sampling, Commun. Stat.-Simul. Comput., 52 (2023), 6193–6209. https://doi.org/10.1080/03610918.2021.2009866 doi: 10.1080/03610918.2021.2009866
    [28] J. Shabbir, S. Gupta, R. Onyango, On using the conventional and nonconventional measures of the auxiliary variable for mean estimation, Math. Probl. Eng., 2021, 1–13. https://doi.org/10.1155/2021/3741620 doi: 10.1155/2021/3741620
    [29] U. Daraz, J. Shabbir, H. Khan, Estimation of finite population mean by using minimum and maximum values in stratified random sampling, J. Mod. Appl. Stat. Method., 17 (2018), 20. https://doi.org/10.22237/jmasm/1532007537 doi: 10.22237/jmasm/1532007537
    [30] C. Kadilar, H. Cingi, A new ratio estimator in stratified random sampling, Commun. Stat.-Theor. Meth., 34 (2005), 597–602. https://doi.org/10.1081/STA-200052156 doi: 10.1081/STA-200052156
    [31] S. Choudhury, B. K. Singh, An efficient class of dual to product-cum-dual to ratio estimators of finite population mean in sample surveys, Global J. Sci. Front. Res., 12 (2012), 25–33.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(301) PDF downloads(50) Cited by(0)

Figures and Tables

Figures(2)  /  Tables(6)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog