Loading [MathJax]/jax/output/SVG/jax.js
Research article

Estimation of finite population mean using dual auxiliary variable for non-response using simple random sampling

  • Received: 15 July 2021 Revised: 10 December 2021 Accepted: 14 December 2021 Published: 23 December 2021
  • MSC : 65D05

  • This paper addresses the issue of estimating the population mean for non-response using simple random sampling. A new family of estimators is proposed for estimating the population mean with auxiliary information on the sample mean and the rank of the auxiliary variable. Bias and mean square errors of existing and proposed estimators are obtained using the first order of measurement. Theoretical comparisons are made of the performance of the proposed and existing estimators. We show that the proposed family of estimators is more efficient than existing estimators in the literature under the given constraints using these theoretical comparisons.

    Citation: Sohaib Ahmad, Sardar Hussain, Muhammad Aamir, Faridoon Khan, Mohammed N Alshahrani, Mohammed Alqawba. Estimation of finite population mean using dual auxiliary variable for non-response using simple random sampling[J]. AIMS Mathematics, 2022, 7(3): 4592-4613. doi: 10.3934/math.2022256

    Related Papers:

    [1] Khazan Sher, Muhammad Ameeq, Muhammad Muneeb Hassan, Basem A. Alkhaleel, Sidra Naz, Olyan Albalawi . Novel efficient estimators of finite population mean in stratified random sampling with application. AIMS Mathematics, 2025, 10(3): 5495-5531. doi: 10.3934/math.2025254
    [2] Mehreen Fatima, Saman Hanif Shahbaz, Muhammad Hanif, Muhammad Qaiser Shahbaz . A modified regression-cum-ratio estimator for finite population mean in presence of nonresponse using ranked set sampling. AIMS Mathematics, 2022, 7(4): 6478-6488. doi: 10.3934/math.2022361
    [3] Khazan Sher, Muhammad Ameeq, Sidra Naz, Basem A. Alkhaleel, Muhammad Muneeb Hassan, Olayan Albalawi . Developing and evaluating efficient estimators for finite population mean in two-phase sampling. AIMS Mathematics, 2025, 10(4): 8907-8925. doi: 10.3934/math.2025408
    [4] Saman Hanif Shahbaz, Aisha Fayomi, Muhammad Qaiser Shahbaz . Estimation of the general population parameter in single- and two-phase sampling. AIMS Mathematics, 2023, 8(7): 14951-14977. doi: 10.3934/math.2023763
    [5] Xuechen Liu, Muhammad Arslan . A general class of estimators on estimating population mean using the auxiliary proportions under simple and two phase sampling. AIMS Mathematics, 2021, 6(12): 13592-13607. doi: 10.3934/math.2021790
    [6] Hleil Alrweili, Fatimah A. Almulhim . Estimation of the finite population mean using extreme values and ranks of the auxiliary variable in two-phase sampling. AIMS Mathematics, 2025, 10(4): 8794-8817. doi: 10.3934/math.2025403
    [7] Sanaa Al-Marzouki, Christophe Chesneau, Sohail Akhtar, Jamal Abdul Nasir, Sohaib Ahmad, Sardar Hussain, Farrukh Jamal, Mohammed Elgarhy, M. El-Morshedy . Estimation of finite population mean under PPS in presence of maximum and minimum values. AIMS Mathematics, 2021, 6(5): 5397-5409. doi: 10.3934/math.2021318
    [8] Yasir Hassan, Muhammad Ismai, Will Murray, Muhammad Qaiser Shahbaz . Efficient estimation combining exponential and ln functions under two phase sampling. AIMS Mathematics, 2020, 5(6): 7605-7623. doi: 10.3934/math.2020486
    [9] Anum Iftikhar, Hongbo Shi, Saddam Hussain, Ather Qayyum, M. El-Morshedy, Sanaa Al-Marzouki . Estimation of finite population mean in presence of maximum and minimum values under systematic sampling scheme. AIMS Mathematics, 2022, 7(6): 9825-9834. doi: 10.3934/math.2022547
    [10] Tolga Zaman, Cem Kadilar . Exponential ratio and product type estimators of the mean in stratified two-phase sampling. AIMS Mathematics, 2021, 6(5): 4265-4279. doi: 10.3934/math.2021252
  • This paper addresses the issue of estimating the population mean for non-response using simple random sampling. A new family of estimators is proposed for estimating the population mean with auxiliary information on the sample mean and the rank of the auxiliary variable. Bias and mean square errors of existing and proposed estimators are obtained using the first order of measurement. Theoretical comparisons are made of the performance of the proposed and existing estimators. We show that the proposed family of estimators is more efficient than existing estimators in the literature under the given constraints using these theoretical comparisons.



    In survey sampling, the appropriate use of auxiliary information is known to enhance the accuracy of an estimator of the unknown population parameter. This information (auxiliary) can be used to select a random sample using SRSWR or SRSWOR. Auxiliary information gives us a sort of technique in terms of ratio, product, regression, and other methods, it is therefore necessary to have a representative part of the population, when the population of interest is more homogeneous, than simple random sampling can be used to select units. A considerable amount of work was done on estimating the population mean by simple random sampling, a number of important references include [2,5,7,11,12,13,16,17,18,19,20,22,23,24,26,27,30,32] and the references cited therein, have suggested different types of estimators to estimate the population mean and population distribution function in the presence of non-response.

    As a practical matter, one of the main problems with surveys is that they suffer from non-response, non-response has a lot of ways to happen. Examples are language problems, non-availability of response, incorrect return address and input from another person, censorship or clustering is a problem across several data. The statistician has recognized for quite few time that ignoring the stochastic nature of incompleteness or non-response may change the nature of the data. Several factors affect the non-response rate for a survey, some of these factors are the type of information collected, the official status of the investigating agency, the extent of the publicity, legal requirements of respondents, the duration of the enumerator's visit and the length of withdrawal period etc.

    A great deal of work has been done on the estimation of the population mean to check non-response bias and increase efficiency of estimators by different authors. The issue of non-response in sample surveys is more common and prevalent in mail surveys than in special interview surveys. [10] was the first to address the issue of incomplete samples in the postal or telephone surveys. For certain related work, we refer to [1,2,3,12,13,14,15,17,18,20,21,23,24,25,26,28,31,32] and the references cited therein.

    On the line of [11] a new family of estimators is proposed for the estimation of population mean in the presence of non-response. We will prove theoretically and numerically that the proposed family of estimators is more precise than the existing estimators.

    The rest of the paper is set out as follows: In Section 2, some notations are introduced by SRS with non-responding. In Section 3, the existing estimators examined for the two non-response situations. A new family of estimators is presented in Section 4 under both non-response situations using simple random sampling. The existing and proposed estimators are theoretically compared in Section 5. In Section 6, the existing and proposed family of estimators are compared numerically. Section 7 condenses the principal discovery and culminate the document.

    Suppose Ω={U1,U2,...,UN} denotes be a finite population of N distinct units that is bisect into two groups, respondents and non-respondents, having sizes N1 and N2, where N=N1+N2. Thus we denote Ω1={U1,U2,...,UN1} for the response group and Ω2={U1,U2,...,UN2} for the non-response group. In order to estimate the population mean, a sample of n is taken from the underlying population by simple random sampling without replacement (SRSWOR), and for which units n1 are responding and n2=nn1 are not responding. It is also assumed that the sample size n1 is drawn from the response group of Ω1 and n2 is drawn from the non-response group of Ω2. Moreover a sample of size r=n2/k units, where k>1 is drawn by simple random sampling without replacement from n2, and the temporal response is obtained from all r units.

    Let Y, X, Z, be the study, auxiliary and ranks of the auxiliary variable.

    ˉY=Ni=1Yi/N, ˆˉY=ni=1Yi/n: The population and sample mean of Y.

    ˉX=Ni=1Xi/N, ˆˉX=ni=1Xi/n: The population and sample mean of X.

    ˉZ=Ni=1Zi/N, ˆˉZ=ni=1Zi/n: The population and sample mean of Z.

    ˉY(2)=N2i=1Yi/N2: The population mean of Y for non-response group.

    ˉX(2)=N2i=1Xi/N2: The population mean of X for non-response group.

    ˉZ(2)=N2i=1Zi/N2: The population mean of Z for non-response group.

    ˆˉY(1)=n1i=1Yi/n1 denote the sample mean based on n1 responding units out of n units.

    ˆˉX(1)=n1i=1Xi/n1 denote the sample mean based on n1 responding units out of n units.

    ˆˉZ(1)=n1i=1Zi/n1 be the sample mean based on n1 responding units out of n units.

    ˆˉY(2r)=ri=1Yi/r be the sample mean based on r reacting units out of n2 non-response units.

    ˆˉX(2r)=ri=1Xi/r be the sample mean based on r reacting units out of n2 non-response units.

    ˆˉZ(2r)=ri=1Zi/r denote the sample mean based on r reacting units out of n2 non-response units.

    S2Y=Ni=1(YiˉY)2/(N1), S2X=Ni=1(XiˉX)2/(N1). S2Z=Ni=1(ZiˉZ)2/(N1): The population variance of Y, X, and Z.

    S2Y2=N2i=1(YiˉY2)2/(N21), S2X2=N2i=1(XiˉX2)2/(N21), S2Z2=N2i=1(ZiˉZ2)2/(N21): The population variance of Y, X, and Z for non-response group.

    CY=SY/ˉY, CX=SX/ˉX, CZ=SZ/ˉZ: The population coefficient of variation of Y, X and Z.

    CY(2)=SY(2)/ˉY(2), CX(2)=SX(2)/ˉX(2), CZ(2)=SY(2)/ˉZ(2): Be the population coefficient of variation of Y, X and Z for non-response group.

    SYX=Ni=1(YiˉY)(XiˉX)/(N1), SYZ=Ni=1(YiˉY)(ZiˉZ)/(N1), SXZ=Ni=1(XiˉX)(ZiˉZ)/(N1): The population covariance between (Y,X), (Y,Z), and (X,Z).

    SY2X2=N2i=1(YiˉY2)(XiˉX2)/(N21), SY2Z2=N2i=1(YiˉY2)(ZiˉZ2)/(N21), SX2Z2=N2i=1(XiˉX2)(ZiˉZ2)/(N21): The population covariance between (Y,X), (Y,Z), and (X,Z) for non-response group.

    ρYX=SYX/(SYSX), ρYZ=SYZ/(SYSZ), ρXZ=SXZ/(SXSZ): Be the population correlation coefficient between (Y,X), (Y,Z), and (X,Z).

    ρY2X2=SY2X2/(SY2SX2), ρY2Z2=SY2Z2/(SY2SZ2), ρX2Z2=SX2Z2/(SX2SZ2): The population correlation coefficient between (Y,X), (Y,Z), and (X,Z) for non-response group.

    R2Y.XZ=(ρ2YX+ρ2YZ2ρYXρYZρXZ)/(1ρ2XZ): The population coefficient of multiple determination of Y on X and Z.

    R2Y.XZ(2)=(ρ2YX(2)+ρ2YZ(2)2ρYX(2)ρYZ(2)ρXZ(2))/(1ρ2XZ(2)): The population coefficient of multiple determination of Y on X and Z for non-response group.

    The population mean Y may be written as such

    ˉY=W1ˆˉY(1)+W2ˉY(2), (2.1)
    ˉX=W1ˆˉX(1)+W2ˉX(2), (2.2)
    ˉZ=W1ˆˉZ(1)+W2ˉZ(2), (2.3)

    where Wj=Nj/N, ˉYj=Nji=1Zi/Nj, for j=1,2., ˉXj=Nji=1Xi/Nj and ˉZj=Nji=1Zi/Nj. Following [10,12] have suggested an unbiased estimator of ˉY under non-response, which is given by

    ˆˉY=w1ˆˉY(1)+w2ˆˉY(2r)

    and

    Var(ˆˉY)=λS21+λ2S21(2), (2.4)

    where wj=nj/n for j=1, 2, λ=(1/n1/N) and λ2=W2(k1).

    Similarly

    ˆˉX=w1ˆˉX(1)+w2ˆˉX(2r)andˆˉZ=w1ˆˉZ(1)+w2ˉZ(2r),

    are unbiased estimators of ˉX and ˉZ respectively under non-response with corresponding variances

    Var(ˆˉX)=λS22+λ2S22(2),Var(ˆˉZ)=λS23+λ2S23(2),

    respectively.

    In order to obtain the properties of the proposed estimator, we consider the following relative error terms.

    Let ξ0=(ˆˉYHˉY)/ˉY, ξ1=(ˆˉXHˉX)/ˉX, ξ2=(ˆˉZHˉZ)/ˉZ, ξ1=(ˆˉXHˉX)/ˉX, and ξ2=(ˆˉZHˉZ)/ˉZ, such that E(ξi)=E(ξi)=0 for i = 0, 1, 2, and for i = 1, 2. Where E() represents the mathematical expectation of (). Let

    Vrst=E[er0es1et2]andVrst=E[er0es1et2],

    where r,s,t,u=0,1,2. Here,

    E(ξ20)=(θS2Y+θ2S2Y2)/(ˉY2)=V200,E(ξ0ξ1)=(θρYXSYSX+θ2ρY2X2SY2SX2)/(ˉYˉX)=V110,E(ξ21)=(θS2X+θ2S2X2)/(ˉX2)=V020,E(ξ0ξ2)=(θρYZSYSZ+θ2ρY2Z2SY2SZ2)/(ˉYˉZ)=V101,E(ξ22)=(θS2Z+θ2S2Z2)/(ˉZ2)=V002,E(ξ1ξ2)=(θρXZSXSZ+θ2ρX2Z2SX2SZ2)/(ˉXˉZ)=V011E(ξ21)=(θS2X)/(ˉX2)=Ψ020,E(ξ0ξ1)=(θρYXSYSX)/(ˉYˉX)=Ψ110,E(ξ22)=(θS2Z)/(ˉZ2)=Ψ002,E(ξ0ξ2)=(θρYZSYSZ)/(ˉYˉZ)=Ψ101,E(ξ1ξ2)=(θρXZSXSZ)/(ˉXˉZ)=Ψ011,

    where θ=(1/n1/N) and θ2=W2(k1)/n.

    Usually in case of non-response, two situations are more likely to happen, namely non-response on Y only (say Situation-Ⅰ) and non-response on both Y, X and Z (say Situation-Ⅱ).

    In this portion, some existing estimates of the population mean for non-response are briefly reviewed for both situations.

    When non-response occurs in only one study variable, say Y

    (1) The estimator of the typical ratio of the ˉY is given as:

    ˆˉYR=ˆˉYH(ˉXˆˉXH). (3.1)

    The properties of ˆˉYR, are given by:

    Bias(ˆˉYR)ˉY(V020V110),MSE(ˆˉYR)ˉY2(V200+V0202V110), (3.2)

    respectively.

    (2) The typical product estimator ˉY is given as:

    ˆˉYP=ˆˉYH(ˆˉXHˉX). (3.3)

    The properties of ˆˉYP, are given as:

    Bias(ˆˉYP)=ˉYV110,MSE(ˆˉYP)ˉY2(V200+V020+2V110). (3.4)

    (3) The typical difference estimator for the ˉY is given as:

    ˆˉYD=ˆˉYH+d(ˉXˆˉXH). (3.5)

    The minimal variance of ˆˉYD at d(opt)=(ˉYV110)/(ˉXV020) is given as:

    Varmin(ˆˉYD)ˉY2(V200V020V2110)V020. (3.6)

    Here in (3.6) can be written as:

    Varmin(ˆˉYD)ˉY2V200(1ρ2YX). (3.7)

    (4) Following [27], a difference-type estimator of ˉY is

    ˆˉYR,D=k1ˆˉYH+k2(ˉXˆˉXH). (3.8)

    The properties of ˆˉYR,D, are given by:

    Bias(ˆˉYR,D)=ˉY(k11) (3.9)

    and

    MSE(ˆˉYR,D)ˉY2(k11)2+ˉY2V200k21+ˉX2V020k222ˉYˉXV110k1k2. (3.10)

    By simplify Eq (3.10) the value of k1 and k2, are given as:

    k1(opt)=V020{V020(1+V200)V2110},k2(opt)=ˉYV110ˉX{V020(1+V200)V2110},

    respectively. The minimal MSE of ˆˉYR,D at the optimal values is given by:

    MSEmin(ˆˉYR,D)ˉY2(V200V020V2110){V020(1+V200)V2110}. (3.11)

    Equation (3.11) may be written as

    MSEmin(ˆˉYR,D)ˉY2V200(1ρ2YX){1+V200(1ρ2YX)}. (3.12)

    (5) Following [4], is given as:

    ˆˉYBT,R=ˆˉYHexp(ˉXˆˉXHˉX+ˆˉXH), (3.13)
    ˆˉYBT,P=ˆˉYHexp(ˆˉXHˉXˉX+ˆˉXH). (3.14)

    The biases and MSEs of ˆˉYBT,R and ˆˉYBT,P, are given as:

    Bias(ˆˉYBT,R)ˉY(38V02012V110),MSE(ˆˉYBT,R)ˉY24(4V200+V0204V110), (3.15)

    and

    Bias(ˆˉYBT,P)ˉY(12V11018V020),MSE(ˆˉYBT,P)ˉY24(4V200+V020+4V110). (3.16)

    (6) Following [29], a generalized ratio-type exponential estimator of ˉY is

    ˆˉYS=ˆˉYHexp(a(ˉXˆˉXH)a(ˉX+ˆˉXH)+2b). (3.17)

    The properties of ˆˉYS, are given as:

    Bias(ˆˉYS)ˉY(38θ2V02012θV110),MSE(ˆˉYS)ˉY24(4V200+θ2V0204θV110),

    where θ=aˉX/(aˉX+b).

    (7) Following [8], a generalized class of ratio-type exponential estimators of ˉY is given as:

    ˆˉYGK={k1ˆˉYH+k2(ˉXˆˉXH)}exp(a(ˉXˆˉXH)a(ˉX+ˆˉXH)+2b). (3.18)

    The properties of ˆˉYGK, are given as:

    Bias(ˆˉYGK)ˉY(k11)+38θ2ˉYV200k1+12θˉXV020k212θˉYV110,MSE(ˆˉYGK)ˉY2(k11)2+ˉY2V200k21+ˉX2V020v22+θ2ˉY2V020v21+2θˉYˉXV020k1k234θ2ˉY2V020k1θˉYˉXV020k2+θˉY2V110k12θˉY2V110v212ˉYˉXV110k1k2. (3.19)

    The optimum values of k1 and k2 determined by simplifying (23), are given as:

    k1(opt)=V020(8θ2V020)8{V020(1+V200)V2110},k2(opt)=ˉY[θ3V20204V110(2+θV110)θV020(4+θV1104V200)]8ˉX{V020(1+V200)V2110)}.

    The simplified minimum MSE of ˆˉYGK at the optimum values of k1 and k2 is given by

    MSEmin(ˆˉYGK)ˉY264(6416θ2V020V020(8+θ2V020)2V020(1+V200)V2110). (3.20)

    Here (3.20) may be written as

    MSEmin(ˆˉYGK)Varmin(ˆˉYD)ˉY2(θ2V20208V2110+8V020V200)264V2020{1+V200(1ρ2YX)}. (3.21)

    When non response is occur in both study and auxiliary variables, say Y and X.

    (1) The traditional ratio estimator of ˉY is given as:

    ˆˉYR=ˆˉYH(ˉXˆˉXH). (3.22)

    The properties of ˆˉYR, are given as:

    Bias(ˆˉYR)ˉY(Ψ020Ψ110),MSE(ˆˉYR)ˉY2(V200+Ψ0202Ψ110). (3.23)

    (2) The traditional product estimator of ˉY is given as:

    ˆˉYP=ˆˉYH(ˆˉXHˉX). (3.24)

    The properties of ˆˉYP, are given as:

    Bias(ˆˉYP)=ˉYΨ110,MSE(ˆˉYP)ˉY2(V200+Ψ020+2Ψ110). (3.25)

    (3) The traditional difference estimator of ˉY is

    ˆˉYD=ˆˉYH+d(ˉXˆˉXH). (3.26)

    The minimal variance of ˆˉYD at the optimal value d(opt)=(ˉYΨ110)/(ˉXΨ020) is

    Varmin(ˆˉYD)ˉY2(V200Ψ020Ψ2110)Ψ020. (3.27)

    Equation (3.27) may be written as:

    Varmin(ˆˉYD)ˉY2V200(1ρ2YX(2)). (3.28)

    (4) Following [27], a difference-type estimator of ˉY is

    ˆˉYR,D=k1ˆˉYH+k2(ˉXˆˉXH). (3.29)

    The properties of ˆˉYR,D, are given as:

    Bias(ˆˉYR,D)=ˉY(k11)

    and

    MSE(ˆˉYR,D)ˉY2(k11)2+ˉY2V200k21+ˉX2Ψ020k222ˉYˉXΨ110k1k2. (3.30)

    The optimal values of k1 and k2, determined by minimizing (3.30), are given as:

    k1(opt)=Ψ020{Ψ020(1+V200)Ψ2110},k2(opt)=ˉYΨ110ˉX{Ψ020(1+V200)Ψ2110}.

    The minimal MSE of ˆˉYR,D at the optimal values is given by:

    MSEmin(ˆˉYR,D)ˉY2(V200Ψ020Ψ2110){Ψ020(1+V200)Ψ2110}. (3.31)

    Equation (3.31) may be written as:

    MSEmin(ˆˉYR,D)ˉY2V200(1ρ2YX(2)){1+V200(1ρ2YX(2))}. (3.32)

    (5) Following [4], the ratio and product-type exponential estimators of ˉY, are given by:

    ˆˉYBT,R=ˆˉYHexp(ˉXˆˉXHˉX+ˆˉXH), (3.33)
    ˆˉYBT,P=ˆˉYHexp(ˆˉXHˉXˉX+ˆˉXH). (3.34)

    The biases and MSEs of ˆˉYBT,R and ˆˉYBT,P, are given by:

    Bias(ˆˉYBT,R)ˉY(38Ψ02012Ψ110),MSE(ˆˉYBT,R)ˉY24(4V200+Ψ0204Ψ110), (3.35)

    and

    Bias(ˆˉYBT,P)ˉY(12Ψ11018Ψ020),MSE(ˆˉYBT,P)ˉY24(4V200+Ψ020+4Ψ110). (3.36)

    (6) Following [6], a generalized ratio-type exponential estimator of ˉY is given by:

    ˆˉYS=ˆˉYHexp(a(ˉXˆˉXH)a(ˉX+ˆˉXH)+2b). (3.37)

    The properties of ˆˉYS, are given by:

    Bias(ˆˉYS)ˉY(38θ2Ψ02012θΨ110),MSE(ˆˉYS)ˉY24(4V200+θ2Ψ0204θΨ110), (3.38)

    where θ=aˉX/(aˉX+b).

    (7) Following [8], estimators of ˉY is given by:

    ˆˉYGK={k1ˆˉYH+k2(ˉXˆˉXH)}exp(a(ˉXˆˉXH)a(ˉX+ˆˉXH)+2b). (3.39)

    The properties of ˆˉYGK, are given by:

    Bias(ˆˉYGK)ˉY(k11)+38θ2ˉYV200k1+12θˉXΨ020k212θˉYΨ110,
    MSE(ˆˉYGK)ˉY2(k11)2+ˉY2V200k21+ˉX2Ψ020v22+θ2ˉY2Ψ020v21+2θˉYˉXΨ020k1k234θ2ˉY2Ψ020k1θˉYˉXΨ020k2+θˉY2Ψ110k12θˉY2Ψ110v212ˉYˉXΨ110k1k2. (3.40)

    The ideal values of k1 and k2 is expressing by (3.40),

    k1(opt)=Ψ020(8θ2Ψ020)8{Ψ020(1+V200)Ψ2110},k2(opt)=ˉY[θ3Ψ20204Ψ110(2+θΨ110)θΨ020(4+θΨ1104V200)]8ˉX{Ψ020(1+V200)Ψ2110)}.

    The minimal MSE of ˆˉYGK at the optimal values of k1 and k2 is given by:

    MSEmin(ˆˉYGK)ˉY264(6416θ2Ψ020Ψ020(8+θ2Ψ020)2Ψ020(1+V200)Ψ2110). (3.41)

    Equation (3.41) may be written as:

    MSEmin(ˆˉYGK)Varmin(ˆˉYD)ˉY2(θ2Ψ20208Ψ2110+8Ψ020V200)264Ψ2020{1+V200(1ρ2YX(2))}. (3.42)

    The proper use of ancillary variable improve the accuracy of estimator in the design and estimation stages. Complete auxiliary information is frequently supplied along with the sample frame for social, economic, and natural surveys. When the study variable and the auxiliary variable have a sufficient amount of connection, the rankings of the auxiliary variable are also correlated with the values of the auxiliary variable. Consequently, The categorised auxiliary variable (which includes the auxiliary variable's rank) can be treated as a new auxiliary variable, and this information can help an estimator perform better. Because of We present an improved family of estimators for predicting the population mean that requires additional information on the study and auxiliary variable sample means, as well as the ranks of the auxiliary variable under non-response using simple random sampling.

    When non-response occur only in study variable. On the lines of [11], the proposed improved estimator of ˉY in the presence of non-response using SRS, say ˆˉYSuggested is given as:

    ˆˉYSuggested={w1ˆˉYH+w2(ˉXˆˉXH)+w3(ˉZˆˉZH)}exp(a(ˉXˆˉXH)a(ˉX+ˆˉXH)+2b), (4.1)

    where w1, w2, and w3 are unknown constant. The proposed estimator ˆˉYSuggested can be rewritten as

    ˆˉYSuggested={w1ˉY(1+ξ0)w2ˉXξ1w3ˉZξ2}{1θξ12+3θ2ξ218+}. (4.2)

    Simplifying (4.2), we have

    (ˆˉYSuggestedˉY)ˉY+w1ˉY+w1ˉYξ012w1θˉYξ1w2ˉXξ1w3ˉZξ2+38w1θ2ˉYξ21+12w2θˉXξ2112w1θˉYξ0ξ1+12w3θˉZξ1ξ2. (4.3)

    The properties of ˆˉYSuggested, are given as:

    Bias(ˆˉYSuggested)ˉY(w11)+38θ2ˉYV020w1+12θˉXV020w212θˉYV110w1+12θˉZV011,MSE(ˆˉYSuggested)ˉY2(w11)2+ˉY2V200w21+ˉX2V020w2+ˉZ2V002w3+θ2ˉY2V020w21θˉYˉXV020w2+2θˉYˉXV020w1w234θ2ˉY2V020w1+θˉY2V110w12θˉY2V110w212ˉYˉXV110w1w22ˉYˉZV101w1w3θˉYˉZV011w3+2θˉYˉZV011w1w32ˉXˉZV011w2w3. (4.4)

    The optimal values of w1, w2, and w3 determined by minimizing (4.4), are

    w1(opt)=(θ2V0208)(V2110V002V020)8[V020V2101+2V011V101V110V2011(1+V200)+V002{V2110+V020(1+V200)}],
    w2(opt)=ˉY[4θV020V2101V011V101(8+θ2V020+8θV110)+V002{θ3V2020+4V110(2+θV110)+θV020(4+θV1104V200)}+θV2011(4+θ2V020+4V200)]8ˉX[V020V2101+2V011V101V110V2011(1+V200)+V002{V2110+V020(1+V200)}],
    w3(opt)=ˉY(θ2V0208)(V020V101V110V011)8ˉZ[V020V2101+2V011V101V110V2011(1+V200)+V002{V2110+V020(1+V200)}].

    The minimal MSE of ˆˉYSuggested at optimal values of w1, w2 and w3 is given by:

    MSE(ˆˉYSuggested)ˉY264[6416θ2Ψ020+(θ2Ψ0208)2(Ψ2011Ψ002Ψ020)[Ψ020Ψ2101+2Ψ011Ψ101Ψ110Ψ2011(1+Ψ2200)+Ψ020{Ψ2110+Ψ020(1+Ψ200)}]]. (4.5)

    Equation (4.5) me be written as

    MSEmin(ˆˉYSuggested)Varmin(ˆˉYD)A1A2, (4.6)

    where

    A1=ˉY2(θ2V20208V2110+8V020V200)264V2020{1+V200(1ρ2YX)},A2=ˉY2(θ2V0208)2(V020V101V011V110)264V2020V002(1ρ2XZ){1+V200(1ρ2YX)}{1+V200(1R2Y.XZ(1))}. (4.7)

    When non-response are in both study and auxiliary variable. Taking motivation on the lines of [11], we proposed a family of estimators of ˉY in the presence of non-response say ˆˉYSuggested, is given by:

    ˆˉYSuggested={w1ˆˉYH+w2(ˉXˆˉXH)+w3(ˉZˆˉZH)}exp(a(ˉXˆˉXH)a(ˉX+ˆˉXH)+2b), (4.8)

    where w1, w2, and w3 are unknown constants. The proposed estimator ˆˉYSuggested can be rewritten as:

    ˆˉYSuggested={w1ˉY(1+ξ0)w2ˉXξ1w3ˉZξ2}{1θξ12+3θ2ξ218+}. (4.9)

    Simplifying (4.9), we can write

    (ˆˉYSuggested)ˉY+w1ˉY+w1ˉYξ012w1θˉYξ1w2ˉXξ1w3ˉZξ2+38w1θ2ˉYξ21+12w2θˉXξ2112w1θˉYξ0ξ1+12w3θˉZξ1ξ2. (4.10)

    The properties of ˆˉYSuggested, are given by:

    Bias(ˆˉYSuggested)ˉY(w11)+38θ2ˉYΨ020w1+12θˉXΨ020w212θˉYΨ110w1+12θˉZΨ011,andMSE(ˆˉYSuggested)ˉY2(w11)2+ˉY2V200w21+ˉX2Ψ020w2+ˉZ2Ψ002w3+θ2ˉY2Ψ020w21θˉYˉXΨ020w2+2θˉYˉXΨ020w1w234θ2ˉY2Ψ020w1+θˉY2Ψ110w12θˉY2Ψ110w212ˉYˉXΨ110w1w22ˉYˉZΨ101w1w3θˉYˉZΨ011w3+2θˉYˉZΨ011w1w32ˉXˉZΨ011w2w3. (4.11)

    The optimal values of w1, w2, and w3 determined by minimizing (4.11), are given as:

    w1(opt)=(θ2Ψ0208)(Ψ2110Ψ002Ψ020)8[Ψ020Ψ2101+2Ψ011Ψ101Ψ110Ψ2011(1+V200)+Ψ002{Ψ2110+Ψ020(1+V200)}],
    w2(opt)=ˉY[4θΨ020Ψ2101Ψ011Ψ101(8+θ2Ψ020+8θΨ110)+Ψ002{θ3Ψ2020+4Ψ110(2+θΨ110)+θΨ020(4+θΨ1104V200)}+θΨ2011(4+θ2Ψ020+4V200)]8ˉX[Ψ020Ψ2101+2Ψ011Ψ101Ψ110Ψ2011(1+V200)+Ψ002{Ψ2110+Ψ020(1+V200)}],
    w3(opt)=ˉY(θ2Ψ0208)(Ψ020Ψ101Ψ110Ψ011)8ˉZ[Ψ020Ψ2101+2Ψ011Ψ101Ψ110Ψ2011(1+V200)+Ψ002{Ψ2110+Ψ020(1+V200)}],

    The minimal MSE of the ˆˉYSuggested at optimal values of w1, w2 and w3 is given by:

    MSE(ˆˉYSuggested)ˉY264[6416θ2Ψ020+(θ2Ψ0208)2(Ψ2011Ψ002Ψ020)[Ψ020Ψ2101+2Ψ011Ψ101Ψ110Ψ2011(1+V2200)+Ψ020{Ψ2110+Ψ020(1+V200)}]]. (4.12)

    Here (4.12) me be written as:

    MSEmin(ˆˉYSuggested)Varmin(ˆˉYD)B1B2, (4.13)

    where

    B1=ˉY2(θ2Ψ20208Ψ2110+8Ψ020V200)264Ψ2020{1+V200(1ρ2YX(2))},B2=ˉY2(θ2Ψ0208)2(Ψ020Ψ101Ψ011Ψ110)264Ψ2020Ψ002(1ρ2XZ(2)){1+V200(1ρ2YX(2))}{1+V200(1R2Y.XZ(2))}. (4.14)

    In Table 1, we put some members of the [8,29], and proposed families of estimators with selected choices of a and b.

    Table 1.  Components of our proposed and existing estimates.
    a b ˆˉYS ˆˉYG.K ˆˉYSuggested
    1 Cx ˆˉY(1)S ˆˉY(1)G.K ˆˉY(1)Suggested
    1 β2 ˆˉY(2)S ˆˉY(2)G.K ˆˉY(2)Suggested
    β2 Cx ˆˉY(3)S ˆˉY(3)G.K ˆˉY(3)Suggested
    Cx β2 ˆˉY(4)S ˆˉY(4)G.K ˆˉY(4)Suggested
    1 ρyx ˆˉY(5)S ˆˉY(5)G.K ˆˉY(5)Suggested
    Cx ρyx ˆˉY(6)S ˆˉY(6)G.K ˆˉY(6)Suggested
    ρyx Cx ˆˉY(7)S ˆˉY(7)G.K ˆˉY(7)Suggested
    β2 ρyx ˆˉY(8)S ˆˉY(8)G.K ˆˉY(8)Suggested
    ρyx β2 ˆˉY(9)S ˆˉY(9)G.K ˆˉY(9)Suggested
    1 NˉX ˆˉY(10)S ˆˉY(10)G.K ˆˉY(10)Suggested

     | Show Table
    DownLoad: CSV

    In this section, we performed a comparison of the adapted and proposed estimators, when non-response is available in the study variable.

    (ⅰ) By taking (2.3) and (3.21),

    MSE{min}(ˆˉYSuggested)<Var(ˆˉYSRS)ifˉY2V2200ρ2yx+A1+A2>0.

    (ⅱ) By taking (2.4) and (3.21),

    MSE{min}(ˆˉYSuggested)<MSE(ˆˉYR)ifˉY2V200(V020V110)2+A1+A2>0.

    (ⅲ) By taking (3.2) and (3.21),

    MSE{min}(ˆˉYSuggested)<MSE(ˆˉYP)ifˉY2V200(V020+V110)2+A1+A2>0.

    (ⅳ) By taking (3.5) and (3.21),

    MSE{min}(ˆˉYSuggested)<MSE{min}(ˆˉYReg)ifA1+A2>0. (5.1)

    (ⅴ) By taking (3.10) and (3.21),

    MSE{min}(ˆˉYSuggested)<MSE{min}(ˆˉYR,D)ifˉY2θ2V020{θ2V020+16V200(1ρ2yx)}64{1+V200(1ρ2yx)}+A2>0.

    (ⅵ) By taking (3.12) and (3.21),

    MSE{min}(ˆˉYSuggested)<MSE(ˆˉYS)ifˉY2V200(θV0202V110)2+A1+A2>0.

    (ⅶ) By taking (3.16) and (3.21),

    MSE{min}(ˆˉYSuggested)<MSE{min}(ˆˉYG.K)ifA2>0.

    In this section, we made efficiency comparison of all estimator, when non-response occur in both the study and auxiliary variables.

    (ⅰ) By taking (2.3) and (3.21),

    MSE{min}(ˆˉYSuggested)<Var(ˆˉYSRS)ifˉY2V2200ρ2yx(2)+B1+B2>0.

    (ⅱ) By taking (2.4) and (3.21),

    MSE{min}(ˆˉYSuggested)<MSE(ˆˉYR)ifˉY2V200(Ψ020Ψ110)2+B1+B2>0.

    (ⅲ) By taking (3.2) and (3.21),

    MSE{min}(ˆˉYSuggested)<MSE(ˆˉYP)ifˉY2V200(Ψ020+Ψ110)2+B1+B2>0.

    (ⅳ) By taking (3.5) and (3.21),

    MSE{min}(ˆˉYSuggested)<MSE{min}(ˆˉYReg)ifB1+B2>0.

    (ⅴ) By taking (3.10) and (3.21),

    MSE{min}(ˆˉYSuggested)<MSE{min}(ˆˉYR,D)ifˉY2θ2Ψ020{θ2Ψ020+16V200(1ρ2yx(2))}64{1+V200(1ρ2yx(2))}+B2>0.

    (ⅵ) By taking (3.12) and (3.21),

    MSE{min}(ˆˉYSuggested)<MSE(ˆˉYS)ifˉY2V200(θΨ0202Ψ110)2+B1+B2>0.

    (ⅶ) By taking (3.16) and (3.21),

    MSE{min}(ˆˉYSuggested)<MSE{min}(ˆˉYG.K)ifB2>0.

    In this section, the mathematical result is shown to verify the effectiveness of all estimators as compared to existing estimators. Four data sets are under consideration. The data description and mean square error are listed in Tables 2 and 3. The percent efficiency of estimator ˆˉYi w.r.t ˆˉYSRS:

    PRE(ˆˉYi,ˆˉYSRS)=Var(ˆˉYSRS)MSE{min}(ˆˉYi)×100,
    Table 2.  Description for Population Ⅰ.
    Parameter Value Parameter Value
    N 50 SY 1661.242
    n 15 SX 22.18052
    λ 0.046670 SZ 14.57598
    ˉY 1357.622 ρYX 0.3022287
    ˉX 75.8720 ρYZ 0.2662075
    ˉZ 25.5000 ρXZ 0.9574204
    Non-response
    Parameter Value Parameter Value
    N2 12 ρYX(2) 1.0000000
    w2 0.240000 ρYZ(2) 0.3376224
    λ2 0.016000 ρXZ(2) 0.9871019
    SY(2) 940.7629
    SX(2) 19.53920
    SZ(2) 3.605551

     | Show Table
    DownLoad: CSV
    Table 3.  Description for Population Ⅱ.
    Parameter Value Parameter Value
    N 50 SY 1661.242
    n 15 SX 21.31747
    λ 0.046670 SZ 14.57563
    ˉY 1357.622 ρYX 0.2888328
    ˉX 78.29000 ρYZ 0.2469467
    ˉZ 25.50000 ρXZ 0.9467713
    Non-response
    Parameter Value Parameter Value
    N2 12 ρYX(2) 1.0000000
    w2 0.240000 ρYZ(2) 0.2066633
    λ2 0.016000 ρXZ(2) 0.9795199
    SY(2) 940.7629
    SX(2) 18.25925
    SZ(2) 3.605551

     | Show Table
    DownLoad: CSV

    where i=R,P,,Sugeested.

    The MSEs and PREs of mean estimators, computed from two populations, are given in Tables 411.

    Table 4.  MSEs using Population Ⅰ Situation-Ⅰ.
    Estimator Value Estimator Value Estimator Value Estimator Value
    ˆˉYSRS 142947.8 ˆˉY(1)S 148429.5 ˆˉY(1)G.K 131185.2 ˆˉY(1)Suggested 109348.7
    ˆˉYR 157953.8 ˆˉY(2)S 148093.3 ˆˉY(2)G.K 131197.8 ˆˉY(2)Suggested 109370.1
    ˆˉYP 143904.1 ˆˉY(3)S 148449.0 ˆˉY(3)G.K 131184.4 ˆˉY(3)Suggested 109347.5
    ˆˉYReg 141402.0 ˆˉY(4)S 147314.0 ˆˉY(4)G.K 131226.0 ˆˉY(4)Suggested 109417.5
    ˆˉYR,D 131326.8 ˆˉY(5)S 148483.3 ˆˉY(5)G.K 131183.1 ˆˉY(5)Suggested 109345.3
    ˆˉY(6)S 148558.9 ˆˉY(6)G.K 131180.2 ˆˉY(6)Suggested 109340.4
    ˆˉY(7)S 148547.2 ˆˉY(7)G.K 131180.7 ˆˉY(7)Suggested 109341.1
    ˆˉY(8)S 148462.4 ˆˉY(8)G.K 131183.9 ˆˉY(8)Suggested 109346.6
    ˆˉY(9)S 150174.0 ˆˉY(9)G.K 131115.3 ˆˉY(9)Suggested 109230.8
    ˆˉY(10)S 143017.4 ˆˉY(10)G.K 131326.8 ˆˉY(10)Suggested 109586.3

     | Show Table
    DownLoad: CSV
    Table 5.  MSEs using Population Ⅰ Situation-Ⅱ.
    Estimator Value Estimator Value Estimator Value Estimator Value
    ˆˉYSRS 142947.8 ˆˉY(1)S 153113.7 ˆˉY(1)G.K 122477.1 ˆˉY(1)Suggested 113173.2
    ˆˉYR 166549.9 ˆˉY(2)S 152581.3 ˆˉY(2)G.K 122486.5 ˆˉY(2)Suggested 113190.8
    ˆˉYP 132099.8 ˆˉY(3)S 153144.4 ˆˉY(3)G.K 122476.5 ˆˉY(3)Suggested 113172.2
    ˆˉYReg 131316.2 ˆˉY(4)S 151320.3 ˆˉY(4)G.K 122507.5 ˆˉY(4)Suggested 113229.8
    ˆˉYR,D 122582.7 ˆˉY(5)S 153198.3 ˆˉY(5)G.K 122475.5 ˆˉY(5)Suggested 113170.4
    ˆˉY(6)S 153317.0 ˆˉY(6)G.K 122473.4 ˆˉY(6)Suggested 113166.3
    ˆˉY(7)S 153298.6 ˆˉY(7)G.K 122473.7 ˆˉY(7)Suggested 113167.0
    ˆˉY(8)S 153165.4 ˆˉY(8)G.K 122476.1 ˆˉY(8)Suggested 113171.5
    ˆˉY(9)S 155785.1 ˆˉY(9)G.K 122425.0 ˆˉY(9)Suggested 113076.2
    ˆˉY(10)S 143117.2 ˆˉY(10)G.K 122582.6 ˆˉY(10)Suggested 113369.2

     | Show Table
    DownLoad: CSV
    Table 6.  PREs using Population Ⅰ Situation-Ⅰ.
    Estimator Value Estimator Value Estimator Value Estimator Value
    ˆˉYSRS 100.00 ˆˉY(1)S 96.31 ˆˉY(1)G.K 108.97 ˆˉY(1)Suggested 130.73
    ˆˉYR 90.500 ˆˉY(2)S 96.53 ˆˉY(2)G.K 108.96 ˆˉY(2)Suggested 130.70
    ˆˉYP 99.340 ˆˉY(3)S 96.29 ˆˉY(3)G.K 108.97 ˆˉY(3)Suggested 130.73
    ˆˉYReg 101.09 ˆˉY(4)S 97.04 ˆˉY(4)G.K 108.93 ˆˉY(4)Suggested 130.64
    ˆˉYR,D 108.85 ˆˉY(5)S 96.27 ˆˉY(5)G.K 108.97 ˆˉY(5)Suggested 130.73
    ˆˉY(6)S 96.22 ˆˉY(6)G.K 108.97 ˆˉY(6)Suggested 130.74
    ˆˉY(7)S 96.23 ˆˉY(7)G.K 108.97 ˆˉY(7)Suggested 130.74
    ˆˉY(8)S 96.29 ˆˉY(8)G.K 108.97 ˆˉY(8)Suggested 130.73
    ˆˉY(9)S 95.19 ˆˉY(9)G.K 109.02 ˆˉY(9)Suggested 130.87
    ˆˉY(10)S 99.95 ˆˉY(10)G.K 108.85 ˆˉY(10)Suggested 130.44

     | Show Table
    DownLoad: CSV
    Table 7.  PREs using Population Ⅰ Situation-Ⅱ.
    Estimator Value Estimator Value Estimator Value Estimator Value
    ˆˉYSRS 100.00 ˆˉY(1)S 93.36 ˆˉY(1)G.K 116.71 ˆˉY(1)Suggested 126.31
    ˆˉYR 85.830 ˆˉY(2)S 93.69 ˆˉY(2)G.K 116.70 ˆˉY(2)Suggested 126.29
    ˆˉYP 108.21 ˆˉY(3)S 93.34 ˆˉY(3)G.K 116.71 ˆˉY(3)Suggested 126.31
    ˆˉYReg 108.86 ˆˉY(4)S 94.47 ˆˉY(4)G.K 116.68 ˆˉY(4)Suggested 126.25
    ˆˉYR,D 116.61 ˆˉY(5)S 93.31 ˆˉY(5)G.K 116.72 ˆˉY(5)Suggested 126.31
    ˆˉY(6)S 93.24 ˆˉY(6)G.K 116.72 ˆˉY(6)Suggested 126.32
    ˆˉY(7)S 93.25 ˆˉY(7)G.K 116.72 ˆˉY(7)Suggested 126.32
    ˆˉY(8)S 93.33 ˆˉY(8)G.K 116.71 ˆˉY(8)Suggested 126.31
    ˆˉY(9)S 91.76 ˆˉY(9)G.K 116.76 ˆˉY(9)Suggested 126.42
    ˆˉY(10)S 99.88 ˆˉY(10)G.K 116.61 ˆˉY(10)Suggested 126.09

     | Show Table
    DownLoad: CSV
    Table 8.  MSEs using Population Ⅱ Situation-Ⅰ.
    Estimator Value Estimator Value Estimator Value Estimator Value
    ˆˉYSRS 142947.8 ˆˉY(1)S 149277.7 ˆˉY(1)G.K 130985.1 ˆˉY(1)Suggested 111745.4
    ˆˉYR 160327.6 ˆˉY(2)S 148916.6 ˆˉY(2)G.K 130998.8 ˆˉY(2)Suggested 111769.0
    ˆˉYP 144181.5 ˆˉY(3)S 149301.8 ˆˉY(3)G.K 130984.2 ˆˉY(3)Suggested 111743.8
    ˆˉYReg 141197.0 ˆˉY(4)S 148128.4 ˆˉY(4)G.K 131027.6 ˆˉY(4)Suggested 111818.8
    ˆˉYR,D 131150.0 ˆˉY(5)S 149345.8 ˆˉY(5)G.K 130982.5 ˆˉY(5)Suggested 111740.8
    ˆˉY(6)S 149431.5 ˆˉY(6)G.K 130979.2 ˆˉY(6)Suggested 111735.1
    ˆˉY(7)S 149423.6 ˆˉY(7)G.K 130979.5 ˆˉY(7)Suggested 111735.6
    ˆˉY(8)S 149320.5 ˆˉY(8)G.K 130983.4 ˆˉY(8)Suggested 111742.5
    ˆˉY(9)S 151041.8 ˆˉY(9)G.K 130914.4 ˆˉY(9)Suggested 111623.0
    ˆˉY(10)S 143027.8 ˆˉY(10)G.K 131150.0 ˆˉY(10)Suggested 112028.6

     | Show Table
    DownLoad: CSV
    Table 9.  MSEs using Population Ⅱ Situation-Ⅱ.
    Estimator Value Estimator Value Estimator Value Estimator Value
    ˆˉYSRS 142947.8 ˆˉY(1)S 154034.9 ˆˉY(1)G.K 122345.9 ˆˉY(1)Suggested 121502.7
    ˆˉYR 168897.1 ˆˉY(2)S 153492.4 ˆˉY(2)G.K 122356.0 ˆˉY(2)Suggested 121522.9
    ˆˉYP 131700.4 ˆˉY(3)S 154071.0 ˆˉY(3)G.K 122345.2 ˆˉY(3)Suggested 121501.4
    ˆˉYReg 131184.1 ˆˉY(4)S 152286.3 ˆˉY(4)G.K 122377.3 ˆˉY(4)Suggested 121565.4
    ˆˉYR,D 122467.5 ˆˉY(5)S 154136.6 ˆˉY(5)G.K 122344.0 ˆˉY(5)Suggested 121498.9
    ˆˉY(6)S 154264.3 ˆˉY(6)G.K 122341.6 ˆˉY(6)Suggested 121494.0
    ˆˉY(7)S 154252.5 ˆˉY(7)G.K 122341.8 ˆˉY(7)Suggested 121494.4
    ˆˉY(8)S 154098.8 ˆˉY(8)G.K 122344.7 ˆˉY(8)Suggested 121500.3
    ˆˉY(9)S 156610.1 ˆˉY(9)G.K 122293.9 ˆˉY(9)Suggested 121398.4
    ˆˉY(10)S 143130.8 ˆˉY(10)G.K 122467.5 ˆˉY(10)Suggested 121745.2

     | Show Table
    DownLoad: CSV
    Table 10.  PREs using Population Ⅱ Situation-Ⅰ.
    Estimator Value Estimator Value Estimator Value Estimator Value
    ˆˉYSRS 100.00 ˆˉY(1)S 95.76 ˆˉY(1)G.K 109.13 ˆˉY(1)Suggested 127.92
    ˆˉYR 89.160 ˆˉY(2)S 95.99 ˆˉY(2)G.K 109.12 ˆˉY(2)Suggested 127.90
    ˆˉYP 99.140 ˆˉY(3)S 95.74 ˆˉY(3)G.K 109.13 ˆˉY(3)Suggested 127.92
    ˆˉYReg 101.24 ˆˉY(4)S 96.50 ˆˉY(4)G.K 109.10 ˆˉY(4)Suggested 127.84
    ˆˉYR,D 109.00 ˆˉY(5)S 95.72 ˆˉY(5)G.K 109.14 ˆˉY(5)Suggested 127.93
    ˆˉY(6)S 95.66 ˆˉY(6)G.K 109.14 ˆˉY(6)Suggested 127.93
    ˆˉY(7)S 95.67 ˆˉY(7)G.K 109.14 ˆˉY(7)Suggested 127.93
    ˆˉY(8)S 95.73 ˆˉY(8)G.K 109.13 ˆˉY(8)Suggested 127.93
    ˆˉY(9)S 94.64 ˆˉY(9)G.K 109.19 ˆˉY(9)Suggested 128.06
    ˆˉY(10)S 99.94 ˆˉY(10)G.K 109.00 ˆˉY(10)Suggested 127.60

     | Show Table
    DownLoad: CSV
    Table 11.  PREs using Population Ⅱ Situation-Ⅱ.
    Estimator Value Estimator Value Estimator Value Estimator Value
    ˆˉYSRS 100.00 ˆˉY(1)S 92.80 ˆˉY(1)G.K 116.84 ˆˉY(1)Suggested 117.65
    ˆˉYR 84.640 ˆˉY(2)S 93.13 ˆˉY(2)G.K 116.83 ˆˉY(2)Suggested 117.63
    ˆˉYP 108.54 ˆˉY(3)S 92.78 ˆˉY(3)G.K 116.84 ˆˉY(3)Suggested 117.65
    ˆˉYReg 108.97 ˆˉY(4)S 93.87 ˆˉY(4)G.K 116.81 ˆˉY(4)Suggested 117.59
    ˆˉYR,D 116.72 ˆˉY(5)S 92.74 ˆˉY(5)G.K 116.84 ˆˉY(5)Suggested 117.65
    ˆˉY(6)S 92.66 ˆˉY(6)G.K 116.84 ˆˉY(6)Suggested 117.66
    ˆˉY(7)S 92.67 ˆˉY(7)G.K 116.84 ˆˉY(7)Suggested 117.66
    ˆˉY(8)S 92.76 ˆˉY(8)G.K 116.84 ˆˉY(8)Suggested 117.65
    ˆˉY(9)S 91.28 ˆˉY(9)G.K 116.89 ˆˉY(9)Suggested 117.75
    ˆˉY(10)S 99.87 ˆˉY(10)G.K 116.72 ˆˉY(10)Suggested 117.42

     | Show Table
    DownLoad: CSV

    Population Ⅰ. (Source:[9]) Y: The egg assemble in 1990, X: Value per dozen in 1991.

    Population Ⅱ. (Source:[9]) Y: Eggs assemble in 1990, X: Value per dozen in 1990.

    In this paper, a new family of estimators for estimating the population mean with information on the auxiliary variable in the form of the sample mean and ranks of the auxiliary variable in the presence of non-response has been devised. The suggested family of estimators a mathematical expressions for biases and minimum MSEs have been generated up to the first order of approximation and compared both theoretically and numerically with the [6,10,22], the conventional difference, [8,27,29] estimators under Situation-Ⅰ and Situation-Ⅱ. It has been observed that the proposed family of estimators is more efficient in both non-response situations.

    The authors declare no conflict of interest.



    [1] S. Ahmad, S. Hussain, S. Ahmad, Finite population distribution function estimation using auxiliary information under simple random sampling, Stat. Comput. Interdiscip. Res., 3 (2021), 29–38. https://doi.org/10.52700/scir.v3i1.25 doi: 10.52700/scir.v3i1.25
    [2] S. Ahmad, J. Shabbir, Use of extreme values to estimate finite population mean under pps sampling scheme, J. Reliab. Stat. Stud., 11 (2018), 99–112.
    [3] S. Al-Marzouki, C. Chesneau, S. Akhtar, J. N. Abdul, S. Ahmad, S. Hussain, et al., Estimation of finite population mean under pps in presence of maximum and minimum values, AIMS Math., 6 (2021), 5397–5409. https://doi.org/10.3934/math.2021318 doi: 10.3934/math.2021318
    [4] S. Bahl, R. Tuteja, Ratio and product type exponential estimators, J. Inform. Optim. Sci., 12 (1991), 159–164. https://doi.org/10.1080/02522667.1991.10699058 doi: 10.1080/02522667.1991.10699058
    [5] W. W. Chanu, B. K. Singh, Improved exponential ratio cum exponential dual to ratio estimator of finite population mean in presence of non-response, J. Stat. Appl. Probab., 4 (2015), 103.
    [6] W. G. Cochran, The estimation of the yields of cereal experiments by sampling for the ratio of grain to total produce, J. Agr. Sci., 30 (1940), 262–275. https://doi.org/10.1017/S0021859600048012 doi: 10.1017/S0021859600048012
    [7] W. G. Cochran, G. William, Sampling techniques, New York: John Wiley & Sons, 1977.
    [8] L. K. Grover, P. Kaur, A generalized class of ratio type exponential estimators of population mean under linear transformation of auxiliary variable, Commun. Stat. Simul. Comput., 43 (2014), 1552–1574. https://doi.org/10.1080/03610918.2012.736579 doi: 10.1080/03610918.2012.736579
    [9] D. N. Gujrati, Basic econometrics, Tata McGraw-Hill Education, 2009.
    [10] M. H. Hansen, W. N. Hurwitz, The problem of non-response in sample surveys, J. Amer. Stat. Assoc., 41 (1964), 517–529.
    [11] S. Hussain, S. Ahmad, S. Akhtar, A. Javed, U. Yasmeen, Estimation of finite population distribution function with dual use of auxiliary information under non-response, Plos One, 15 (2020), e0243584. https://doi.org/10.1371/journal.pone.0243584 doi: 10.1371/journal.pone.0243584
    [12] S. Hussain, S. Ahmad, M. Saleem, S. Akhtar, Finite population distribution function estimation with dual use of auxiliary information under simple and stratified random sampling, Plos One, 15 (2020), e0239098. https://doi.org/10.1371/journal.pone.0239098 doi: 10.1371/journal.pone.0239098
    [13] S. Hussain, M. Zichuan, S. Hussain, A. Iftikhar, M. Asif, S. Akhtar, et al., On estimation of distribution function using dual auxiliary information under nonresponse using simple random sampling, J. Probab. Stat., 2020 (2020), 1693612. https://doi.org/10.1155/2020/1693612 doi: 10.1155/2020/1693612
    [14] M. Ismail, Combination of ratio and regression estimator of population mean in presence of non–response, Gazi Univ. J. Sci, 30 (2017), 634–642.
    [15] B. B. Khare, S. Kumar, Chain ratio-regression estimators in two phase sampling in the presence of non-response, ProbStat Forum, 8 (2015), 95–102.
    [16] B. B. Khare, R. R. Sinha, Estimation of the ratio of the two population means using multi auxiliary characters in the presence of non-response, In: B. N. Pandey, Statistical techniques in life testing, reliability, sampling theory and quality control, New Delhi: Narosa publishing house, 1 (2007), 63–171.
    [17] B. B. Khare, R. R. Sinha, On class of estimators for population mean using multi-auxiliary characters in the presence of non-response, Stat. Transition, 10 (2009), 3–14.
    [18] B. B. Khare, R. R. Sinha, Estimation of population mean using multi-auxiliary characters with subsampling the nonrespondents, Stat. Transition New Ser., 1 (2011), 45–56.
    [19] B. B. Khare, S. Srivastava, Estimation of population mean using auxiliary character in presence of nonresponse, Natl. Acad. Sci. Lett.-India, 16 (1993), 111–114.
    [20] B. B. Khare, S. Srivastava, Transformed ratio type estimators for the population mean in the presence of nonresponse, Commun. Stat.-Theory M., 26 (1997), 1779–1791. https://doi.org/10.1080/03610929708832012 doi: 10.1080/03610929708832012
    [21] S. Muneer, S. Shabbir, A. Khalil, Estimation of finite population mean in simple random sampling and stratified random sampling using two auxiliary variables, Commun. Stat.-Theory M., 46 (2017), 2181–2192. https://doi.org/10.1080/03610926.2015.1035394 doi: 10.1080/03610926.2015.1035394
    [22] M. N. Murthy, Product method of estimation, Sankhya: Indian J. Stat., Ser. A, 26 (1964), 69–74.
    [23] O. Yunusa, S. Kumar, Ratio-cum-product estimator using exponential estimator in the presence of non-response, J. Adv. Comput., 3 (2014), 1–11.
    [24] S. K. Pal, H. P. Singh, Estimation of finite population mean using auxiliary information in presence of non-response, Commun. Stat.-Simul. C., 47 (2018), 143–165. https://doi.org/10.1080/03610918.2017.1280161 doi: 10.1080/03610918.2017.1280161
    [25] P. S. Chami, B. Sing, D. Thomas, A two-parameter ratio-product-ratio estimator in two-phase sampling using auxiliary information in presence of non-response, Int. Scholarly Res. Not., 2012 (2012), 103860. https://doi.org/10.5402/2012/103860 doi: 10.5402/2012/103860
    [26] P. S. R. S. Rao, Ratio estimation with sub sampling the non-respondents, Survey Meth., 12 (1986), 217–230.
    [27] T. J. Rao, On certail methods of improving ration and regression estimators, Commun. Stat.-Theory M., 20 (1991), 3325–3340.
    [28] S. Ahmad, S. Hussain, M. Aamir, U. Yasmeen, J. Shabbir, Z. Ahmad, Dual use of auxiliary information for estimating the finite population mean under the stratified random sampling scheme, J. Math., 2021 (2021), 3860122. https://doi.org/10.1155/2021/3860122 doi: 10.1155/2021/3860122
    [29] R. Singh, P. Chauhan, N. Sawan, F. Smarandache, Improvement in estimating the population mean using exponential estimator in simple random sampling, In: Auxiliary information and a priori values in construction of improved estimators, USA: Renaissance High Press, 2007, 33–40.
    [30] B. Sisodia, V. Dwivedi, Modified ratio estimator using coefficient of variation of auxiliary variable, J. Indian Soc. Agr. Stat., 33 (1981), 13–18.
    [31] M. Yaqub, J. Shabbir, Estimation of population distribution function in the presence of non-response, Hacettepe J. Math. Stat., 47 (2018), 471–511.
    [32] E. Zahid, J. Shabbir, Estimation of population mean in the presence of measurement error and non response under stratified random sampling, PloS One, 13 (2018), e0191572. https://doi.org/10.1371/journal.pone.0191572 doi: 10.1371/journal.pone.0191572
  • This article has been cited by:

    1. Anum Iftikhar, Shi Hongbo, Sardar Hussain, Sajid Khan, Badr Alnssyan, Javid Shabbir, Sohaib Ahmad, Muhammad Aamir, Saima K Khosa, A New Exponential Factor-Type Estimator for Population Distribution Function Using Dual Auxiliary Variables under Stratified Random Sampling, 2022, 2022, 1563-5147, 1, 10.1155/2022/7673945
    2. Javid Shabbir, Ronald Onyango, Sajjad Haider Bhatti, Use of an efficient unbiased estimator for finite population mean, 2022, 17, 1932-6203, e0270277, 10.1371/journal.pone.0270277
    3. Abdullah Ali H. Ahmadini, Taruna Yadav, S. K. Yadav, Asamh Saleh M. Al Luhayb, Restructured searls family of estimators of population mean in the presence of nonresponse, 2022, 8, 2297-4687, 10.3389/fams.2022.969068
    4. Sohaib Ahmad, Javid Shabbir, Muhammad Aamir, Sardar Hussain, Kalim Ullah, Improved Mean Estimation for a Finite Population with Twofold Auxiliary Variables Under Simple Random Sampling, 2024, 10, 2349-5103, 10.1007/s40819-023-01624-1
    5. Zeeshan Basit, Saadia Masood, Ishaq Bhatti, A Class of Estimators for Estimation of Population Mean Under Random Non-response in Two Phase Successive Sampling, 2023, 22, 2214-1766, 309, 10.1007/s44199-023-00065-5
    6. Sohaib Ahmad, Erum Zahid, Javid Shabbir, Muhammad Aamir, Ronald Onyango, Isabella Torcicollo, Enhanced Estimation of the Population Mean Using Two Auxiliary Variables under Probability Proportional to Size Sampling, 2023, 2023, 1024-123X, 10.1155/2023/5564360
    7. Anoop Kumar, Shashi Bhushan, Shivam Shukla, Walid Emam, Yusra Tashkandy, Rajesh Gupta, Ammar Alsinai, Impact of Correlated Measurement Errors on Some Efficient Classes of Estimators, 2023, 2023, 2314-4785, 1, 10.1155/2023/8140831
    8. G.R.V. Triveni, Faizan Danish, Efficient population mean estimation via stratified sampling with dual auxiliary information: A real estate perspective, 2024, 104, 11100168, 680, 10.1016/j.aej.2024.08.013
    9. Mujeeb Hussain, Qamruz Zaman, Lakhkar Khan, A.E. Metawa, Fuad A. Awwad, Emad A.A. Ismail, Danish Wasim, Hijaz Ahmad, Improved exponential type mean estimators for non-response case using two concomitant variables in simple random sampling, 2024, 10, 24058440, e27535, 10.1016/j.heliyon.2024.e27535
    10. Muhammad Sajjad, Muhammad Ismail, Efficient generalized estimators of population mean in the presence of non-response and measurement error, 2024, 51, 23074108, 100224, 10.1016/j.kjs.2024.100224
    11. M. K. Pandey, G. N. Singh, Tolga Zaman, Aned Al Mutairi, Manahil SidAhmed Mustafa, A general class of improved population variance estimators under non-sampling errors using calibrated weights in stratified sampling, 2024, 14, 2045-2322, 10.1038/s41598-023-47234-1
    12. Ceren ÜNAL, Cem KADILAR, An Improvement in Estimating the Population Mean Based on Family of Estimators with Different Application Areas, 2023, 10, 2147-9542, 402, 10.54287/gujsa.1333067
    13. R. R. Sinha, Bharti Khanna, Two-Phase Ratio Estimation Using Ordinal and Ratio Auxiliary Variables in Non-response, 2023, 93, 0369-8203, 695, 10.1007/s40010-023-00824-0
    14. Muhammad Junaid, Sadaf Manzoor, Amjid Ali, Manahil SidAhmed Mustafa, Sohaib Ahmad, Sardar Hussain, Improving Efficiency of Finite Population Distribution Function Using Twofold Auxiliary Information Based on Simple Random Sampling, 2024, 12, 2309-0022, 49, 10.21015/vtm.v12i2.1983
    15. Sajid Khan, Muhammad Farooq, Sohaib Ahmad, Sardar Khan, Improved estimator for estimation of population mean using predictive approach under PPS sampling , 2024, 12, 2309-0022, 01, 10.21015/vtm.v12i2.1942
    16. Ahmed R. El-Saeed, Sohaib Ahmad, Badr Aloraini, Development of a novel estimator using auxiliary information under non-response: Application to radiation data sets, 2025, 18, 16878507, 101401, 10.1016/j.jrras.2025.101401
    17. Osama Abdulaziz Alamri, Badr Aloraini, Regression estimator based on median for population mean estimation under non-response analysis, 2025, 123, 11100168, 138, 10.1016/j.aej.2025.02.054
    18. Muhammad Sajjad, Muhammad Ismail, Amjad Rehman, Tariq Mahmood, Generalized and open selection approaches for the population mean: accounting for non-response and measurement error in single-phase sampling, 2025, 2214-1766, 10.1007/s44199-025-00115-0
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2729) PDF downloads(148) Cited by(18)

Figures and Tables

Tables(11)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog